

28/44-Pin, General Purpose, 16-Bit Flash Microcontrollers with Cryptographic Engine, ISO 7816 and XLP Technology

Cryptographic Engine

- AES Engine with 128,192 or 256-Bit Key
- Supports ECB, CBC, OFB, CTR and CFB128 modes
- DES/Triple DES (TDES) Engine: Supports 2-Key and 3-Key EDE or DED TDES
- Supports up to Three Unique Keys for TDES
- Programmatically Secure
- · Pseudorandom Number Generator
- True Random Number Generator
- Non-Readable, On-Chip, OTP Key Storages

Extreme Low-Power Features

- Multiple Power Management Options for Extreme Power Reduction:
 - VBAT allows the device to transition to a backup battery for the lowest power consumption with RTCC
 - Deep Sleep allows near total power-down with the ability to wake-up on internal or external triggers
 - Sleep and Idle modes selectively shut down peripherals and/or core for substantial power reduction and fast wake-up
 - Doze mode allows CPU to run at a lower clock speed than peripherals

Extreme Low-Power Features (Continued)

- Alternate Clock modes allow On-the-Fly Switching to a Lower Clock Speed for Selective Power Reduction
- Extreme Low-Power Current Consumption for Deep Sleep:
 - WDT: 270 nA @ 3.3V typical
 - RTCC: 400 nA @ 32 kHz, 3.3V typical
 - Deep Sleep current: 40 nA, 3.3V typical

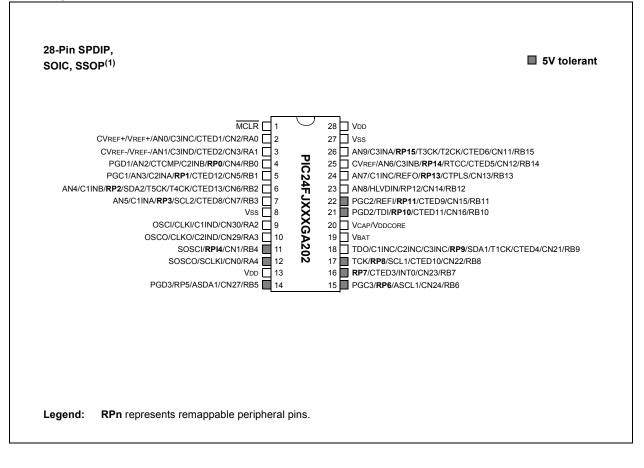
Analog Features

- 10/12-Bit, 13-Channel Analog-to-Digital (A/D) Converter:
 - Conversion rate of 500 ksps (10-bit), 200 ksps (12-bit)
 - Conversion available during Sleep and Idle
- Three Rail-to-Rail, Enhanced Analog Comparators with Programmable Input/Output Configuration
- Three On-Chip Programmable Voltage References
- Charge Time Measurement Unit (CTMU):
 Used for capacitive touch sensing, up to 13 channels
 - Time measurement down to 100 ps resolution
 - Operation in Sleep mode

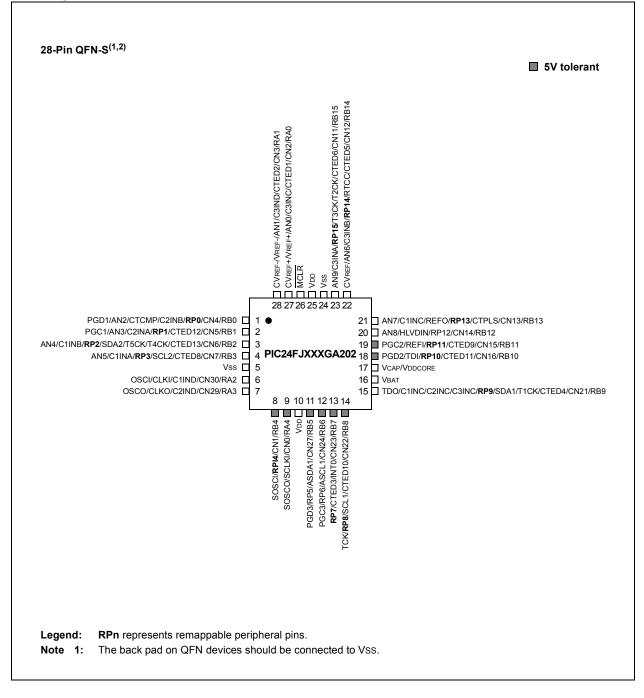
	Men	Memory		Memory Analog Digital Peripherals							F	ohic			
Device	Program Flash (bytes)	Data RAM (bytes)	Pins	10/12-Bit A/D (ch)	Comparators	CTMU (ch)	Input Capture	Output Compare/PWM	I ² C™	IdS	UART w/IrDA [®] 7816	EPMP/PSP	16-Bit Timers	Deep Sleep w/VBAT	AES/DES Cryptographic
PIC24FJ128GA204	128K	8K	44	13	3	13	6	6	2	3	4	Y	5	Y	Y
PIC24FJ128GA202	128K	8K	28	10	3	10	6	6	2	3	4	Ν	5	Y	Y
PIC24FJ64GA204	64K	8K	44	13	3	13	6	6	2	3	4	Y	5	Y	Y
PIC24FJ64GA202	64K	8K	28	10	3	10	6	6	2	3	4	Ν	5	Y	Y

Peripheral Features

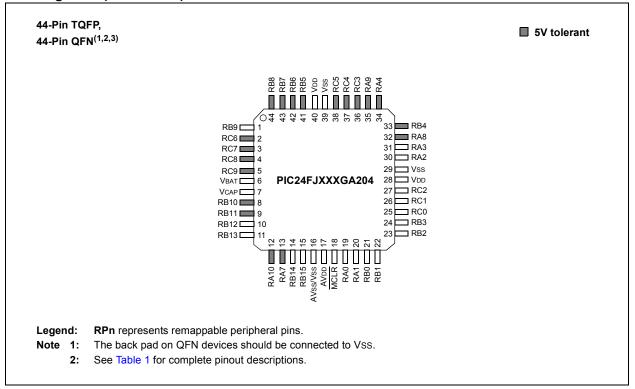
- Up to Five External Interrupt Sources
- Peripheral Pin Select (PPS); Allows Independent I/O Mapping of Many Peripherals
- Five 16-Bit Timers/Counters with Prescaler:
- Can be paired as 32-bit timers/countersSix-Channel DMA supports All Peripheral modules:
- Minimizes CPU overhead and increases data throughput
- Six Input Capture modules, Each with a Dedicated 16-Bit Timer
- Six Output Compare/PWM modules, Each with a Dedicated 16-Bit Timer
- Enhanced Parallel Master/Slave Port (EPMP/EPSP)
- Hardware Real-Time Clock/Calendar (RTCC):
 - Runs in Sleep, Deep Sleep and VBAT modes
- Three 3-Wire/4-Wire SPI modules:
- Support four Frame modes
- Variable FIFO buffer
- I²S mode
- Variable width from 2-bit to 32-bit
- Two I²C[™] modules Support Multi-Master/Slave mode and 7-Bit/10-Bit Addressing
- Four UART modules:
 - Support RS-485, RS-232 and LIN/J2602
 - On-chip hardware encoder/decoder for IrDA®
 - Smart Card ISO 7816 support on UART1 and UART2 only:
 - T = 0 protocol with automatic error handling
 - T = 1 protocol
 - Dedicated Guard Time Counter (GTC)
 - Dedicated Waiting Time Counter (WTC)
 - Auto-wake-up on Auto-Baud Detect (ABD)
 - 4-level deep FIFO buffer
- Programmable 32-Bit Cyclic Redundancy Check (CRC) Generator
- Digital Signal Modulator provides On-Chip FSK and PSK Modulation for a Digital Signal Stream
- High-Current Sink/Source (18 mA/18 mA) on All I/O Pins
- Configurable Open-Drain Outputs on Digital I/O Pins
- 5.5V Tolerant Inputs on Most Pins


High-Performance CPU

- Modified Harvard Architecture
- Up to 16 MIPS Operation @ 32 MHz
- 8 MHz Internal Oscillator:
 - 96 MHz PLL option
 - Multiple clock divide options
 - Run-time self-calibration capability for maintaining better than ±0.20% accuracy
 - Fast start-up
- 17-Bit x 17-Bit Single-Cycle Hardware Fractional/Integer Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16 x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture (ISA)
- Two Address Generation Units (AGUs) for Separate Read and Write Addressing of Data Memory


Special Microcontroller Features

- Supply Voltage Range of 2.0V to 3.6V
- Two On-Chip Voltage Regulators (1.8V and 1.2V) for Regular and Extreme Low-Power Operation
- 20,000 Erase/Write Cycle Endurance Flash Program Memory, Typical
- Flash Data Retention: 20 Years Minimum
- Self-Programmable under Software Control
- · Programmable Reference Clock Output
- In-Circuit Serial Programming™ (ICSP™) and In-Circuit Emulation (ICE) via 2 Pins
- JTAG Programming and Boundary Scan Support
- Fail-Safe Clock Monitor (FSCM) Operation:
 - Detects clock failure and switches to on-chip, Low-Power RC Oscillator (LPRC)
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Separate Brown-out Reset (BOR) and Deep Sleep Brown-out Reset (DSBOR) Circuits
- Programmable High/Low-Voltage Detect (HLVD)
- Flexible Watchdog Timer (WDT) with its Own RC Oscillator for Reliable Operation
- Standard and Ultra Low-Power Watchdog Timers (ULPWs) for Reliable Operation in Standard and Deep Sleep modes


Pin Diagrams

Pin Diagrams (Continued)

Pin Diagrams (Continued)

TABLE 1: PIC24FJXXGA204 PIN FUNCTION DESCRIPTIONS

Pin	Function	Pin	Function
1	C1INC/C2INC/C3INC/RP9/SDA1/T1CK/CTED4/PMD3/CN21/RB9	23	AN4/C1INB/RP2/SDA2/T5CK/T4CK/CTED13/CN6/RB2
2	RP22/PMA1/PMALH/CN18/RC6	24	AN5/C1INA/RP3/SCL2/CTED8/CN7/RB3
3	RP23/PMA0/PMALL/CN17/RC7	25	AN10/ RP16 /PMBE1/CN8/RC0
4	RP24/PMA5/CN20/RC8	26	AN11/ RP17 /PMCS2/CN9/RC1
5	RP25/CTED7/PMA6/CN19/RC9	27	AN12/RP18/PMACK1/CN10/RC2
6	VBAT	28	Vdd
7	VCAP	29	Vss
8	RP10/CTED11/PMD2/CN16/PGD2/RB10	30	OSCI/CLKI/C1IND/PMCS1/CN30/RA2
9	REFI/ RP11 /CTED9/PMD1/CN15/PGC2/RB11	31	OSCO/CLKO/C2IND/CN29/RA3
10	AN8/HLVDIN/RP12/PMD0/CN14/ RB12	32	TDO/PMA8/CN34/RA8
11	AN7/C1INC/REFO/RP13/CTPLS/PMRD/PMWR/CN13/RB13	33	SOSCI/CN1/ RPI4 /RB4
12	TMS/PMA2/PMALU/CN36/RA10	34	SOSCO/SCLKI/CN0/RA4
13	TCK/PMA7/CN33/RA7	35	TDI/PMA9/CN35/RA9
14	CVREF/AN6/C3INB/RP14/PMWR/PMNEB/RTCC/CTED5/CN12/RB14	36	RP19/PMBE0/CN28/RC3
15	AN9/C3INA/RP15/T3CK/T2CK/CTED6/PMA14/CN11/PMCS/PMCS1/RB15	37	RP20/PMA4/CN25/RC4
16	AVss/Vss	38	RP21/PMA3/CN26/RC5
17	AVDD	39	Vss
18	MCLR	40	Vdd
19	CVREF+/VREF+/AN0/C3INC/CTED1/CN2/RA0	41	PGD3/RP5/ASDA1 ⁽¹⁾ /PMD7/CN27/RB5
20	CVREF-/VREF-/AN1/C3IND/CTED2/CN3/RA1	42	PGC3/RP6/ASCL1 ⁽¹⁾ /PMD6/CN24/RB6
21	AN2/CTCMP/C2INB/ RP0 /CN4/PGD1/RB0	43	RP7/CTED3/INT0/CN23/PMD5/RB7
22	AN3/C2INA/ RP1 /CTED12/CN5/PGC1/RB1	44	RP8/SCL1/CTED10/PMD4/CN22/RB8

Legend: RPn represents remappable peripheral pins.

Note 1: Alternative multiplexing for SDA1 and SCL1 when the I2C1SEL bit is set.

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	
3.0	CPU	
4.0	Memory Organization	
5.0	Direct Memory Access Controller (DMA)	
6.0	Flash Program Memory	
7.0	Resets	
8.0	Interrupt Controller	
9.0	Oscillator Configuration	141
10.0	Power-Saving Features	155
11.0	I/O Ports	167
12.0	Timer1	195
	Timer2/3 and Timer4/5	
14.0	Input Capture with Dedicated Timers	
15.0	Output Compare with Dedicated Timers	
16.0	Serial Peripheral Interface (SPI)	
17.0		
18.0	Universal Asynchronous Receiver Transmitter (UART)	
19.0	Data Signal Modulator (DSM)	
	Enhanced Parallel Master Port (EPMP)	
	Real-Time Clock and Calendar (RTCC)	
	Cryptographic Engine	
	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	
	12-Bit A/D Converter with Threshold Detect	
	Triple Comparator Module	
	Comparator Voltage Reference	
	Charge Time Measurement Unit (CTMU)	
	High/Low-Voltage Detect (HLVD)	
	Special Features	
30.0	Development Support	
31.0		
	Electrical Characteristics	
	Packaging Information	
	endix A: Revision History	
	Χ	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
Produ	luct Identification System	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ64GA202 PIC24FJ128GA202
- PIC24FJ64GA204 PIC24FJ128GA204

The PIC24FJ128GA204 family expands the capabilities of the PIC24F family by adding a complete selection of Cryptographic Engines, ISO 7816 support and I²S support to its existing features. This combination, along with its ultra low-power features and Direct Memory Access (DMA) for peripherals, make this family the new standard for mixed-signal PIC[®] microcontrollers in one economical and power-saving package.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- A 16-element Working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- Operational performance up to 16 MIPS

1.1.2 XLP POWER-SAVING TECHNOLOGY

The PIC24FJ128GA204 family of devices introduces a greatly expanded range of power-saving operating modes for the ultimate in power conservation. The new modes include:

- Retention Sleep, with essential circuits being powered from a separate low-voltage regulator
- Deep Sleep without RTCC, for the lowest possible power consumption under software control
- VBAT mode (with or without RTCC), to continue limited operation from a backup battery when VDD is removed

Many of these new low-power modes also support the continuous operation of the low-power, on-chip Real-Time Clock/Calendar (RTCC), making it possible for an application to keep time while the device is otherwise asleep.

Aside from these new features, PIC24FJ128GA204 family devices also include all of the legacy power-saving features of previous PIC24F microcontrollers, such as:

- On-the-Fly Clock Switching, allowing the selection of a lower power clock during run time
- Doze Mode Operation, for maintaining peripheral clock speed while slowing the CPU clock
- Instruction-Based Power-Saving Modes, for quick invocation of Idle and the many Sleep modes

1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ128GA204 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes
- Two External Clock modes
- A Phase-Locked Loop (PLL) frequency multiplier, which allows clock speeds of up to 32 MHz
- A Fast Internal Oscillator (FRC) nominal 8 MHz output with multiple frequency divider options and automatic frequency self-calibration during run time
- A separate, Low-Power Internal RC Oscillator (LPRC) – 31 kHz nominal, for low-power, timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.

1.2 DMA Controller

PIC24FJ128GA204 family devices also add a Direct Memory Access (DMA) Controller to the existing PIC24F architecture. The DMA acts in concert with the CPU, allowing data to move between data memory and peripherals without the intervention of the CPU, increasing data throughput and decreasing execution time overhead. Six independently programmable channels make it possible to service multiple peripherals at virtually the same time, with each channel peripheral performing a different operation. Many types of data transfer operations are supported.

1.3 Cryptographic Engine

The Cryptographic Engine provides a new set of data security options. Using its own free-standing state machines, the engine can independently perform NIST standard encryption and decryption of data, independently of the CPU.

Support for True Random Number Generation (TRNG) and Pseudorandom Number Generation (PRNG); NIST SP800-90 compliant.

1.4 Other Special Features

- Peripheral Pin Select (PPS): The Peripheral Pin Select feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- Communications: The PIC24FJ128GA204 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are two independent I²C[™] modules that support both Master and Slave modes of operation. Devices also have, through the PPS feature, four independent UARTs with built-in IrDA[®] encoders/decoders, ISO 7816 Smart Card support (UART1 and UART2 only), and three SPI modules with I²S and variable data width support.
- Analog Features: All members of the PIC24FJ128GA204 family include a 12-bit A/D Converter module and a triple comparator module. The A/D module incorporates a range of new features that allows the converter to assess and make decisions on incoming data, reducing CPU overhead for routine A/D conversions. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- **CTMU Interface:** In addition to their other analog features, members of the PIC24FJ128GA204 family include the CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.

- Enhanced Parallel Master/Parallel Slave Port: This module allows rapid and transparent access to the microcontroller data bus, and enables the CPU to directly address external data memory. The parallel port can function in Master or Slave mode, accommodating data widths of 4, 8 or 16 bits, and address widths of up to 23 bits in Master modes.
- Real-Time Clock and Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- Data Signal Modulator (DSM): The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the "modulator signal") with a carrier signal to produce a modulated output.

1.5 Details on Individual Family Members

Devices in the PIC24FJ128GA204 family are available in 28-pin and 44-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are differentiated from each other in six ways:

- Flash program memory (64 Kbytes for PIC24FJ64GA2XX devices and 128 Kbytes for PIC24FJ128GA2XX devices).
- 2. Available I/O pins and ports (21 pins on two ports for 28-pin devices, 35 pins on three ports for 44-pin devices).
- 3. Available Input Change Notification (ICN) inputs (20 on 28-pin devices and 34 on 44-pin devices).
- 4. Available remappable pins (14 pins on 28-pin devices and 24 pins on 44-pin devices).
- Analog input channels for the A/D Converter (12 channels for 44-pin devices and 9 channels for 28-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1 and Table 1-2.

A list of the pin features available on the PIC24FJ128GA204 family devices, sorted by function, is shown in Table 1-3. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

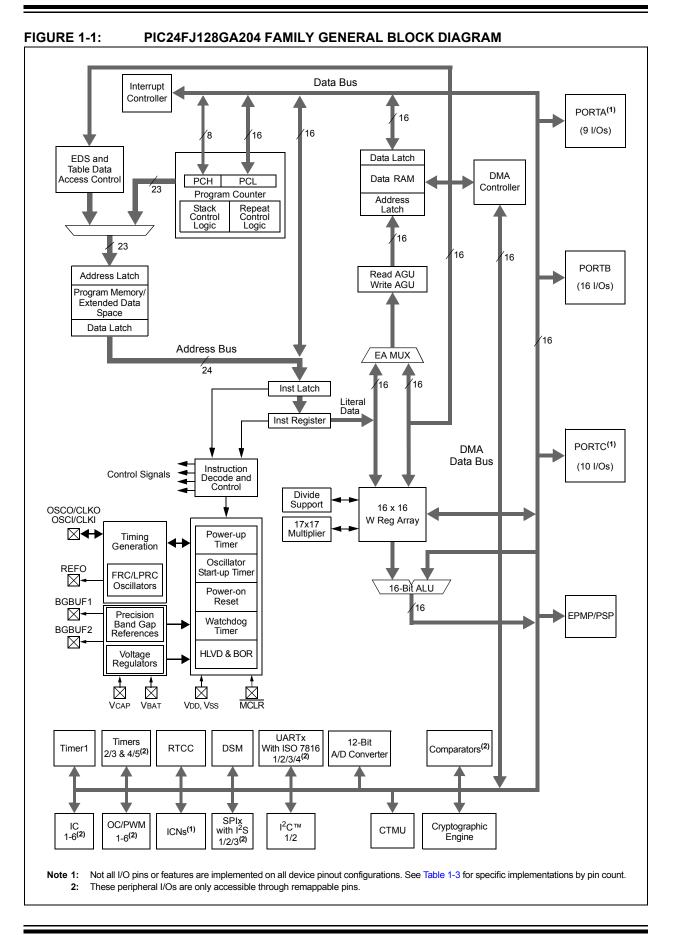

Features	PIC24FJ64GA204 PIC24FJ128GA204							
Operating Frequency	DC – 32 MHz							
Program Memory (bytes)	64K	128K						
Program Memory (instructions)	22,016	44,032						
Data Memory (bytes)	8k	<						
Interrupt Sources (soft vectors/ NMI traps)	71 (6	7/4)						
I/O Ports	Ports A	., B, C						
Total I/O Pins	35	5						
Remappable Pins	25 (24 I/Os, 1	I Input only)						
Timers:								
Total Number (16-bit)	5(1)						
32-Bit (from paired 16-bit timers)	2							
Input Capture w/Timer Channels	6 ⁽¹	1)						
Output Compare/PWM Channels	6 ⁽¹	1)						
Input Change Notification Interrupt	35							
Serial Communications:								
UART	4(1	1)						
SPI (3-wire/4-wire)	3(1	1)						
I ² C™	2							
Digital Signal Modulator (DSM)	Yes							
Parallel Communications (EPMP/PSP)	Ye	s						
JTAG Boundary Scan	Yes							
12-Bit SAR Analog-to-Digital Converter (A/D) (input channels)	13							
Analog Comparators	3							
CTMU Interface	13 Cha	Innels						
Resets (and Delays)	Core POR, VDD POR, VBAT POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)							
Instruction Set	76 Base Instructions, Multiple Addressing Mode Variations							
Packages	44-Pin TQFF	^D and QFN						
Cryptographic Engine	Supports AES with 128, 192 and True Random and Pseudora On-Chip OT	andom Number Generator,						
RTCC	Ye	s						

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ128GA204 FAMILY: 44-PIN DEVICES

Note 1: Peripherals are accessible through remappable pins.

Features	PIC24FJ64GA202 PIC24FJ128GA202							
Operating Frequency	DC – 32 MHz							
Program Memory (bytes)	64K	128K						
Program Memory (instructions)	22,016	44,032						
Data Memory (bytes)	8	K						
Interrupt Sources (soft vectors/ NMI traps)	71 (6	67/4)						
I/O Ports	Ports	s A, B						
Total I/O Pins	2	1						
Remappable Pins	16 (15 I/Os,	1 Input only)						
Timers:								
Total Number (16-bit)	5	(1)						
32-Bit (from paired 16-bit timers)	-	2						
Input Capture w/Timer Channels	· · · · ·	(1)						
Output Compare/PWM Channels	6	(1)						
Input Change Notification Interrupt	2	1						
Serial Communications:								
UART	4	(1)						
SPI (3-wire/4-wire)	3	(1)						
l ² C™	2	2						
Digital Signal Modulator (DSM)	Ye	es						
JTAG Boundary Scan	Ye	es						
12-Bit SAR Analog-to-Digital Converter (A/D) (input channels)	10							
Analog Comparators	:	3						
CTMU Interface	10 Ch	annels						
Resets (and Delays)	Core POR, VDD POR, VBAT POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)							
Instruction Set	76 Base Instructions, Multiple	e Addressing Mode Variations						
Packages	28-Pin SPDIP, SSO	P, SOIC and QFN-S						
Cryptographic Engine	True Random and Pseudor	Supports AES with 128, 192 and 256-Bit Key, DES and TDES, True Random and Pseudorandom Number Generator, On-Chip OTP Storage						
RTCC	Ye	es						

Note 1: Peripherals are accessible through remappable pins.

	Pin Numl	ber/Grid	Locator					
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description		
AN0	2	27	19	Ι	ANA	12-Bit SAR A/D Converter Inputs.		
AN1	3	28	20	Ι	ANA			
AN2	4	1	21	Ι	ANA			
AN3	5	2	22	Ι	ANA			
AN4	6	3	23	Ι	ANA			
AN5	7	4	24	Ι	ANA			
AN6	25	22	14	Ι	ANA			
AN7	24	21	11	Ι	ANA			
AN8	23	20	10	Ι	ANA			
AN9	26	23	15	Ι	ANA			
AN10	—		25	Ι	ANA			
AN11	_		26	Ι	ANA			
AN12	_		27	Ι	ANA	1		
ASCL1	15	12	42	_		1		
ASDA1	2	27	19	_		1		
AVDD			17	Р	ANA	Positive Supply for Analog modules.		
AVss	_	24	16	Р	ANA	Ground Reference for Analog modules.		
C1INA	7	4	24	Ι	ANA	Comparator 1 Input A.		
C1INB	6	3	23	Ι	ANA	Comparator 1 Input B.		
C1INC	24	15	1	Ι	ANA	Comparator 1 Input C.		
C1IND	9	6	30	Ι	ANA	Comparator 1 Input D.		
C2INA	5	2	22	Ι	ANA	Comparator 2 Input A.		
C2INB	4	1	21	Ι	ANA	Comparator 2 Input B.		
C2INC	18	15	1	Ι	ANA	Comparator 2 Input C.		
C2IND	10	7	31	Ι	ANA	Comparator 2 Input D.		
C3INA	26	23	15	Ι	ANA	Comparator 3 Input A.		
C3INB	25	22	14	Ι	ANA	Comparator 3 Input B.		
C3INC	2	15	1	Ι	ANA	Comparator 3 Input C.		
C3IND	3	28	20	Ι	ANA	Comparator 3 Input D.		
CLKI	9	6	30	Ι	ANA	Main Clock Input Connection.		
CLKO	10	7	31	0		System Clock Output.		

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS

Schmitt Trigger input Legend: SI ANA = Analog input I^2C = ST with I^2C^{TM} or SME

$$C = ST$$
 with I^2C^{TM} or SMBus levels

	Pin Num	per/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
CN0	12	9	34	—		Interrupt-on-Change Inputs.
CN1	11	8	33	_	—	
CN2	2	27	19	—	—	
CN3	3	28	20	_	—	
CN4	4	1	21	_		
CN5	5	2	22	_		
CN6	6	3	23	_		
CN7	7	4	24			
CN8	_		25	_		
CN9	_		26			
CN10	—		27			
CN11	26	23	15			
CN12	25	22	14	_	_	
CN13	24	21	11	_	_	
CN14	23	20	10			
CN15	22	19	9			
CN16	21	18	8	_	_	
CN17	—		3			
CN18	—		2	_	_	
CN19	—		5	_	_	
CN20	—		4	_	—	
CN21	18	15	1	_	_	
CN22	17	14	44	—	—	
CN23	16	13	43	—	—	
CN24	15	12	42		—	
CN25	—		37		_	
CN26	—	—	38		—	
CN27	14	11	41	_	—	
CN28			36	_		
CN29	10	7	31	_		
CN30	9	6	30			
CN33	—		13	_		
CN34		_	32	_]
CN35	—	—	35	—	—	
CN36		_	12	_		
CTCMP	4	1	21	I	ANA	CTMU Comparator 2 Input (Pulse mode).

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog Input I^2C = ST with I^2C^{TM} or SMBus levels

Pin Number/Grid L			Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
CTED1	2	27	19	I	ANA	CTMU External Edge Inputs.
CTED2	3	28	20	Ι	ANA	
CTED3	16	13	43	Ι	ANA	
CTED4	18	15	1	Ι	ANA	
CTED5	25	22	14	Ι	ANA	
CTED6	26	23	15	Ι	ANA	
CTED7	—	—	5	Ι	ANA	
CTED8	7	4	24	Ι	ANA	
CTED9	22	19	9	Ι	ANA	
CTED10	17	14	44	Ι	ANA	
CTED11	21	18	8	Ι	ANA	
CTED12	5	2	22	Ι	ANA	
CTED13	6	3	23	Ι	ANA	
CTPLS	24	21	11	0		CTMU Pulse Output.
CVREF	25	22	14	0	ANA	Comparator Voltage Reference Output.
CVREF+	2	27	19	Ι	ANA	Comparator Reference Voltage (high) Input.
CVREF-	3	28	20	Ι	ANA	Comparator Reference Voltage (low) Input.
INT0	16	13	43	Ι	ST	External Interrupt Input 0.
HLVDIN	23	20	10	I	ANA	High/Low-Voltage Detect Input.
MCLR	1	26	18	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	9	6	30	I	ANA	Main Oscillator Input Connection.
OSCO	10	7	31	0		Main Oscillator Output Connection.
PGC1	5	2	22	I/O	ST	In-Circuit Debugger/Emulator/ICSP™
PGC2	22	19	9	I/O	ST	Programming Clock.
PGC3	15	12	42	I/O	ST	1
PGD1	4	1	21	I/O	ST]
PGD2	21	18	8	I/O	ST	1
PGD3	14	11	41	I/O	ST	1
Legend: ST = S	Schmitt Trigger	input				mpatible input I = Input P = Power

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog input I^2C = ST with I^2C^{TM} or SMBus levels

O = Output

P = Power

	Pin Num	per/Grid	Locator				
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description	
PMA0/PMALL	_	_	3	0	_	Parallel Master Port Address.	
PMA1/PMALH	_		2	0	_		
PMA14/PMCS/ PMCS1	-	—	15	0	—		
PMA2/PMALU	_		12	0	_		
PMA3	_		38	0	_		
PMA4	_		37	0	_		
PMA5	_		4	0	_		
PMA6	_		5	0	_		
PMA7	-	—	13	0	_		
PMA8	-	—	32	0	—		
PMA9	1 —	_	35	0	—		
PMACK1	_	—	27	Ι	ST/TTL	Parallel Master Port Acknowledge Input 1.	
PMBE0	_		36	0	_	Parallel Master Port Byte Enable 0 Strobe.	
PMBE1	—		25	0		Parallel Master Port Byte Enable 1 Strobe.	
PMCS1	_		30	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe.	
PMD0	_		10	I/O	ST/TTL		
PMD1	_		9	I/O	ST/TTL	Master mode) or Address/Data (Multiplexed	
PMD2	_		8	I/O	ST/TTL	Master modes).	
PMD3	_		1	I/O	ST/TTL		
PMD4	—		44	I/O	ST/TTL		
PMD5	_		43	I/O	ST/TTL		
PMD6	_		42	I/O	ST/TTL		
PMD7	_		41	I/O	ST/TTL		
PMRD	-	_	11	0	—	Parallel Master Port Read Strobe.	
PMWR	_	—	14	0	—	Parallel Master Port Write Strobe.	
RA0	2	27	19	I/O	ST	PORTA Digital I/Os.	
RA1	3	28	20	I/O	ST		
RA2	9	6	30	I/O	ST		
RA3	10	7	31	I/O	ST		
RA4	12	9	34	Ι	ST		
RA7	_	—	13	I/O	ST		
RA8	—	_	32	I/O	ST		
RA9	_	—	35	I/O	ST		
RA10			12	I/O	ST		

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

 $I^2C = ST \text{ with } I^2C^{TM} \text{ or SMBus levels}$

Pin Number/Grid Locator			Locator					
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description		
RB0	4	1	21	I/O	ST	PORTB Digital I/Os.		
RB1	5	2	22	I/O	ST			
RB2	6	3	23	I/O	ST			
RB3	7	4	24	I/O	ST			
RB4	11	8	33	Ι	ST			
RB5	14	11	41	I/O	ST			
RB6	15	12	42	I/O	ST			
RB7	16	13	43	I/O	ST]		
RB8	17	14	44	I/O	ST			
RB9	18	15	1	I/O	ST			
RB10	21	18	8	I/O	ST			
RB11	22	19	9	I/O	ST			
RB12	23	20	10	I/O	ST			
RB13	24	21	11	I/O	ST			
RB14	25	22	14	I/O	ST			
RB15	26	23	15	I/O	ST			
RC0	_		25	I/O	ST	PORTC Digital I/Os.		
RC1	—	—	26	I/O	ST			
RC2	—	—	27	I/O	ST			
RC3	_		36	I/O	ST			
RC4	_		37	I/O	ST			
RC5	_	_	38	I/O	ST			
RC6	_	—	2	I/O	ST			
RC7	_	_	3	I/O	ST			
RC8	—		4	I/O	ST			
RC9	—		5	I/O	ST			
REFI	22	19	9	_]		
REFO	24	21	11	_		Reference Clock Output.		
Legend: ST =	Schmitt Trigger Analog input	input			= TTL co = Output	mpatible input I = Input P = Power		

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog input I²C = ST with I²C™ or SMBus levels

	Pin Num	per/Grid	Locator					
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description		
RP0	4	1	21	I/O	ST	Remappable Peripherals (input or output).		
RP1	5	2	22	I/O	ST			
RP2	6	3	23	I/O	ST			
RP3	7	4	24	I/O	ST			
RP5	14	11	41	I/O	ST			
RP6	3,15	12	42	I/O	ST			
RP7	16	13	43	I/O	ST			
RP8	17	14	44	I/O	ST			
RP9	18	15	1	I/O	ST			
RP10	21	18	8	I/O	ST	1		
RP11	22	19	9	I/O	ST			
RP12	23	20	10	I/O	ST			
RP13	24	21	11	I/O	ST			
RP14	25	22	14	I/O	ST			
RP15	26	23	15	I/O	ST			
RP16	_		25	I/O	ST			
RP17	_		26	I/O	ST			
RP18	_		27	I/O	ST			
RP19	_		36	I/O	ST			
RP20	_		37	I/O	ST			
RP21	_		38	I/O	ST			
RP22	_		2	I/O	ST			
RP23	_		3	I/O	ST			
RP24	_		4	I/O	ST			
RP25	_	_	5	I/O	ST	1		
RPI4	11	8	33	I	ST	Remappable Peripheral (input).		
RTCC	25	22	14	0	—	Real-Time Clock Alarm/Seconds Pulse Output		
SCL1	17	14	44	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output		
SCL2	7	4	24	I/O	l ² C	I2C2 Synchronous Serial Clock Input/Output		
SCLKI	12	9	34	Ι	—	Secondary Oscillator Digital Clock Input.		
SDA1	18	15	1	I/O	l ² C	I2C1 Data Input/Output.		
SDA2	6	3	23	I/O	l ² C	I2C2 Data Input/Output.		
SOSCI	11	8	33	Ι	ANA	Secondary Oscillator/Timer1 Clock Input.		
	12	9	34	0	ANA	Secondary Oscillator/Timer1 Clock Output.		

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog input I^2C = ST with I^2C^{TM} or SMBus levels

	Pin Numl	ber/Grid	Locator					
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description		
T1CK	18	15	1	Ι	ST	Timer1 Clock.		
T2CK	26	23	15	I	ST	Timer2 Clock.		
ТЗСК	26	23	15	I	ST	Timer3 Clock.		
T4CK	6	3	23	Ι	ST	Timer4 Clock.		
T5CK	6	3	23	Ι	ST	Timer5 Clock.		
ТСК	17	14	13	Ι	ST	JTAG Test Clock/Programming Clock Input.		
TDI	21	18	35	Ι	ST	JTAG Test Data/Programming Data Input.		
TDO	18	15	32	0		JTAG Test Data Output.		
TMS	22	19	12	I		JTAG Test Mode Select Input.		
VBAT	19	16	6	Р		Backup Battery (B+) Input (1.2V nominal).		
VCAP	20	17	7	Р		External Filter Capacitor Connection.		
Vdd	13,28	25,10	28,40	Ρ	—	Positive Supply for Peripheral Digital Logic and I/O Pins.		
VDDCORE	20	17	7			Microcontroller Core Supply Voltage.		
VREF+	2	27	19	I	ANA	A/D Reference Voltage Input (+).		
VREF-	3	28	20	Ι	ANA	A/D Reference Voltage Input (-).		
Vss	8,27	5,24	29,39	Р		Ground Reference for Logic and I/O Pins.		
Legend: ST = Schmitt Trigger input TTL = TTL compatible input I = Input								

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

= Schmitt Trigger input Legend: SI

TTL = I IL compatible input

= Input 1

ANA = Analog input

 $I^2C = ST$ with I^2C^{TM} or SMBus levels

O = Output

P = Power

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FJ128GA204 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

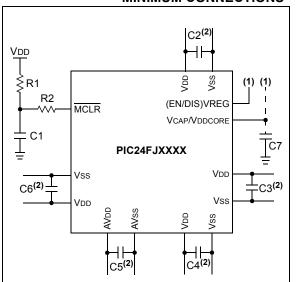
The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin
 (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG/DISVREG and VCAP/VDDCORE pins (see Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")


Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 µF, 20V ceramic

C7: 10 $\mu\text{F},$ 6.3V or greater, tantalum or ceramic

R1: 10 kΩ

R2: 100 Ω to 470 Ω

- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)" for explanation of the ENVREG/DISVREG pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

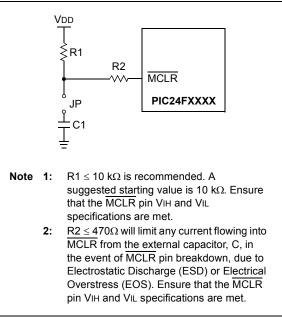
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

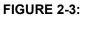
FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 Voltage Regulator Pins (ENVREG/ DISVREG and VCAP/VDDCORE)

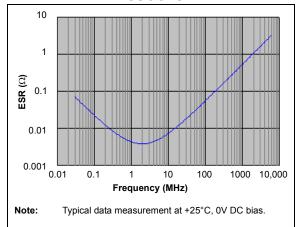
Note: This section applies only to PIC24FJ devices with an on-chip voltage regulator.

The on-chip voltage regulator enable/disable pin (ENVREG or DISVREG, depending on the device family) must always be connected directly to either a supply voltage or to ground. The particular connection is determined by whether or not the regulator is to be used:

- For ENVREG, tie to VDD to enable the regulator, or to ground to disable the regulator
- For DISVREG, tie to ground to enable the regulator or to VDD to disable the regulator


Refer to **Section 29.2 "On-Chip Voltage Regulator"** for details on connecting and using the on-chip regulator.

When the regulator is enabled, a low-ESR (< 5 Ω) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.


Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP/VDDCORE. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 32.0** "Electrical Characteristics" for additional information.

When the regulator is disabled, the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to Section 32.0 "Electrical Characteristics" for information on VDD and VDDCORE.

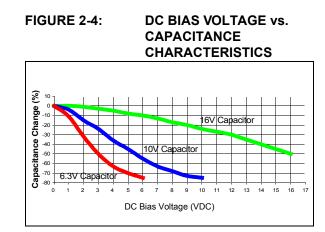
FREQUENCY vs. ESR PERFORMANCE FOR SUGGESTED VCAP

Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to +125°C
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to +85°C
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to +125°C
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to +85°C
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to +125°C
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to +85°C

TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.


Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R) or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

Typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V or 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/ emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 30.0 "Development Support"**.

2.6 External Oscillator Pins

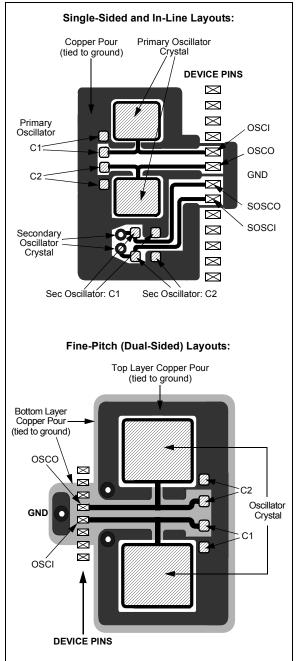
Many microcontrollers have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).


For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC™ and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

FIGURE 2-5:

PLACEMENT OF THE OSCILLATOR CIRCUIT

SUGGESTED

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADxPCFG register(s) or clearing all bits in the ANSx registers.

All PIC24F devices will have either one or more ADxPCFG registers or several ANSx registers (one for each port); no device will have both. Refer to Section 11.2 "Configuring Analog Port Pins (ANSx)" for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the A/D module, as follows:

- For devices with an ADxPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.
- For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADxPCFG or ANSx registers. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU with Extended Data Space (EDS)" (DS39732). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The lower 32 Kbytes of the Data Space (DS) can be accessed linearly. The upper 32 Kbytes of the Data Space are referred to as Extended Data Space to which the extended data RAM, EPMP memory space or program memory can be mapped.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs. The core supports Inherent (no operand), Relative, Literal and Memory Direct Addressing modes along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

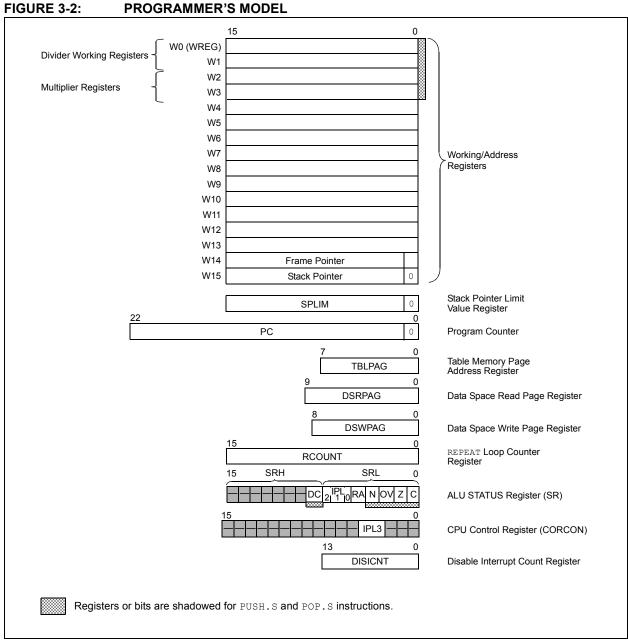
For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.


3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions.

A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory-mapped.

Register(s) Name	Description	
W0 through W15	Working Register Array	
PC	23-Bit Program Counter	
SR	ALU STATUS Register	
SPLIM	Stack Pointer Limit Value Register	
TBLPAG	Table Memory Page Address Register	
RCOUNT	REPEAT Loop Counter Register	
CORCON	CPU Control Register	
DISICNT	Disable Interrupt Count Register	
DSRPAG	Data Space Read Page Register	
DSWPAG	Data Space Write Page Register	

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0					
_	_		DC									
bit 15				1			bit					
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	D 444 o(1)		DAMO	D 444.0	D 4440	DAALO					
IPL2 ⁽²⁾	IPL1 ⁽²⁾	R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
	IPL1-	IPL0 ^{-/}	RA	N	OV	Z	C					
bit 7							bit					
Legend:												
R = Readabl	e bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-9	Unimplemer	nted: Read as '0	,									
oit 8	DC: ALU Hal	f Carry/Borrow b	it									
	1 = A carry o	out from the 4 th lo	ow-order bit (for byte-sized da	ata) or 8 th low-	order bit (for wo	ord-sized dat					
	of the re	sult occurred		-								
	0 = No carry	out from the 4 th	or 8 th low-or	der bit of the res	sult has occurre	ed						
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)											
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled											
	110 = CPU Interrupt Priority Level is 6 (14)											
	101 = CPU Interrupt Priority Level is 5 (13)											
	100 = CPU Interrupt Priority Level is 4 (12)											
		nterrupt Priority										
		nterrupt Priority										
		nterrupt Priority										
L:1 1		nterrupt Priority	Level is 0 (8)									
bit 4		Loop Active bit										
		loop in progress loop not in progre	ess									
bit 3	N: ALU Nega	ative bit										
	1 = Result was negative											
		as not negative (zero or posit	ive)								
bit 2	OV: ALU Overflow bit											
		occurred for sign ow has occurred		plement) arithm	etic in this arith	nmetic operatio	n					
bit 1	Z: ALU Zero											
	1 = An opera	tion, which affec	ts the Z bit. h	has set it at some	e time in the pa	ast						
	•	t recent operation			•		esult)					
bit 0	C: ALU Carry	//Borrow bit										
	-	ut from the Most	Significant b	oit (MSb) of the r	esult occurred							
		out from the Mos										
Note 1: ⊺I	na IDI v Statua I	bits are read-only			15>) = 1							
		bits are read-only	•		,	it to form the C						

2: The IPLx Status bits are concatenated with the IPL3 Status (CORCON<3>) bit to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

REGISTER 3-2: CORCON: CPU CORE CONTROL REGISTER
--

U-0	U-0	U-0 U-0		U-0 U-0		U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15		•			•	•	bit 8		
U-0	U-0	U-0 U-0		R/C-0 r-1		U-0	U-0		
—				IPL3 ⁽¹⁾	r	—			
bit 7							bit 0		
Legend: C = Clearable bit				r = Reserved bit					
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown			

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 Reserved: Read as '1'

- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-1 for bit description.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and singlecycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

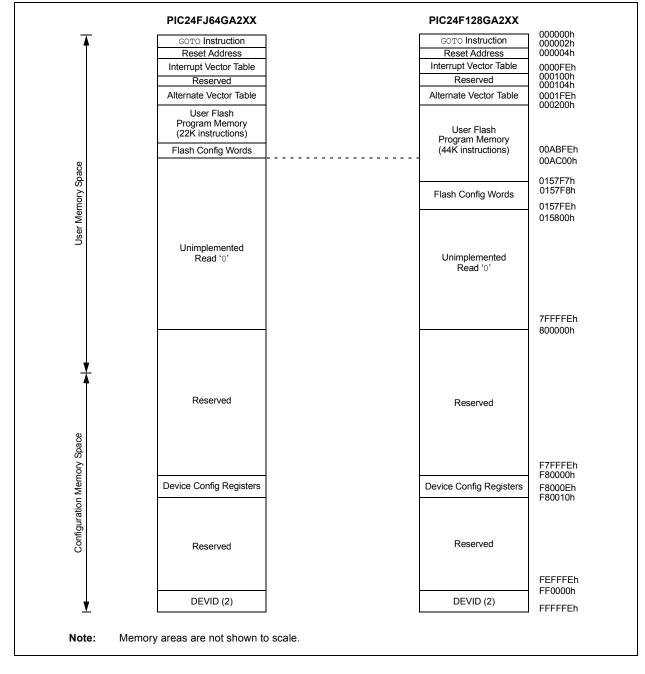
A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic Shift Right Source register by one or more bits.
SL	Shift Left Source register by one or more bits.
LSR	Logical Shift Right Source register by one or more bits.

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and buses. This architecture also allows direct access of program memory from the Data Space (DS) during code execution.


4.1 **Program Memory Space**

The program address memory space of the PIC24FJ128GA204 family devices is 4M instructions. The space is addressable by a 24-bit value derived

from either the 23-bit Program Counter (PC) during program execution, or from table operation or Data Space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24FJ128GA204 family of devices are shown in Figure 4-1.

4.1.1 PROGRAM MEMORY ORGANIZATION

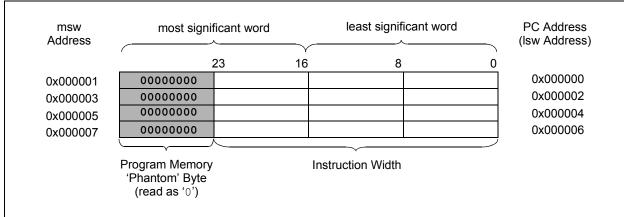
The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 000000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables, (IVTs), located from 000004h to 0000FFh and 000100h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the Interrupt Vector Tables is provided in Section 8.1 "Interrupt Vector Table".


4.1.3 FLASH CONFIGURATION WORDS

In PIC24FJ128GA204 family devices, the top four words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the appropriate Configuration register. The addresses of the Flash Configuration Word for devices in the PIC24FJ128GA204 family are shown in Table 4-1. Their location in the memory map is shown with the other memory vectors in Figure 4-1.

The Configuration Words in program memory are a compact format. The actual Configuration bits are mapped in several different registers in the configuration memory space. Their order in the Flash Configuration Words does not reflect a corresponding arrangement in the configuration space. Additional details on the device Configuration Words are provided in Section 29.0 "Special Features".

TABLE 4-1: FLASH CONFIGURATION WORDS FOR PIC24FJ128GA204 FAMILY DEVICES

Device	Program Memory (Words)	Configuration Word Addresses
PIC24FJ64GA2XX	22,016	00ABF8h:00ABFEh
PIC24FJ128GA2XX	44,032	0157F8h:0157FEh

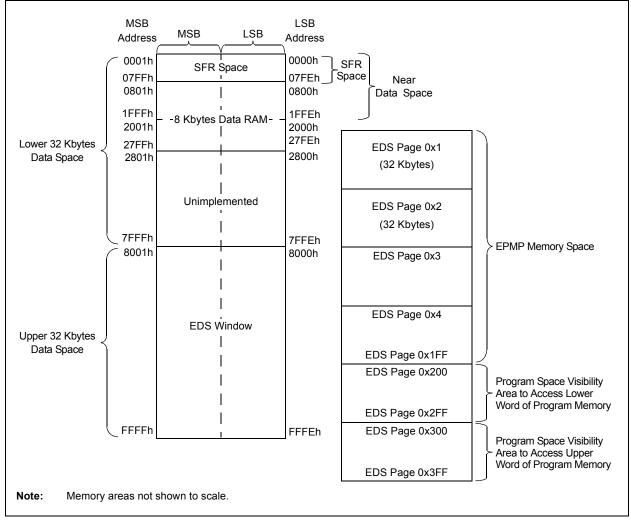
FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2 Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Data Memory with Extended Data Space (EDS)" (DS39733). The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range. The Data Space (DS) is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is shown in Figure 4-3.

The 16-bit wide data addresses in the data memory space point to bytes within the Data Space. This gives a DS address range of 64 Kbytes or 32K words. The lower half (0000h to 7FFFh) is used for implemented (on-chip) memory addresses.


The upper half of data memory address space (8000h to FFFFh) is used as a window into the Extended Data Space (EDS). This allows the microcontroller to directly access a greater range of data beyond the standard 16-bit address range. EDS is discussed in detail in **Section 4.2.5 "Extended Data Space (EDS)**".

The lower half of DS is compatible with previous PIC24F microcontrollers without EDS. All PIC24FJ128GA204 family devices implement 8 Kbytes of data RAM in the lower half of DS, from 0800h to 27FFh.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space Effective Addresses (EAs) resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCUs and improve Data Space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address (EA) calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the Data Space is addressable indirectly. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SPECIAL FUNCTION REGISTER (SFR) SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by the module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where the SFRs are actually implemented, is shown in Table 4-2. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete list of implemented SFRs, including their addresses, is shown in Tables 4-3 through 4-32.

	SFR Space Address													
	xx00 xx20 xx40 xx60 xx80 xxA0 xxC0								xxE0					
000h	Core ICN Interrupts													
100h	System	NVM/F	RTCC	Р	MP CRC PMD I/O Crypto						pto			
200h		A/D/CTMU CMP TMR OC IC I ² C™/D							C™/DSM					
300h	SPI PPS													
400h		— DMA												
500h		UAR	Т		—									
600h														
700h							-	-						

TABLE 4-2: IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block

TABLE 4-3: CPU CORE REGISTERS MAP

4 -J.	0.00																		
Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
0000								Working	Register 0								0000		
0002								Working	Register 1								0000		
0004								Working	Register 2								0000		
0006								Working	Register 3								0000		
0008								Working	Register 4								0000		
000A								Working	Register 5								0000		
000C								Working	Register 6								0000		
000E								Working	Register 7								0000		
0010		Working Register 8 Working Register 9															0000		
0012		Working Register 9															0000		
0014		Working Register 10															0000		
0016																	0000		
0018								Working F	Register 12								0000		
001A								Working F	Register 13								0000		
001C								Working F	Register 14								0000		
001E								Working F	Register 15								0800		
0020							Stack	Pointer Lin	nit Value Re	egister							XXXX		
002E							Progra	m Counter	Low Word F	Register							0000		
0030	—	—	—	—	—	—	—	—			Progra	m Counter I	High Word	Register			0000		
0032	—	—	—	—	—	—			Ext	ended Data	Space Re	ad Page Ac	ldress Regi	ister			0001		
0034	—	—	—	—	—	—	—			Extended	d Data Spa	ce Write Pa	ge Address	s Register			0001		
0036							REP	EAT LOOP C	Counter Reg	jister							XXXX		
0042	—	-	_	_	—	_	—	- DC IPL2 IPL1 IPL0 RA N OV Z C											
0044	—	-	_	—	_	—	IPL3 r												
0052	_	_						Disabl	e Interrupts	Counter R	egister						xxxx		
0054	_	_	—	—	—	—	—	_			Table N	lemory Pag	e Address	Register			0000		
	Addr 0000 0002 0004 0006 0008 000A 000C 000E 0010 0012 0014 0016 0018 0014 0016 0018 0014 0016 0018 0012 0014 0012 0020 002E 0030 0032 0034 0036 0042 0044 0052	Addr Bit 15 0000	Addr Bit 15 Bit 14 0000	AddrBit 15Bit 14Bit 130000	AddrBit 15Bit 14Bit 13Bit 120000	AddrBit 15Bit 14Bit 13Bit 12Bit 110000	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 100000000200040006000800080000400004000500060006000700080009000900090000000100012001200140015001600180016001700180019001900100010001100120013001400140015001600170018001900190019001900100010001100120012001300140034003400340044004400520	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0000	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0000	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0000	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 8 Bit 8 Bit 7 Bit 6 0000	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 50000	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0000	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 30000	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 200000002000400060006000700080008000000000000000000000000000000010002000200030004000400050006000600070008000800090009000900090009001000100010001100120012001300140014001500150016001600170018001800190019001900100010001000110012001200130014001400150015001600170018001800190019001900190019001900190019001900100010001000110012001200130	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0000	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0000		

Legend: — = unimplemented, read as '0'; r = reserved, do not modify; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-4: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNPD1	0056	CN15PDE	CN14PDE	CN13PDE	CN12PDE	CN11PDE	CN10PDE(1)	CN9PDE ⁽¹⁾	CN8PDE ⁽¹⁾	CN7PDE	CN6PDE	CN5PDE	CN4PDE	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0058	_	CN30PDE	CN29PDE	CN28PDE ⁽¹⁾	CN27PDE	CN26PDE ⁽¹⁾	CN25PDE ⁽¹⁾	CN24PDE	CN23PDE	CN22PDE	CN21PDE	CN20PDE ⁽¹⁾	CN19PDE ⁽¹⁾	CN18PDE ⁽¹⁾	CN17PDE ⁽¹⁾	CN16PDE	0000
CNPD3	005A	_	_	_	_	_	—	—	—	_	—	—	CN36PDE ⁽¹⁾	CN35PDE ⁽¹⁾	CN34PDE ⁽¹⁾	CN33PDE ⁽¹⁾	_	0000
CNEN1	0062	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE ⁽¹⁾	CN9IE ⁽¹⁾	CN8IE ⁽¹⁾	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0064	_	CN30IE	CN29IE	CN28IE ⁽¹⁾	CN27IE	CN26IE ⁽¹⁾	CN25IE ⁽¹⁾	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE ⁽¹⁾	CN19IE ⁽¹⁾	CN18IE ⁽¹⁾	CN17IE ⁽¹⁾	CN16IE	0000
CNEN3	0066	_	_	_	_	_	—	—	—	_	—	—	CN36IE ⁽¹⁾	CN35IE ⁽¹⁾	CN34IE ⁽¹⁾	CN33IE ⁽¹⁾	_	0000
CNPU1	006E	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE(1)	CN9PUE ⁽¹⁾	CN8PUE ⁽¹⁾	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	0070	_	CN30PUE	CN29PUE	CN28PUE ⁽¹⁾	CN27PUE	CN26PUE ⁽¹⁾	CN25PUE ⁽¹⁾	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE ⁽¹⁾	CN19PUE ⁽¹⁾	CN18PUE ⁽¹⁾	CN17PUE ⁽¹⁾	CN16PUE	0000
CNPU3	0072	_	—	_	—	_	_	_	_	_	_	_	CN36PUE ⁽¹⁾	CN35PUE ⁽¹⁾	CN34PUE ⁽¹⁾	CN33PUE ⁽¹⁾	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 28-pin devices, read as '0'.

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	_	—	_	—	_	_	-	—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	-	0000
INTCON2	0082	ALTIVT	DISI	-	—		-	_	—	-	-	-	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1TXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	DMA4IF	PMPIF	_	_	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	CRYROLLIF	CRYFREEIF	SPI2TXIF	SPI2IF	0000
IFS3	008A	_	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	_	KEYSTRIF	CRYDNIF	INT4IF	INT3IF	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	008C	_		CTMUIF	_	_	_	_	HLVDIF	_	_	_	_	CRCIF	U2ERIF	U1ERIF	_	000
IFS5	008E	—	_	_	_	SPI3TXIF	SPI3IF	U4TXIF	U4RXIF	U4ERIF	_	I2C2BCIF	I2C1BCIF	U3TXIF	U3RXIF	U3ERIF	_	0000
IFS6	0090	—	_	_	_	_	FSTIF	_	—	_	_	_	_	—	_	_	_	000
IFS7	0092	—	_	_	_	_	_	_	—	_	_	JTAGIF	_	—	_	_	_	000
IEC0	0094	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1TXIE	SPI1IE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	000
IEC2	0098	—	DMA4IE	PMPIE	_	_	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	CRYROLLIE	CRYFREEIE	SPI2TXIE	SPI2IE	000
IEC3	009A	—	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE	_	KEYSTRIE	CRYDNIE	INT4IE	INT3IE	_	—	MI2C2IE	SI2C2IE	_	000
IEC4	009C	—	_	CTMUIE	_	_	_	_	HLVDIE	_	_	_	_	CRCIE	U2ERIE	U1ERIE	_	000
IEC5	009E		_	_	_	SPI3TXIE	SPI3IE	U4TXIE	U4RXIE	U4ERIE	-	I2C2BCIE	I2C1BCIE	U3TXIE	U3RXIE	U3ERIE	_	000
IEC6	00A0	—	_	_	_	_	FSTIE	_	—	_	_	_	_	—	_	_	_	000
IEC7	00A2	—	_	_	_	_	_	_	—	_	_	JTAGIE	_	—	_	_	_	000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0	444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	—	DMA0IP2	DMA0IP1	DMA0IP0	444
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	T3IP2	T3IP1	T3IP0	444
IPC3	00AA		_	_	_	_	DMA1IP2	DMA1IP1	DMA1IP0	_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	444
IPC5	00AE	—	_	_	_	_	_	_	—	_	_	_	_	—		INT1IP<2:0>		000
IPC6	00B0	—	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	—	DMA2IP2	DMA2IP1	DMA2IP0	444
IPC7	00B2	—	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0	444
IPC8	00B4	—	CRYROLLIP2	CRYROLLIP1	CRYROLLIP0	_	CRYFREEIP2	CRYFREEIP1	CRYFREEIP0	_	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0	—	SPI2IP2	SPI2IP1	SPI2IP0	444
IPC9	00B6	—	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	DMA3IP2	DMA3IP1	DMA3IP0	444
IPC10	00B8	—	_	—	—	_	OC6IP2	OC6IP1	OC6IP0	-	OC5IP2	OC5IP1	OC5IP0	_	IC6IP2	IC6IP1	IC6IP0	044
IPC11	00BA	—	_	—	—	_	DMA4IP2	DMA4IP1	DMA4IP0	—	PMPIP2	PMPIP1	PMPIP0	—	—	—	—	044
IPC12	00BC	—	_	—	—	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	—	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	—	_	—	044
IPC13	00BE	_	CRYDNIP2	CRYDNIP1	CRYDNIP0	_	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	_	_	_	_	444
IPC14	00CO	_	SPI2RXIP2	SPI2RXIP1	SPI2RXIP0	_	SPI1RXIP2	SPI1RXIP1	SPI1RXIP0	_	_	—	—	—	KEYSTRIP2	KEYSTRIP1	KEYSTRIP0	440
IPC15	00C2	_	_	_	_	_	RTCIP2	RTCIP1	RTCIP0	_	DMA5IP2	DMA5IP1	DMA5IP0	_	SPI3RXIP2	SPI3RXIP1	SPI3RXIP0	044

DS30010038C-page 39

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	00C4	_	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	_	_	_		4440
IPC18	00C8	_	_	_	—	_	_	_	_	_	_	—	—	_		HLVDIP<2:0>		0004
IPC19	00CA	_	-	-	_	_	_	_	_	_		CTMUIP<2:0	>	_	_	—	_	0040
IPC20	00CC	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	_	_	—	_	4440
IPC21	00CE	_	U4ERIP2	U4ERIP1	U4ERIP0	_		—		-	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0	4044
IPC22	00D0	_	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0	_	SPI3IP2	SPI3IP1	SPI3IP0	-	U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0	4444
IPC26	00D8	_	-		—	_		FSTIP<2:0>		-	_	_		_		—	_	0400
IPC29	00DE	_	_	_	_	_			_	_		JTAGIP<2:0>	>	_	_	_	_	0040
INTTREG	00E0	CPUIRQ	r	VHOLD	—	ILR3	ILR2	ILR1	ILR0	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'; r = reserved, maintain as '0'. Reset values are shown in hexadecimal.

TABLE 4	4-6:	TIMER	REGIS	TER MA	P													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	024C								Timer1 I	Register								0000
PR1	024E								Timer1 Peri	od Register	-							FFFF
T1CON	0250	TON	_	TSIDL	_	_	_	TECS1	TECS0	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0252								Timer2	Register								0000
TMR3HLD	0254						Timer	3 Holding F	Register (for	32-bit time	r operations	s only)						0000
TMR3	0256		Timer3 Register															0000
PR2	0258		Timer2 Period Register														FFFF	
PR3	025A																	FFFF
T2CON	025C	TON	_	TSIDL	_	_	_	TECS1	TECS0	_	TGATE	TCKPS1	TCKPS0	T32		TCS	_	0000
T3CON	025E	TON	_	TSIDL	_	_	_	TECS1	TECS0	_	TGATE	TCKPS1	TCKPS0	_	—	TCS	_	0000
TMR4	0260								Timer4 I	Register								0000
TMR5HLD	0262						Tin	ner5 Holding	g Register (for 32-bit op	perations or	ıly)						0000
TMR5	0264								Timer5 I	Register								0000
PR4	0266								Timer4 Peri	od Register	-							FFFF
PR5	0268								Timer5 Peri	od Register	•							FFFF
T4CON	026A	TON	—	TSIDL	—	—	_	TECS1	TECS0	—	TGATE	TCKPS1	TCKPS0	T45		TCS	_	0000
T5CON	026C	TON	_	TSIDL	_	_		TECS1	TECS0		TGATE	TCKPS1	TCKPS0	_		TCS	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	02AA	—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_			ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	02AC	—	_		—		_	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	02AE							Ir	nput Capture	1 Buffer Re	gister							0000
IC1TMR	02B0			-		-			Timer Val	ue 1 Registe	er			-	-	_		xxxx
IC2CON1	02B2	—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	02B4	_	_	—	_	—	—	—	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	02B6							Ir	nput Capture	2 Buffer Re	gister							0000
IC2TMR	02B8		Timer Value 2 Register — ICSIDL ICTSEL2 ICTSEL1 ICTSEL0 — — ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0															xxxx
IC3CON1	02BA	—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	02BC	—																000D
IC3BUF	02BE		- - - - IC32 ICTRIG TRIGSTAT - SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL1 SYNCSEL3 Input Capture 3 Buffer Register															0000
IC3TMR	02C0								Timer Val	ue 3 Registe	er							XXXX
IC4CON1	02C2	—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4CON2	02C4	—	_	_	—	_	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC4BUF	02C6							Ir	nput Capture	4 Buffer Re	gister							0000
IC4TMR	02C8								Timer Val	ue 4 Registe	er							XXXX
IC5CON1	02CA	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC5CON2	02CC	—	_	_	—	_	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC5BUF	02CE							Ir	nput Capture	5 Buffer Re	gister							0000
IC5TMR	02D0			-		-			Timer Val	ue 5 Registe	er			-	-	_		xxxx
IC6CON1	02D2	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		_	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC6CON2	02D4	—	—	_	—	_	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC6BUF	02D6							Ir	nput Capture	6 Buffer Re	gister							0000
IC6TMR	02D8								Timer Val	ue 6 Registe	er							XXXX

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

	-			•														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	026E		—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0270	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0272							Οι	utput Compa	re 1 Second	ary Register							0000
OC1R	0274								Output C	ompare 1 R	egister							0000
OC1TMR	0276								Timer	Value 1 Reg	ster							XXXX
OC2CON1	0278		_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	027A	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	027C							Οι	utput Compa	re 2 Second	ary Register							0000
OC2R	027E								Output C	ompare 2 R	egister							0000
OC2TMR	0280																	XXXX
OC3CON1	0282	_	- OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2 ENFLT1 ENFLT0 OCFLT2 OCFLT1 OCFLT0 TRIGMODE OCM2 OCM1 OCM															0000
OC3CON2	0284	FLTMD																000C
OC3RS	0286							Οι	utput Compa	re 3 Second	ary Register							0000
OC3R	0288								Output C	ompare 3 R	egister							0000
OC3TMR	028A								Timer	Value 3 Reg	ster							XXXX
OC4CON1	028C		_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	028E	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0290							Οι	utput Compa	re 4 Second	ary Register							0000
OC4R	0292								Output C	ompare 4 R	egister							0000
OC4TMR	0294								Timer	Value 4 Reg	ster							XXXX
OC5CON1	0296	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT1	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC5CON2	0298	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	029A							Οι	utput Compa	re 5 Second	ary Register							0000
OC5R	029C								Output C	ompare 5 R	egister							0000
OC5TMR	029E								Timer	Value 5 Reg	ster							XXXX
OC6CON1	02A0	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC6CON2	02A2	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC6RS	02A4							Οι	utput Compa	re 6 Second	ary Register							0000
OC6R	02A6								Output C	ompare 6 R	egister							0000
OC6TMR	02A8								Timer	Value 6 Reg	ster							XXXX

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-9: I²C[™] REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
I2C1RCV	02DA	—		—	_	_		—	—			I	2C1 Receiv	ve Register				0000	
I2C1TRN	02DC	_	_	_	_	_	_	_	_			l:	2C1 Transn	nit Register				OOFF	
I2C1BRG	02DE	_	_	_	_					Bau	d Rate Gen	erator Regi	ster					0000	
I2C1CONL	02E0	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000	
I2C1CONH	02E2	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000	
I2C1STAT	02E4	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL										0000		
I2C1ADD	02E6	—	—	_	_	—	_	I2C1 Address Register											
I2C1MSK	02E8	—	_	—	_	—	-				I2C	1 Address I	Mask Regis	ter				0000	
I2C2RCV	02EA	—	_	—	_	—	-	_	_			I	2C2 Receiv	e Register				0000	
I2C2TRN	02EC	_	_	_	_	_	_	_	_			l:	2C2 Transn	nit Register				OOFF	
I2C2BRG	02EE	_	—	_	_					Bau	d Rate Gen	erator Regi	ster					0000	
I2C2CONL	02F0	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000	
I2C2CONH	02F2	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000	
I2C2STAT	02F4	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 00									0000		
I2C2ADD	02F6	—	_	—	_	—	-												
I2C2MSK	02F8	—	—	_	_	—	_												

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: UART REGISTER MAP

IABLE 4	-10:	UARIF	KEGIS I															_		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
U1MODE	0500	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000		
U1STA	0502	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110		
U1TXREG	0504	LAST	_	_	_	—	_	_				U1T	XREG<8:0>	•				XXXX		
U1RXREG	0506	_	_	_		_	_					U1R	XREG<8:0>	•				0000		
U1BRG	0508								U1BRG	<15:0>								0000		
U1ADMD	050A				ADMMAS	SK<7:0>							ADMADDR	R<7:0>				0000		
U1SCCON	050C	_	_	_	_	_	_	_	_	_	_	TXRPT1	TXRPT0	CONV	T0PD	PTRCL	SCEN	0000		
U1SCINT	050E	_	_	RXRPTIF	TXRPTIF	—	_	WTCIF	GTCIF	_	PARIE	RXRPTIE	TXRPTIE	_	_	WTCIE	GTCIE	0000		
U1GTC	0510	_	_	_	_	—	_	_				G	TC<8:0>					0000		
U1WTCL	0512								WTC<	15:0>								0000		
U1WTCH	0514	_	_	_	_	_	_	_	_				WTC<23	:16>				0000		
U2MODE	0516	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000		
U2STA	0518	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110		
U2TXREG	051A	LAST	_	_	_	—	_	_		U2TXREG<8:0>										
U2RXREG	051C	_	_	_	_	—	_	_		U2RXREG<8:0>										
U2BRG	051E								U2BRG	<15:0>								0000		
U2ADMD	0520				ADMMAS	SK<7:0>							ADMADDR	R<7:0>				0000		
U2SCCON	0522	—	—	—	_	_		_		—	_	TXRPT1	TXRPT0	CONV	T0PD	PTRCL	SCEN	0000		
U2SCINT	0524	—	—	RXRPTIF	TXRPTIF	_		WTCIF	GTCIF	—	PARIE	RXRPTIE	TXROTIE		—	WTCIE	GTCIE	0000		
U2GTC	0526	—	—	—	_	_		_				G	TC<8:0>					0000		
U2WTCL	0528								WTC<	15:0>								0000		
U2WTCH	052A	—	—	—	_	_		_					WTC<23	:16>				0000		
U3MODE	052C	UARTEN	—	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000		
U3STA	052E	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110		
U3TXREG	0530	LAST	—	—	_	_		_				U3T2	XREG<8:0>	•				XXXX		
U3RXREG	0532	—	—	—	_	_		_				U3R	XREG<8:0>	•				0000		
U3BRG	0534								U3BRG	<15:0>								0000		
U3ADMD	0536				ADMMAS	SK<7:0>							ADMADDR	8<7:0>				0000		
U4MODE	0538	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	NO WAKE LPBACK ABAUD URXINV BRGH PDSEL1 PDSEL0 STSEL								0000		
U4STA	053A	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110		
U4TXREG	053C	LAST	—	—	_	—	-	_				U4T	XREG<8:0>	•				XXXX		
U4RXREG	053E	_	—	—	—	—	-	_				U4R	XREG<8:0>	•				0000		
U4BRG	0540								U4BRG	<15:0>								0000		
U4ADMD	0542				ADMMAS	SK<7:0>							ADMADDR	R<7:0>				0000		

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-11: SPI1 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1CON1L	0300	SPIEN	—	SPISIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF	0000
SPI1CON1H	0302	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDMOD1	AUDMOD0	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0	0000
SPI1CON2L	0304	_	_	_	_	_	_	_	_	_	_	_		V	VLENGTH<4:0	>		0000
SPI1STATL	0308	_	_	-	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	0028
SPI1STATH	030A	_	_	RXELM5	RXELM4	RXELM3	RXELM2	RXELM1	RXELM0	_	_	TXELM5	TXELM4	TXELM3	TXELM2	TXELM1	TXELM0	0000
SPI1BUFL	030C								SPI1BU	FL<15:0>								0000
SPI1BUFH	030E								SPI1BUI	=H<31:16>								0000
SPI1BRGL	0310	_	_	_						SP	11BRG<12:0>							0000
SPI1IMSKL	0314	_	_	_	FRMERREN	BUSYEN	_	_	SPITUREN	SRMTEN	SPIROVEN	SPIRBEN	_	SPITBEN	_	SPITBFEN	SPIRBFEN	0000
SPI1IMSKH	0316	RXWIEN	_	RXMSK5	RXMSK4	RXMSK3	RXMSK2	RXMSK1	RXMSK0	TXWIEN	_	TXMSK5	TXMSK4	TXMSK3	TXMSK2	TXMSK1	TXMSK0	0000
SPI1URDTL	0318								SPI1URI	DTL<15:0>								0000
SPI1URDTH	031A								SPI1URD	TH<31:16>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI2 REGISTER MAP

File	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
Name	Auui	Dit 10	Dit 14	Dit 10	DICIZ	DICH	Dit IV	Dity	Ditto	Diti	Diro	Dito	Dit 4	Ditto	Dit 2	Dit i	Ditt	Resets
SPI2CON1L	031C	SPIEN	_	SPISIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF	0000
SPI2CON1H	031E	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDMOD1	AUDMOD0	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0	0000
SPI2CON2L	0320	_	_	_	_	_	_	_	_	_	_	-		۷	VLENGTH<4:0	>		0000
SPI2STATL	0324	_	_	_	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	0028
SPI2STATH	0326	_	_	RXELM5	RXELM4	M4 RXELM3 RXELM2 RXELM1 RXELM0 — — TXELM5 TXELM4 TXELM2 TXELM1 TXELM0 0												0000
SPI2BUFL	0328								SPI2B	JFL<15:0>								0000
SPI2BUFH	032A								SPI2BL	IFH<31:16>								0000
SPI2BRGL	032C	_	_	_						S	PI2BRG<12:0	>						0000
SPI2IMSKL	0330		_	_	FRMERREN	BUSYEN	_	_	SPITUREN	SRMTEN	SPIROVEN	SPIRBEN	_	SPITBEN	_	SPITBFEN	SPIRBFEN	0000
SPI2IMSKH	0332	RXWIEN	_	RXMSK5	RXMSK4	RXMSK3	RXMSK2	RXMSK1	RXMSK0	TXWIEN	_	TXMSK5	TXMSK4	TXMSK3	TXMSK2	TXMSK1	TXMSK0	0000
SPI2URDTL	0334								SPI2UF	RDTL<15:0>								0000
SPI2URDTH	0336								SPI2UR	DTH<31:16>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: SPI3 REGISTER MAP

T-10			••••															
Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
0338	SPIEN	—	SPISIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF	0000	
033A	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDMOD1	AUDMOD0	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0	0000	
033C	_																0000	
0340	_	_	_	FRMERR														
0342	—	-	RXELM5	RXELM4 RXELM3 RXELM2 RXELM1 RXELM0 — — TXELM5 TXELM4 TXELM3 TXELM2 TXELM1 TXELM														
0344								SPI3BL	JFL<15:0>								0000	
0346								SPI3BU	FH<31:16>								0000	
0348	_	_	_						S	PI3BRG<12:0	>						0000	
034C	_	_	_	FRMERREN	BUSYEN	_	_	SPITUREN	SRMTEN	SPIROVEN	SPIRBEN	_	SPITBEN	_	SPITBFEN	SPIRBFEN	0000	
034E	RXWIEN	_	RXMSK5	RXMSK4	RXMSK3	RXMSK2	RXMSK1	RXMSK0	TXWIEN	—	TXMSK5	TXMSK4	TXMSK3	TXMSK2	TXMSK1	TXMSK0	0000	
0350								SPI3UR	DTL<15:0>								0000	
0352								SPI3URI)TH<31:16>								0000	
	Addr 0338 033A 033C 0340 0342 0344 0346 0348 0346 0348 0346 0348	Addr Bit 15 0338 SPIEN 033A AUDEN 033C 0340 0342 0344 0345 0346 0347 0348 0349 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0340	Addr Bit 15 Bit 14 0338 SPIEN — 033A AUDEN SPISGNEXT 033C — — 0340 — — 0342 — — 0344 — — 0345 — — 0346 — — 0347 — — 0348 — — 0346 — — 0347 — — 0348 — — 0349 — — 0340 — — 0341 — — 0342 — — 0344 — — 0345 — — 0346 — — 0347 — — 0348 — — 0349 — — 0340 — — 0345	Addr Bit 15 Bit 14 Bit 13 0338 SPIEN — SPISIDL 033A AUDEN SPISGNEXT IGNROV 033C — — — 0340 — — — 0342 — — RXELM5 0344 — — — 0346 — — — 0346 — — — 0348 — — — 0346 — — — 0346 — — — 0347 — — — 0348 — — — 0342 — — — 0344 — — — 0345 — — — 0346 — — — 0348 — — — 0345 — — — 0346	Addr Bit 15 Bit 14 Bit 13 Bit 12 0338 SPIEN — SPISIDL DISSDO 033A AUDEN SPISGNEXT IGNROV IGNTUR 033C — — — — 0340 — — — FRMERR 0342 — — RXELM5 RXELM4 0344 — — RXELM5 RXELM4 0344 — — — — 0346 — — RXELM5 RXELM4 0344 — — — — 0346 — — — — 0348 — — — FRMERR 0346 — — — FRMERR 0347 — — — FRMERR 0348 — — — FRMERR 0347 — — — FRMERR 0346 —	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0338 SPIEN — SPISIDL DISSDO MODE32 033A AUDEN SPISGNEXT IGNROV IGNTUR AUDMONO 033C — — — — — 0340 — — — FRMERR SPIBUSY 0342 — — RXELM5 RXELM4 RXELM3 0344 — — RXELM5 RXELM4 RXELM3 0344 — — — — — 0346 — — RXELM5 RXELM4 RXELM3 0344 — — — — — — 0344 — — — — — — — 0344 — — — — FRMERREN BUSYEN _ 0344 RXWIEN — RXMSK5 RXMSK4 RXMSK3 _	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0338 SPIEN — SPISIDL DISSDO MODE32 MODE16 033A AUDEN SPISGNEXT IGNROV IGNTUR AUDMONO URDTEN 033C — — — — — — 0340 — — — FRMERR SPIBUSY — 0342 — — RXELM5 RXELM4 RXELM3 RXELM2 0344 — — RXELM5 RXELM4 RXELM3 RXELM2 0344 — — — — — — 0344 — — — FRMERREN BUSYEN — 0348 — — — FRMERREN BUSYEN — 0344 RXWIEN — RXMSK5 RXMSK4 RXMSK3 RXMSK2 0345 — — — FRMERREN BUSYEN —	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 90338SPIEN—SPISIDLDISSDOMODE32MODE16SMP033AAUDENSPISGNEXTIGNROVIGNTURAUDMONOURDTENAUDMOD1033C——————0340———FRMERRSPIBUSY——0342——RXELM5RXELM4RXELM3RXELM2RXELM10344	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 80338SPIEN—SPISIDLDISSDOMODE32MODE16SMPCKE033AAUDENSPISGNEXTIGNROVIGNTURAUDMONOURDTENAUDMOD1AUDMOD0033C————————0340————————0342——RXELM5RXELM4RXELM3RXELM2RXELM1RXELM00342——RXELM5RXELM4RXELM3RXELM2RXELM1RXELM00342———RXELM5RXELM4RXELM3RXELM2RXELM1RXELM00344———RXELM5RXELM4RXELM3RXELM2RXELM1RXELM00348———————SPIJBU0346—————SPIJUREN0346RXWIEN———SPIJUREN0346RXWIEN———SPIJUREN0347M———SPIJUREN0348RXWIEN———SPIJUREN0344RXWIEN——SPIJUREN0345SKWIEN———SPIJUREN0346SKWIEN——SPIJUREN0347SKWIEN—SKMSK5RXMSK6RXMSK00348	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0338 SPIEN — SPISIDL DISSDO MODE32 MODE16 SMP CKE SSEN 033A AUDEN SPISGNEXT IGNROV IGNTUR AUDMONO URDTEN AUDMOD1 AUDMOD0 FRMEN 033C — — — — — — — 0340 — — — — — — — 0342 — — RXELM5 RXELM4 RXELM3 RXELM2 RXELM1 RXELM0 — 0344 — — RXELM5 RXELM4 RXELM3 RXELM2 RXELM1 RXELM0 — 0348 — — — FRMERREN BUSYEN — — SPITUREN SRMTEN 0344 — — — FRMERREN BUSYEN — — SPITUREN SRMTEN 0344 RXMEN — RXMSK5 RXMSK4 RXMSK2 RXMSK1 RXMSK0 TXWIEN 0346 — — — FRMERREN BUSYEN — — SPITUREN SR	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60338SPIEN—SPISIDLDISSDOMODE32MODE16SMPCKESSENCKP033AAUDENSPISGNEXTIGNROVIGNTURAUDMONOURDTENAUDMOD1AUDMOD0FRMENFRMSYNC033C——————————0340———FRMERRSPIBUSY——SPITURSRMTSPIROV0342——RXELM5RXELM4RXELM3RXELM2RXELM1RXELM0———0344———FRMERRSPIBUSY——SPI3BUFL<15.0>SPI3BUFLSPI3BRG<12:0	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 9Bit 8Bit 7Bit 6Bit 50338SPIEN—SPISIDLDISSDOMODE32MODE16SMPCKESSENCKPMSTEN0334AUDENSPISGNEXTIGNROVIGNTURAUDMONOURDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMPOL0332———————————0340———FRMERRSPIBUSY——SPITURSRMTSPIROVSPIRBE0342——RXELM5RXELM4RXELM3RXELM2RXELM1RXELM0————0344——RXELM5RXELM4RXELM3RXELM2RXELM1RXELM0——TXELM50348——————SPITURSRMTENSPIROVSPIRBEN0344———————————0346———RXELM5RXELM5RXELM5SPITURENSPIROVSPIRBEN0348———————SPITURENSRMTENSPIROVEN0346————SPITURENSRMTENSPIROVENSPIRBEN0346————SPITURENSRMTENSPIROVENSPIRBEN0346M—<	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 9Bit 8Bit 7Bit 6Bit 5Bit 40338SPIENSPISIDLDISSDOMODE32MODE16SMPCKESSENCKPMSTENDISSDI0334AUDENSPISGNEXTIGNROVIGNTURAUDMONOURDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMPOLMSSEN03320340SPITURSRMTSPIROVSPIRBE0342RXELM5RXELM4RXELM3RXELM2RXELM1RXELM0TXELM5TXELM40344SPI3BUFISRMTSPIROVSPIRBESPI3BEG<12:0>0346SPITURNSRMTENSPIROVENSPIRBEN0346SPITURNSRMTENSPIROVENSPIRBEN0346SPITURNSRMTENSPIROVENSPIRBEN0346SPITURNSRMTENSPIROVENSPIRBEN0347SPITURNSRMTENSPIROVENSPIRBEN0348SPITURNSRMTE	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 4Bit 30338SPIEN-SPISIDLDISSD0MODE32MODE16SMPCKESSENCKPMSTENDISSD1DISSCK0334AUDENSPISGNEXTIGNROVIGNTURAUDMONOURDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMPOLMSSENFRMSYPW0332V0340V0342FRMERRSPIBUSYSPITURSRMTSPIROVSPIRBESPITBE0342RXELM5RXELM4RXELM3RXELM2RXELM1RXELM0TXELM5TXELM4TXELM30344SPITURSRMTSPIROVSPIRBESPITBE0346SPITURISRMTENSPIROVENSPIRBENSPITBEN0346SPITBEN0346SPITURINSRMTENSPIROVENSPIRBENSPITBEN0346SPITURINSRMTENSPIROVENSPIRBENSPITBEN0346	AddrBit 13Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 20338SPIEN—SPISIDLDISSD0MODE32MODE16SMPCKESSENCKPMSTENDISSD1DISSC4MCLKEN0338AUDENSPISGNEXTIGNROVIGNTURAUDMON0URDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMPOLMSSENFRMSYPWFRMCN720333VLENGTH<4:0	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 2Bit 10338SPIEN-SPISIDLDISSDOMODE32MODE16SMPCKESSENCKPMSTENDISSDIDISSCKMCLKENSPIFE0334AUDENSPISGNEXTIGNROVIGNTURAUDMONOURDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMPOLMSSENFRMSYPWFRMCNT2FRMCNT2FRMCNT10336VLENGTH<4.D>0337VLENGTH<4.D>0336VLENGTH<4.D>0336VLENGTH<4.D>0337SPITESPIRT0340RXELMSRXELMSRXELMSRXELMSRXELMSRXELMSSPITUESRMTSPIROVSPIRBESPITBESPITBE0342SPITUESRMTSPIROVENSPIRBESPITBESPITBESPITE0344SPITUESRMTSPIROVE	AddrBit 13Bit 13Bit 13Bit 12Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 2Bit 1Bit 00338SPIENSPISDLDISSD0MODE32MODE16SMPCKESSENCKPMSTENDISSD1DISSD1DISSCKMCLKENSPIFEENHBUF0334AUDENSPISGNEXTIGNROVIGNTURAUDMON0URDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMCD1MSSENFRMSYPWFRMCNT2FRMCNT2FRMCNT2FRMCNT1FRMCNT00336FRMSYNCFRMC01MSSENFRMSYPWFRMCNT2FRMCNT2FRMCNT1FRMCNT00336FRMCNT2	
AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 9Bit 8Bit 7Bit 6Bit 50338SPIEN—SPISIDLDISSDOMODE32MODE16SMPCKESSENCKPMSTEN0334AUDENSPISGNEXTIGNROVIGNTURAUDMONOURDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMPOL0332———————————0340———FRMERRSPIBUSY——SPITURSRMTSPIROVSPIRBE0342——RXELM5RXELM4RXELM3RXELM2RXELM1RXELM0————0344——RXELM5RXELM4RXELM3RXELM2RXELM1RXELM0——TXELM50348——————SPITURSRMTENSPIROVSPIRBEN0344———————————0346———RXELM5RXELM5RXELM5SPITURENSPIROVSPIRBEN0348———————SPITURENSRMTENSPIROVEN0346————SPITURENSRMTENSPIROVENSPIRBEN0346————SPITURENSRMTENSPIROVENSPIRBEN0346M—<	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 9Bit 8Bit 7Bit 6Bit 5Bit 40338SPIENSPISIDLDISSDOMODE32MODE16SMPCKESSENCKPMSTENDISSDI0334AUDENSPISGNEXTIGNROVIGNTURAUDMONOURDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMPOLMSSEN03320340SPITURSRMTSPIROVSPIRBE0342RXELM5RXELM4RXELM3RXELM2RXELM1RXELM0TXELM5TXELM40344SPI3BUFISRMTSPIROVSPIRBESPI3BEG<12:0>0346SPITURNSRMTENSPIROVENSPIRBEN0346SPITURNSRMTENSPIROVENSPIRBEN0346SPITURNSRMTENSPIROVENSPIRBEN0346SPITURNSRMTENSPIROVENSPIRBEN0347SPITURNSRMTENSPIROVENSPIRBEN0348SPITURNSRMTE	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 4Bit 30338SPIEN-SPISIDLDISSD0MODE32MODE16SMPCKESSENCKPMSTENDISSD1DISSCK0334AUDENSPISGNEXTIGNROVIGNTURAUDMONOURDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMPOLMSSENFRMSYPW0332V0340V0342FRMERRSPIBUSYSPITURSRMTSPIROVSPIRBESPITBE0342RXELM5RXELM4RXELM3RXELM2RXELM1RXELM0TXELM5TXELM4TXELM30344SPITURSRMTSPIROVSPIRBESPITBE0346SPITURISRMTENSPIROVENSPIRBENSPITBEN0346SPITBEN0346SPITURINSRMTENSPIROVENSPIRBENSPITBEN0346SPITURINSRMTENSPIROVENSPIRBENSPITBEN0346	AddrBit 13Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 20338SPIEN—SPISIDLDISSD0MODE32MODE16SMPCKESSENCKPMSTENDISSD1DISSC4MCLKEN0338AUDENSPISGNEXTIGNROVIGNTURAUDMON0URDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMPOLMSSENFRMSYPWFRMCN720333VLENGTH<4:0	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 2Bit 10338SPIEN-SPISIDLDISSDOMODE32MODE16SMPCKESSENCKPMSTENDISSDIDISSCKMCLKENSPIFE0334AUDENSPISGNEXTIGNROVIGNTURAUDMONOURDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMPOLMSSENFRMSYPWFRMCNT2FRMCNT2FRMCNT10336VLENGTH<4.D>0337VLENGTH<4.D>0336VLENGTH<4.D>0336VLENGTH<4.D>0337SPITESPIRT0340RXELMSRXELMSRXELMSRXELMSRXELMSRXELMSSPITUESRMTSPIROVSPIRBESPITBESPITBE0342SPITUESRMTSPIROVENSPIRBESPITBESPITBESPITE0344SPITUESRMTSPIROVE	AddrBit 13Bit 13Bit 13Bit 12Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 2Bit 1Bit 00338SPIENSPISDLDISSD0MODE32MODE16SMPCKESSENCKPMSTENDISSD1DISSD1DISSCKMCLKENSPIFEENHBUF0334AUDENSPISGNEXTIGNROVIGNTURAUDMON0URDTENAUDMOD1AUDMOD0FRMENFRMSYNCFRMCD1MSSENFRMSYPWFRMCNT2FRMCNT2FRMCNT2FRMCNT1FRMCNT00336FRMSYNCFRMC01MSSENFRMSYPWFRMCNT2FRMCNT2FRMCNT1FRMCNT00336FRMCNT2													

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10 ^(1,3)	Bit 9 ^(1,3)	Bit 8 ^(1,3)	Bit 7 ^(1,3)	Bit 6	Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0	All Resets
TRISA	0180	—		_		-		TRISA	<10:7>		_	-	_		TRISA	<3:0>		078F ⁽²⁾
PORTA	0182	_	_	_	_	_		RA<	10:7>		_	_			RA<4:0>			XXXX
LATA	0184	_	_	_	_	_		LATA	<10:7>		_	_	_		LATA	<3:0>		XXXX
ODCA	0186	_	—	—	—			ODA<	<10:7>				—		ODA	<3:0>		0000

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal. Reset values shown are for 44-pin devices.

Note 1: These bits are not available on 28-pin devices; read as '0'.

2: Reset value for the 44-pin devices is shown; 001F for the 28-pin devices.

3: The RA<10:7> bits are multiplexed with the JTAG pins. In order to use these pins as I/Os, JTAG should be disabled in the Configuration Fuse bits.

TABLE 4-15: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	018A					Т	RISB<15:5		_		TRISE	3<3:0>		FFEF				
PORTB	018C													XXXX				
LATB	018E					l	_ATB<15:5>	•					_		LATB	<3:0>		XXXX
ODCB	0190						ODB<15:5>								ODB	<3:0>		0000

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-16: PORTC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ⁽¹⁾	Bit 8 ⁽¹⁾	Bit 7 ⁽¹⁾	Bit 6 ⁽¹⁾	Bit 5 ⁽¹⁾	Bit 4 ⁽¹⁾	Bit 3 ⁽¹⁾	Bit 2 ⁽¹⁾	Bit 1 ⁽¹⁾	Bit 0 ⁽¹⁾	All Resets	
TRISC	0194	—	_	_	_			TRISC<9:0>											
PORTC	0196	_	_	_	_	_	_					RC<	:9:0>					_{XXXX} (2)	
LATC	0198	_	_	_	_	_	_					LATC	<9:0>					_{XXXX} (2)	
ODCC	019A	_	_	_	_							ODC	<9:0>					0000 (2)	

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

Note 1: These bits are not available on 28-pin devices; read as '0'.

2: The Reset value for 44-pin devices is shown.

TABLE 4-17: PAD CONFIGURATION REGISTER MAP (PADCFG1)

	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
1	PADCFG1	01A0	_			_	_		_	_	_	_	_	_	_	_	_	PMPTTL	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18 :	A/D CONVERTER REGISTER MAP
---------------------	----------------------------

Name Addr Bit 19 Bit 19 Bit 9 Bit 9 Bit 8 Bit 7 Bit 6 Bit 7 Bit 7 Bit 6 Bit 7 Bit 7 <th< th=""><th></th><th>10.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		10.																	
ADC1BUF1 0202 ADC1BUF2 0204 ADC1BUF2 0204 ADC ADC ADC1BUF2 0206 ADD Data Buffer 3/Threshold for Channel 3 ADC ADC ADC1BUF5 0208 ADD Data Buffer 5/Threshold for Channel 4 XXX ADC1BUF6 0206 ADD Data Buffer 6/Threshold for Channel 6 XXX ADC1BUF6 0206 ADD Data Buffer 6/Threshold for Channel 6 XXX ADC1BUF6 0206 ADD Data Buffer 6/Threshold for Channel 6 XXX ADC1BUF6 0200 ADD Data Buffer 6/Threshold for Channel 0 in Windowed Compare mode XXX ADC1BUF7 0210 ADD Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF10 0212 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF10 0212 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF10 0214 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF12 0214 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF12 0214 A/D Data Buffer 10/Threshold for Channel 1 in Win		Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC18UF2 0204 AVC 18UF2 AVD Data Buffer 2/Threshold for Channel 3 xxxx ADC18UF4 0208 AVC Data Buffer 4/Threshold for Channel 3 xxxx ADC18UF4 0200 AVD Data Buffer 4/Threshold for Channel 5 xxxx ADC18UF6 0200 AVD Data Buffer 6/Threshold for Channel 6 xxxx ADC18UF7 0206 AVD Data Buffer 6/Threshold for Channel 0 in Windowed Compare mode xxxx ADC18UF7 0202 AVD Data Buffer 8/Threshold for Channel 0 in Windowed Compare mode xxxx ADC18UF8 0210 AVD Data Buffer 9/Threshold for Channel 0 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF10 0214 AVD Data Buffer 9/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF10 0214 AVD Data Buffer 10/Threshold for Channel 1/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF11 0216 AVD Data Buffer 1/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF12 0218 AVD Data Buffer 1/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 0214 AVD Data Buffer 1/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 0216 AVD D	ADC1BUF0	0200						A/D	Data Buffer	0/Thresho	ld for Chan	nel 0							XXXX
ADC1BUF3 0206 ADC1BUF4 0208 ADC1BUF4 0208 ADC1BUF4 0208 ADC1BUF4 0208 ADD Data Buffer 4Threshold for Channel 4 xxxx ADC1BUF5 0200 ADD Data Buffer 5Threshold for Channel 5 Xxxx Xxxx ADC1BUF5 0200 ADD Data Buffer 6Threshold for Channel 6 Xxxx ADC1BUF7 0202 ADD Data Buffer 9Threshold for Channel 6 Xxxx ADC1BUF7 0202 ADD Data Buffer 9Threshold for Channel 9 Threshold for Channel 1 in Windowed Compare mode Xxxx ADC1BUF10 0214 ADD Data Buffer 10Threshold for Channel 9 Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF11 0216 ADD Data Buffer 10Threshold for Channel 1 In Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF12 0218 ADD Data Buffer 112Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF13 0210 ADD Data Buffer 12Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF13 0218 ADD Data Buffer 12Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF14 0216 ADD Data Buffer 12Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF14 <t< td=""><td>ADC1BUF1</td><td>0202</td><td></td><td></td><td></td><td></td><td></td><td>A/D</td><td>Data Buffer</td><td>1/Thresho</td><td>ld for Chan</td><td>nel 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></t<>	ADC1BUF1	0202						A/D	Data Buffer	1/Thresho	ld for Chan	nel 1							XXXX
ADC18UF4 0208 ADC18UF5 20A ADC18UF5 20A ADC18UF5 ADC18UF1 ADC18UF1 ADC18UF1 ADC18UF10 ADC18UF10 ADC18UF10 ADC18UF10 ADC18UF10 ADC18UF11 ADC18UF11 ADC18UF11 ADC18UF12 Q18 ADC18UF11 ADC18UF13 ADC18UF14 ADC18U	ADC1BUF2	0204						A/D	Data Buffer	2/Thresho	ld for Chan	nel 2							XXXX
ADC18UF5 020A ADC18UF6 020C ADC18UF6 020C ADC18UF6 020C ADC18UF7 020E ADC18UF6 021C ADC18UF6 0210 ADD Data Buffer 10/Threshold for Channel 0 in Windowed Compare mode XXX XXX ADC18UF10 0214 ADD Data Buffer 11/Threshold for Channel 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX XXX ADC18UF12 0218 ADD Data Buffer 12/Threshold for Channel 12/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC18UF13 021A ADD Data Buffer 12/Threshold for Channel 12/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ XXX ADC18UF13 021A ADC18UF13 021A ADC18UF13 SRC1 SRC1 SRC1 SRC1 SRC1 SRC1 SRC1	ADC1BUF3	0206						A/D	Data Buffer	3/Thresho	ld for Chan	nel 3							XXXX
ADC18UF6 020C ADC18UF7 020E ADC18UF7 020E ADC18UF7 020E ADC18UF7 020E ADC18UF7 021E ADC18UF7	ADC1BUF4	0208						A/D	Data Buffer	4/Thresho	ld for Chan	nel 4							XXXX
ADC18UF7 020E ADC18UF8 0210 ADC18UF8 0210 ADC18UF9 0210 ADC18UF9 0210 ADC18UF9 0210 ADC18UF9 0212 ADC18UF9 0212 ADC18UF9 0212 ADC18UF9 0212 ADD Data Buffer 3/Threshold for Channel 3/Threshold for Channel 1/Threshold for Channel 10/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF10 0216 ADD Data Buffer 10/Threshold for Channel 10/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF13 0214 A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF14 0210 A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF14 0212 ADON ADD AB A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF14 0216 C116 ADON	ADC1BUF5	020A						A/D	Data Buffer	5/Thresho	ld for Chan	nel 5							XXXX
ADC18UF8 0210 A/D Data Buffer 8/Threshold for Channel 9/Threshold for Channel 0 in Windowed Compare mode xxxx ADC18UF9 0212 A/D Data Buffer 9/Threshold for Channel 1 in Windowed Compare mode xxxx ADC18UF10 0214 A/D Data Buffer 10/Threshold for Channel 1 in/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF11 0216 A/D Data Buffer 11/Threshold for Channel 1 in/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A X/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A X/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A X/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 5 to X/D Data Buffer 13 XXXX ADC18UF14 021C X/D CAD X/D DAMAM MAR MODE12 FORM1 FORM0 SSRC3 SSRC2 SSRC1 SSRC0 ASAM SAMP DONE 000 AD1CON1 0222 PVCFG1 PVCFG0 NFCG0 OFFCAL	ADC1BUF6	020C						A/D	Data Buffer	6/Thresho	ld for Chan	nel 6							XXXX
ADC18UF9 0212 A/D Data Buffer 9/Threshold for Channel 9/Threshold for Channel 1 in Windowed Compare mode xxxx ADC18UF10 0214 A/D Data Buffer 10/Threshold for Channel 10/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF10 0216 A/D Data Buffer 11/Threshold for Channel 10/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF14 021C A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF14 021C A/D Data Buffer 13 XXX XXXX ADC18UF15 021E A/D Data Buffer 14 XXXX ADC10N1 0220 ADON A/D AND MARN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 ASAM SAMP DONE 000 AD1C0N2 0222 PVCFG0 NVCFG0 OFFCAL BUFREGEN CSCNA - - BUFS SMPI4 SMPI3 SMPI2	ADC1BUF7	020E						A/D	Data Buffer	7/Thresho	ld for Chan	nel 7							XXXX
ADC1BUF10 0214 ADD Data Buffer 10/Threshold for Channel 10/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF11 0216 A/D Data Buffer 11/Threshold for Channel 11/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF14 021C A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC1BUF15 021E A/D Data Buffer 12/Threshold for Channel 12 Threshold for Channel 5 in Windowed Compare mode ⁽¹⁾ xxx AD1C0N1 0220 ADON ADSIL DMABM MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC1 SMPI2 SMPI1 SMPI0 BUFM ALTS 000 AD1CON2 0222 PVCFG1 PVC	ADC1BUF8	0210				A/D	Data Buffer 8/	Threshold for	Channel 8/	Threshold	for Channe	0 in Windo	wed Comp	are mode					XXXX
ADC1BUF11 0216 ADD Data Buffer 11/Threshold for Channel 11/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF14 021C A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC1BUF14 021C A/D Data Buffer 13 XXX ADC1BUF15 021E A/D Data Buffer 15 XXX AD1CON1 0220 ADON ADSID DMABM DMAEN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 ASAM SAMP DONE 000 AD1CON1 0220 ADON ADSID DMABM DMAEN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 ASAM MPI0 BUFM ALTS 000 AD1CON3 0224 ADCC EXTSAM PUMPEN SAMC3 SAMC2 SAMC1 SAMC0 ADCS5 ADCS5 ADCS3 ADCS2 <	ADC1BUF9	0212		A/D Data Buffer 9/Threshold for Channel 9/Threshold for Channel 1 in Windowed Compare mode A/D Data Buffer 10/Threshold for Channel 10/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾															xxxx
ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A	ADC1BUF10	0214		A/D Data Buffer 10/Threshold for Channel 10/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾															xxxx
ADC1BUF13 021A	ADC1BUF11	0216		A/D Data Buffer 10/Threshold for Channel 10/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ A/D Data Buffer 11/Threshold for Channel 11/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾															xxxx
ADC1BUF14 021C VACUAL	ADC1BUF12	0218				A/D Da	ata Buffer 12/T	hreshold for C	Channel 12/	Threshold	for Channe	l 4 in Windo	owed Comp	are mode ⁽¹)				xxxx
ADC1BUF15021EO210ADON—ADSIDLDMABMDMAENMODE12FORM1FORM0SSRC3SSRC2SSRC1SSRC0—ASAMSAMPDONE000AD1CON10222PVCFG1PVCFG0NVCFG0OFFCALBUFREGENCSCNA——BUFSSMPI4SMPI3SMPI2SMP11SMP10BUFMALTS000AD1CON20222PVCFG1PVCFG0NVCFG0OFFCALBUFREGENCSCNA———BUFSSMP14SMP13SMP12SMP10BUFMALTS000AD1CON30224ADRCEXTSAMPUMPENSAMC4SAMC3SAMC2SAMC1SAMC0ADC57ADC66ADC55ADC54ADC53ADC52ADC51ADC50000AD1CN30228CH0NB2CH0NB1CH0SB3CH0SB2CH0SB1CH0SB0CH0NA2CH0NA1CH0NA0CH0SA4CH0SA3CH0SA2CH0SA0000AD1CSSL022C—————————————000AD1CON4022E—————————————000AD1CON4022E————————————000AD1CON4022E————————————…000 <td>ADC1BUF13</td> <td>021A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>A/D</td> <td>Data Buffe</td> <td>er 13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>xxxx</td>	ADC1BUF13	021A							A/D	Data Buffe	er 13								xxxx
AD1CON1 0220 ADON — ADSIDL DMABM DMAEN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 — ASAM SAMP DONE 000 AD1CON2 0222 PVCFG1 PVCFG0 NVCFG0 OFFCAL BUFREGEN CSCNA — — BUFS SMPI4 SMPI3 SMPI2 SMPI1 SMP0 BUFM ALTS 000 AD1CON3 0224 ADRC EXTSAM PUMPEN SAMC4 SAMC3 SAMC2 SAMC1 SAMC0 ADCS7 ADCS6 ADCS5 ADCS4 ADCS3 ADCS2 ADCS1 ADCS0 000 AD1CHS 0228 CH0NB1 CH0NB0 CH0SB3 CH0SB3 CH0SB1 CH0SB0 CH0NA2 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0SA0 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0SB0 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0SA3 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0SA3 CH0NA1 CH0NA3 CH0SA3 CH0SA1 <td>ADC1BUF14</td> <td>021C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>A/D</td> <td>Data Buffe</td> <td>er 14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>xxxx</td>	ADC1BUF14	021C							A/D	Data Buffe	er 14								xxxx
AD1CON20222PVCFG1PVCFG0NVCFG0OFFCALBUFREGENCSCNA——BUFSSMPI4SMPI3SMPI2SMPI1SMPI0BUFMALTS000AD1CON30224ADRCEXTSAMPUMPENSAMC4SAMC3SAMC2SAMC1SAMC0ADCS7ADCS6ADCS5ADCS4ADCS3ADCS2ADCS1ADCS0000AD1CHS0228CH0NB2CH0NB1CH0NB0CH0SB4CH0SB3CH0SB2CH0SB1CH0SB0CH0NA2CH0NA1CH0NA0CH0SA4CH0SA3CH0SA2CH0SA0000AD1CSH022C——CSS<31:27>——————————000AD1CON4022E—————————————000AD1CON50230ASENLPENCTMREQBGREQ——ASINT1ASINT0—————000AD1CTMENL0238———————————000AD1CON50230ASENLPENCTMREQBGREQ——ASINT1ASINT0——————000AD1CON50238————————————000AD1CON50238ASENLPENCTMREQ	ADC1BUF15	021E							A/D	Data Buffe	r 15								XXXX
AD1CON3 0224 ADRC EXTSAM PUMPEN SAMC4 SAMC3 SAMC2 SAMC1 SAMC0 ADCS7 ADCS6 ADCS5 ADCS4 ADCS3 ADCS2 ADCS1 ADCS0 000 AD1CHS 0228 CH0NB2 CH0NB1 CH0NB0 CH0SB4 CH0SB3 CH0SB2 CH0SB1 CH0SB0 CH0NA2 CH0NA1 CH0NA0 CH0SA3 CH0SA2 CH0SA0 000 AD1CSSH 0220 C CSS<31:27> — — — — — — — — — — — 000 AD1CON4 0222 — — CSS<31:27> — — — — — — — — — — — — — — — — — …	AD1CON1	0220	ADON	—	ADSIDL	DMABM	DMAEN	MODE12	FORM1	FORM0	SSRC3	SSRC2	SSRC1	SSRC0	_	ASAM	SAMP	DONE	0000
AD1CHS 0228 CH0NB2 CH0NB1 CH0NB0 CH0SB4 CH0SB3 CH0SB2 CH0SB1 CH0SB0 CH0NA2 CH0NA1 CH0NA0 CH0SA4 CH0SA3 CH0SA2 CH0SA1 CH0SA3 CH0SA3 CH0SA4 CH0SA3 CH0SA3 CH0SA4 CH0SA4 CH0SA3 CH0SA4	AD1CON2	0222	PVCFG1	PVCFG0	NVCFG0	OFFCAL	BUFREGEN	CSCNA		_	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CSSH 022A CSS<31:27> - 000 AD1CSSL 022C - - - - - - - - - - 000 AD1CON4 022E - - - - - - - - DMABL<2:0> 000 AD1CON5 0230 ASEN LPEN CTMREQ BGREQ - - - - - - - DMABL<2:0> 000 AD1CHITL 0234 - D000 D00	AD1CON3	0224	ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CSSL 022C CSS<14:0>(1) <th< td=""><td>AD1CHS</td><td>0228</td><td>CH0NB2</td><td>CH0NB1</td><td>CH0NB0</td><td>CH0SB4</td><td>CH0SB3</td><td>CH0SB2</td><td>CH0SB1</td><td>CH0SB0</td><td>CH0NA2</td><td>CH0NA1</td><td>CH0NA0</td><td>CH0SA4</td><td>CH0SA3</td><td>CH0SA2</td><td>CH0SA1</td><td>CH0SA0</td><td>0000</td></th<>	AD1CHS	0228	CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CON4 022E	AD1CSSH	022A			CSS<31:2	7>		_	_	—		_	—			—	—	—	0000
AD1CON5 0230 ASEN LPEN CTMREQ BGREQ — ASINT1 ASINT0 — — — — WM1 WM0 CM1 CM0 000 AD1CHITL 0234 — — — — ASINT1 ASINT0 — — — — WM1 WM0 CM1 CM0 000 AD1CHITL 0234 — — — — — — — — W00 CM1 CM0 000 AD1CTMENL 0238 — — — — — CTMEN CTMEN CTMEN US00 US00	AD1CSSL	022C	—							CSS<1	14:0> ⁽¹⁾								0000
AD1CHITL 0234 CHH<12:0>(1) 000 AD1CTMENL 0238 CTMEN<12:0>(1) 000	AD1CON4	022E	—	—	—	—	—	—	—	—	—	—	—	—	—	[DMABL<2:0	>	0000
AD1CTMENL 0238 CTMEN<12:0> ⁽¹⁾		0230	ASEN	LPEN	CTMREQ	BGREQ	_	_	ASINT1	ASINT0	—	—	—	—	WM1	WM0	CM1	CM0	0000
	AD1CHITL	0234	—	—	—														0000
AD1DMBUF 023A A/D Conversion Data Buffer (Extended Buffer mode) xxx	AD1CTMENL	0238	—	—	—						CTMEN	<12:0> ⁽¹⁾							0000
	AD1DMBUF	023A						A/D Conv	ersion Data	a Buffer (Ex	tended Buf	fer mode)							XXXX

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

Note 1: The CSS<12:10>, CHH<12:10> and CTMEN<12:10> bits are unimplemented in 28-pin devices, read as '0'.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1	023C	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	-	_	_	—	—	—	-	_	0000
CTMUCON2	023E	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	_		0000
CTMUICON	0240	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	_	_	-	—	—	_	_	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: ANALOG CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ANCFG	019E	—	—			—		—			—	_	—	_		VBG2EN	VBGEN	0000
ANSA	0188	_	_	_	_	_	_	_	_	_	_	_			ANSA	A<3:0>		000F
ANSB	0192		ANSB<	15:12>		_	_	ANSB9	_	_	ANSB6	_			ANSB<3:0>			
ANSC	019C	_	_	_		_	-	_	_	-	_	_	_	_	A	ANSC<2:0>(1)	0007

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 28-pin devices, read as '0'.

TABLE 4-21: DMA REGISTER MAP

	, - <u>2</u> .		LOISI															
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMACON	0450	DMAEN	—	—	—	—	—	—	—	—	—	—	—	_	—	—	PRSSEL	0000
DMABUF	0452								DMA Trans	fer Data Buff	fer							0000
DMAL	0454							DN	IA High Add	ress Limit Re	egister							0000
DMAH	0456							DN	1A Low Add	ress Limit Re	gister							0000
DMACH0	0458	_	_	_	r	_	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT0	045A	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	—	_	HALFEN	0000
DMASRC0	045C			•		•	•	DMA C	hannel 0 Sc	urce Addres	s Register		•	•				0000
DMADST0	045E							DMA Cha	annel 0 Dest	ination Addre	ess Register							0000
DMACNT0	0460							DMA Ch	annel 0 Tra	nsaction Cou	int Register							0001
DMACH1	0462	_	_	_	r	—	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT1	0464	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	_	—	HALFEN	0000
DMASRC1	0466		DMA Channel 1 Source Address Register DMA Channel 1 Destination Address Register															0000
DMADST1	0468		•															0000
DMACNT1	046A		DMA Channel 1 Transaction Count Register															0001
DMACH2	046C	_	DMA Channel 1 Transaction Count Register r - NULLW RELOAD CHREQ SAMODE1 SAMODE0 DAMODE1 DAMODE0 TRMODE1 TRMODE0 SIZE CHE															0000
DMAINT2	046E	DBUFWF	JFWF <u> </u>															0000
DMASRC2	0470																	0000
DMADST2	0472							DMA Cha	annel 2 Dest	ination Addre	ess Register							0000
DMACNT2	0474							DMA Ch	annel 2 Tra	nsaction Cou	int Register							0001
DMACH3	0476	_	—	_	r	—	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT3	0478	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	_	—	HALFEN	0000
DMASRC3	047A							DMA C	hannel 3 Sc	urce Addres	s Register							0000
DMADST3	047C							DMA Cha	annel 3 Dest	ination Addre	ess Register							0000
DMACNT3	047E							DMA Ch	annel 3 Tra	nsaction Cou	int Register							0001
DMACH4	0480	_	_	_	r	_	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT4	0482	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	_	_	HALFEN	0000
DMASRC4	0484							DMA C	hannel 4 Sc	urce Addres	s Register							0000
DMADST4	0486							DMA Cha	annel 4 Dest	ination Addre	ess Register							0000
DMACNT4	0488							DMA Ch	annel 4 Tra	nsaction Cou	Int Register							0001
DMACH5	048A	_	_		r	_	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT5	048C	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	_	_	HALFEN	0000
DMASRC5	048E			•				DMA C	hannel 5 Sc	urce Addres	s Register							0000
DMADST5	0490	İ						DMA Cha	annel 5 Dest	ination Addre	ess Register							0000
DMACNT5	0492	İ						DMA Ch	annel 5 Tra	nsaction Cou	int Register							0001
L	I	1									U -							لـــــــــــــــــــــــــــــــــــــ

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

TABLE 4-22: ENHANCED PARALLEL MASTER/SLAVE PORT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON1	0128	PMPEN		PSIDL	ADRMUX1	ADRMUX0		MODE1	MODE0	CSF1	CSF0	ALP	ALMODE	—	BUSKEEP	IRQM1	IRQM0	0000
PMCON2	012A	PMPBUSY	_	ERROR	TIMEOUT	_	_	_	_	RADDR23	RADDR22	RADDR21	RADDR20	RADDR19	RADDR18	RADDR17	RADDR16	0000
PMCON3	012C	PTWREN	PTRDEN	PTBE1EN	PTBE0EN	_	AWAITM1	AWAITM0	AWAITE	_	_	_	_	_	_	_	_	0000
PMCON4	012E	_	PTEN14	_	_	—	_					PTEN	<9:0>					0000
PMCS1CF	0130	CSDIS	CSP	CSPTEN	BEP	_	WRSP	RDSP	SM	ACKP	PTSZ1	PTSZ0	_	_	_	_	_	0000
PMCS1BS	0132				E	ASE<23:15>					_	_	_	BASE11	_	_	_	0200
PMCS1MD	0134	ACKM1	ACKM0	AMWAIT2	AMWAIT1	AMWAIT0	_	_	_	DWAITB1	DWAITB0	DWAITM3	DWAITM2	DWAITM1	DWAITM0	DWAITE1	DWAITE0	0000
PMCS2CF	0136	CSDIS	CSP	CSPTEN	BEP	_	WRSP	RDSP	SM	ACKP	PTSZ1	PTSZ0	_	_	_	_	_	0000
PMCS2BS	0138				E	ASE<23:15>					_	_	_	BASE11	_	_	_	0600
PMCS2MD	013A	ACKM1	ACKM0	AMWAIT2	AMWAIT1	AMWAIT0	_	_	_	DWAITB1	DWAITB0	DWAITM3	DWAITM2	DWAITM1	DWAITM0	DWAITE1	DWAITE0	0000
PMDOUT1	013C			EPN	P Data Out	Register 1<1	5:8>					EPN	IP Data Out	Register 1<	7:0>			XXXX
PMDOUT2	013E			EPN	P Data Out	Register 2<1	5:8>					EPN	IP Data Out	Register 2<	7:0>			XXXX
PMDIN1	0140			EPI	/IP Data In F	Register 1<15	:8>					EP	MP Data In	Register 1<7	/:0>			XXXX
PMDIN2	0142			EPI	/IP Data In F	Register 2<15	:8>					EP	MP Data In	Register 2<7	/:0>			XXXX
PMSTAT	0144	IBF	IBOV	—	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	—	OB3E	OB2E	OB1E	OB0E	008F

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-23: REAL-TIME CLOCK AND CALENDAR (RTCC) REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	011E						Alarm V	alue Register	Window Base	ed on ALR	MPTR<1:0	>						XXXX
ALCFGRPT	0120	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	0122						RTCC	Value Registe	r Window Ba	sed on RTC	CPTR<1:0>							XXXX
RCFGCAL	0124	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	Note 1
RTCPWC	0126	PWCEN	PWCPOL	PWCPRE	PWSPRE	RTCLK1	RTCLK0	RTCOUT1	RTCOUT0	_	_	_	_	_	_	_	_	Note 1

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

Note 1: The status of the RCFGCAL and RTCPWC registers on POR is '0000' and on other Resets, it is unchanged.

TABLE 4-24: DATA SIGNAL MODULATOR (DSM) REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
MDCON	02FA	MDEN		MDSIDL	_	_		_	_	_	MDOE	MDSLR	MDOPOL	_			MDBIT	0020
MDSRC	02FC	_	_	_		_	_	_	_	SODIS	_	_	_	MS3	MS2	MS1	MS0	0000
MDCAR	02FE	CHODIS	CHPOL	CHSYNC	—	CH3	CH2	CH1	CH0	CLODIS	CLPOL	CLSYNC	—	CL3	CL2	CL1	CL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0242	CMIDL	—	-	—	—	C3EVT	C2EVT	C1EVT	—	—	—	_	_	C3OUT	C2OUT	C1OUT	0000
CVRCON	0244	—	_	_	_	_	CVREFP	CVREFM1	CVREFM0	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0246	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2CON	0248	CON	COE	CPOL	_		_	CEVT	COUT	EVPOL1	EVPOL0	—	CREF			CCH1	CCH0	0000
CM3CON	024A	CON	COE	CPOL	_		_	CEVT	COUT	EVPOL1	EVPOL0	—	CREF		_	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0158	CRCEN	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	—	0040
CRCCON2	015A	—	—	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	—	_	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXORL	015C								X<15:1>								_	0000
CRCXORH	015E								X<31:	16>								0000
CRCDATL	0160							CRC	C Data Input	Register Lo	w							XXXX
CRCDATH	0162							CRC	Data Input	Register Hi	igh							XXXX
CRCWDATL	0164		CRC Result Register Low									XXXX						
CRCWDATH	0166							CF	RC Result R	egister Higl	า							xxxx

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-27: PERIPHERAL PIN SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	038C	_	_	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_	_	OCTRIG1R5	OCTRIG1R4	OCTRIG1R3	OCTRIG1R2	OCTRIG1R1	OCTRIG1R0	3F3F
RPINR1	038E	_	_	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	_		INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	3F3F
RPINR2	0390	-	_	OCTRIG2R5	OCTRIG2R4	OCTRIG2R3	OCTRIG2R2	OCTRIG2R1	OCTRIG2R0	-	_	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0	3F3F
RPINR7	039A	Ι	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0		_	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR8	039C	_	_	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	_	_	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	3F3F
RPINR9	039E	-	_	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0	-	_	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	3F3F
RPINR11	03A2	Ι	_	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0		_	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR17	03AE	_	_	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0	_	_	_	_	_	_		_	3F00
RPINR18	03B0		_	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0			U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	3F3F
RPINR19	03B2	Ι	_	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0		_	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	3F3F
RPINR20	03B4	_	_	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	_	_	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	03B6		_	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	-	_	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	3F3F
RPINR22	03B8		_	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	-	_	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	3F3F
RPINR23	03BA	_	_	TMRCKR5	TMRCKR4	TMRCKR3	TMRCKR2	TMRCKR1	TMRCKR0	_	_	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	3F3F
RPINR27	03C2		_	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0	-	_	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0	3F3F
RPINR28	03C4	_	_	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0	_	_	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0	3F3F
RPINR29	03C6	_	_	_	_	_	_	_	_	_	_			SS3R	<5:0>			003F
RPINR30	03C8	_	_	_	_	_	_	_	_	_	_			MDMI	२<5:0>			003F
RPINR31	03CA	_	_	MDC2R5	MDC2R4	MDC2R3	MDC2R2	MDC2R1	MDC2R0	_	_	MDC1R5	MDC1R4	MDC1R3	MDC1R2	MDC1R1	MDC1R0	3F3F

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	03D6	_	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_	_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	03D8	_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	03DA		—			RP5F	₹<5:0>			_		-	—	—	_	-	-	0000
RPOR3	03DC	_	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_	_	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	03DE	—	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	_	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	03E0	—	_	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	_	_	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	03E2	—	—	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	_	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	03E4	—	—	RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0	_	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	03E6	_	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0	_	-	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	03E8	_	_	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0	_	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	03EA	_	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	_	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	03EC	_	—	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0	_	_	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	03EE	—	_	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0		_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000

TABLE 4-27: PERIPHERAL PIN SELECT REGISTER MAP (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: SYSTEM CONTROL (CLOCK AND RESET) REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0108	TRAPR	IOPUWR	_	RETEN	_	DPSLP	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0100	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	POSCEN	SOSCEN	OSWEN	Note 2
CLKDIV	0102	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	PLLEN	_	_	_	_	_	0100
OSCTUN	0106	STEN	_	STSIDL	STSRC	STLOCK	STLPOL	STOR	STORPOL	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCONL	0168	ROEN	—	ROSIDL	ROOUT	ROSLP	-	ROSWEN	ROACTIVE	—		—	_	ROSEL3	ROSEL2	ROSEL1	ROSEL0	0000
REFOCONH	016A	—							RODIV	<14:0>								0000
REFOTRIML	016C				R	OTRIM<15:7	>					_		—		_		0000
HLVDCON	010C	HLVDEN	—	LSIDL		_	-		—	VDIR	BGVST	IRVST		HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000
RCON2	010A	—	—	_	_	_	-		—	—		_	r	VDDBOR	VDDPOR	VBPOR	VBAT	Note 1

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

Note 1: The Reset value of the RCON (or RCON2) register is dependent on the type of Reset event. For more information, refer to Section 7.0 "Resets".

2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. For more information, refer to Section 9.0 "Oscillator Configuration".

TABLE 4-29: DEEP SLEEP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DSCON	010E	DSEN	_		_	_	—	_		-	_	_	_		r	DSBOR	RELEASE	0000(1)
DSWAKE	0110	—	—	_	_	_	_	_	DSINT0	DSFLT	_	_	DSWDT	DSRTCC	DSMCLR	_	_	0000(1)
DSGPR0	0112							Deep SI	eep Semap	hore Data 0	Register							0000 (1)
DSGPR1	0114							Deep SI	eep Semap	hore Data 1	Register							0000(1)

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

Note 1: These registers are only reset on a VDD POR event.

TABLE 4-30: CRYPTOGRAPHIC ENGINE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRYCONL	01A4	CRYON	—	CRYSIDL	ROLLIE	DONEIE	FREEIE	—	CRYGO	OPMOD3	OPMOD2	OPMOD1	OPMOD0	CPHRSEL	CPHRMOD2	CPHRMOD1	CPHRMOD0	0000
CRYCONH	01A6		CTRSIZE6	CTRSIZE5	CTRSIZE4	CTRSIZE3	CTRSIZE2	CTRSIZE1	CTRSIZE0	SKEYSEL	KEYMOD1	KEYMOD0		KEYSRC3	KEYSRC2	KEYSRC1	KEYSRC0	0000
CRYSTAT	01A8	I	_	_	_	_	_	_	—	CRYBSY	TXTABSY	CRYABRT	ROLLOVR		MODFAIL	KEYFAIL	PGMFAIL	0000
CRYOTP	01AC	I	_	_	_	_	_	_	—	PGMTST	OTPIE	CRYREAD	KEYPG3	KEYPG2	KEYPG1	KEYPG0	CRYWR	0020
CRYTXTA	01B0							Crypt	tographic Tex	kt Register A	(128 bits wi	de)						XXXX
CRYKEY	01C0		Cryptographic Key Register (256 bits wide, write-only)										XXXX					
CRYTXTB	01E0													XXXX				
CRYTXTC	01F0							Crypt	tographic Tex	kt Register C	(128 bits wi	de)						XXXX

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-31: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	_		_		_	ERASE	_	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000 (1)
NVMKEY	0766	_	_	_	_	_	_	_	_			1	VMKEY R	egister<7:0	>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-32: PERIPHERAL MODULE DISABLE (PMD) REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0170	T5MD	T4MD	T3MD	T2MD	T1MD	_	—	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	_	ADC1MD	0000
PMD2	0172	_	_	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	_	_	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0174	_	_	_	_	DSMMD	CMPMD	RTCCMD	PMPMD	CRCMD	_	_	_	U3MD	_	I2C2MD	_	0000
PMD4	0176			_		_		—			UPWMMD	U4MD		REFOMD	CTMUMD	HLVDMD		0000
PMD6	017A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SPI3MD	0000
PMD7	017C	_	_	_	_	—	-	_	_		_	DMA1MD	DMA0MD	—	_	_		0000
PMD8	017E	_		_		_		—	-	-	—	_	_	_	—		CRYMD	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.2.5 EXTENDED DATA SPACE (EDS)

The Extended Data Space (EDS) allows PIC24F devices to address a much larger range of data than would otherwise be possible with a 16-bit address range. EDS includes any additional internal data memory not directly accessible by the lower 32-Kbyte data address space and any external memory through the Enhanced Parallel Master Port (EPMP).

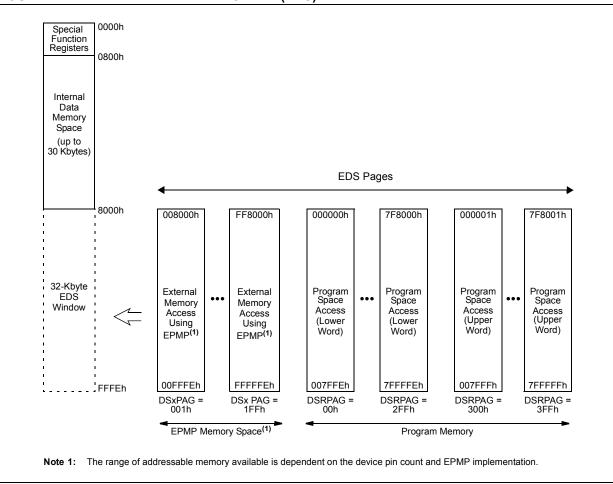

In addition, EDS also allows read access to the program memory space. This feature is called Program Space Visibility (PSV) and is discussed in detail in Section 4.3.3 "Reading Data from Program Memory Using EDS".

Figure 4-4 displays the entire EDS space. The EDS is organized as pages, called EDS pages, with one page equal to the size of the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read register (DSRPAG) or Data Space Write register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA). The data addressing range of PIC24FJ128GA204 family devices depends on the version of the Enhanced Parallel Master Port implemented on a particular device; this is, in turn, a function of device pin count. Table 4-33 lists the total memory accessible by each of the devices in this family. For more details on accessing external memory using EPMP, refer to the "*dsPIC33/PIC24 Family Reference Manual*", "Enhanced Parallel Master Port (EPMP)" (DS39730).

TABLE 4-33:	TOTAL ACCESSIBLE DATA
	MEMORY

Family	Internal RAM	External RAM Access Using EPMP
PIC24FJXXXGA204	8K	Up to 16 Mbytes
PIC24FJXXXGA202	8K	Up to 64K

Note: Accessing Page 0 in the EDS window will generate an address error trap as Page 0 is the base data memory (data locations, 0800h to 7FFFh, in the lower Data Space).

FIGURE 4-4: EXTENDED DATA SPACE (EDS)

4.2.5.1 Data Read from EDS

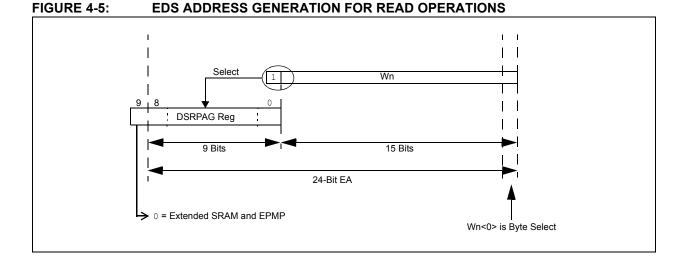

In order to read the data from the EDS space first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the Working register assigned with the offset address; then, the contents of the pointed EDS location can be read.

Figure 4-5 illustrates how the EDS space address is generated for read operations.

When the Most Significant bit of the EA is '1' and DSRPAG<9> = 0, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of the EA to form a 24-bit EDS space address for read operations.

Example 4-1 shows how to read a byte, word and double-word from EDS.

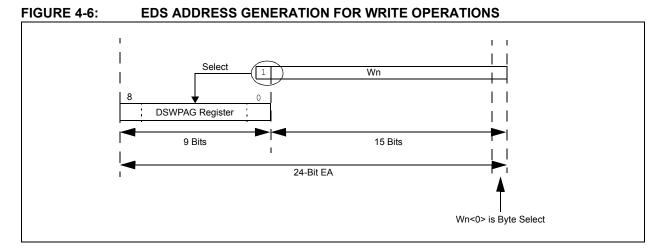
Note: All read operations from EDS space have an overhead of one instruction cycle. Therefore, a minimum of two instruction cycles are required to complete an EDS read. EDS reads under the REPEAT instruction; the first two accesses take three cycles and the subsequent accesses take one cycle.

EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY

; Set the EDS mov	<pre>page from where #0x0002, w0</pre>	the data to be read
mov	w0, DSRPAG	;page 2 is selected for read
mov	#0x0800, w1	;select the location (0x800) to be read
bset	w1, #15	;set the MSB of the base address, enable EDS mode
;Read a byte	from the selecte	d location
mov.b	[w1++], w2	;read Low byte
mov.b	[w1++], w3	;read High byte
;Read a word	from the selecte	d location
mov	[w1], w2	;
,		selected location ;two word read, stored in w2 and w3

4.2.5.2 Data Write into EDS

In order to write data to EDS space, such as in EDS reads, an Address Pointer is set up by loading the required EDS page number into the DSWPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, then the EDS window is enabled by setting bit 15 of the Working register, assigned with the offset address, and the accessed location can be written.


Figure 4-2 illustrates how the EDS space address is generated for write operations.

When the MSBs of EA are '1', the lower 9 bits of DSWPAG are concatenated to the lower 15 bits of the EA to form a 24-bit EDS address for write operations. Example 4-2 shows how to write a byte, word and double-word to EDS.

The Data Space Page registers (DSRPAG/DSWPAG) do not update automatically while crossing a page boundary when the rollover happens from 0xFFFF to

0x8000. While developing code in assembly, care must be taken to update the Data Space Page registers when an Address Pointer crosses the page boundary. The 'C' compiler keeps track of the addressing, and increments or decrements the DS Page registers accordingly, while accessing contiguous data memory locations.

- **Note 1:** All write operations to EDS are executed in a single cycle.
 - 2: Use of Read-Modify-Write operation on any EDS location under a REPEAT instruction is not supported. For example, BCLR, BSW, BTG, RLC f, RLNC f, RRC f, RRNC f, ADD f, SUB f, SUBR f, AND f, IOR f, XOR f, ASR f and ASL f.
 - **3:** Use the DSRPAG register while performing Read-Modify-Write operations.

EXAMPLE 4-2: EDS WRITE CODE IN ASSEMBLY

```
; Set the EDS page where the data to be written
   mov
          #0x0002, w0
   mov
          w0, DSWPAG
                         ;page 2 is selected for write
          #0x0800, w1 ;select the location (0x800) to be written
   mov
                        ;set the MSB of the base address, enable EDS mode
        w1, #15
   bset
;Write a byte to the selected location
   mov #0x00A5, w2
          #0x003C, w3
   mov
   mov.b w2, [w1++] ;write Low byte
   mov.b w3, [w1++]
                        ;write High byte
;Write a word to the selected location
   mov
         #0x1234, w2 ;
   mov
          w2, [w1]
                         ;
;Write a Double - word to the selected location
        #0x1122, w2
   mov
          #0x4455, w3
   mov
   mov.d w2, [w1]
                         ;2 EDS writes
```

DSRPAG (Data Space Read Register)	DSWPAG (Data Space Write Register)	Source/Destination Address While Indirect Addressing	24-Bit EA Pointing to EDS	Comment
x ⁽¹⁾	x ⁽¹⁾	0000h to 1FFFh	000000h to 001FFFh	Near Data Space ⁽²⁾
***	X	2000h to 7FFFh	002000h to 007FFFh	
001h	001h		008000h to 00FFFEh	
002h	002h		010000h to 017FFEh	
003h •	003h •		018000h to 0187FEh	EPMP Memory Space
•	•	8000h to FFFFh	•	
•	•			
•	•		•	
• 1FFh	• 1FFh		FF8000h to FFFFFEh	
000h	000h		Invalid Address	Address Error Trap ⁽³⁾

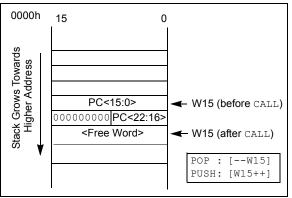
TABLE 4-34: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.

- 2: This Data Space can also be accessed by Direct Addressing.
- **3:** When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

4.2.6 SOFTWARE STACK

Apart from its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-7. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.


Note:	A PC push during exception processing			
	will concatenate the SRL Register to the			
	MSB of the PC prior to the push.			

The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be wordaligned. Whenever an EA is generated using W15 as a Source or Destination Pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-7: CALL STACK FRAME

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24F architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. It can only access the least significant word of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit Data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSbs of TBLPAG are used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 10-bit Extended Data Space Read register (DSRPAG) is used to define a 16K word page in the program space. When the Most Significant bit (MSb) of the EA is '1' and the MSb (bit 9) of DSRPAG is '1', the lower 8 bits of DSRPAG are concatenated with the lower 15 bits of the EA to form a 23-bit program space address. The DSRPAG<8> bit decides whether the lower word (when the bit is '0') or the higher word (when the bit is '1') of program memory is mapped. Unlike table operations, this strictly limits remapping operations to the user memory area.

Table 4-35 and Figure 4-8 show how the program EA is created for table operations and remapping accesses from the data EA. Here, the P<23:0> bits refer to a program space word, whereas the D<15:0> bits refer to a Data Space word.

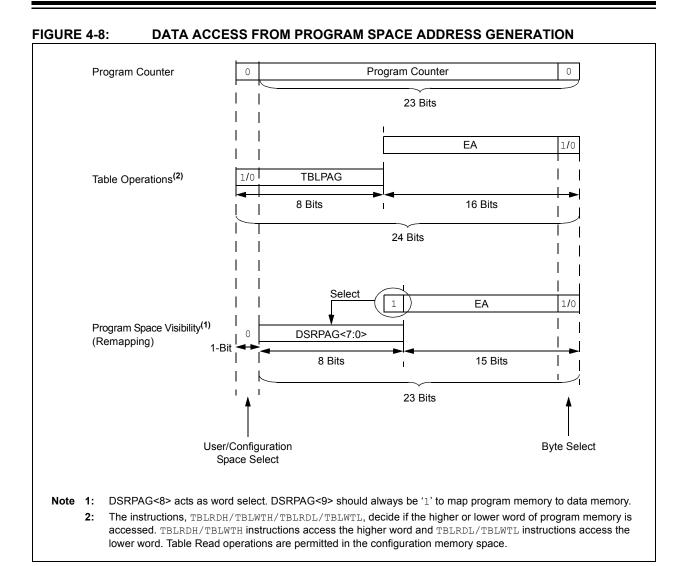

	Access	Program Space Address				
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0	PC<22:1>			
(Code Execution)		0xx xxxx xxxx xxxx xxx0				
TBLRD/TBLWT	User	TBLPAG<7:0> Data EA<15:0>				
(Byte/Word Read/Write)		0xxx xxxx		XXXX XXXX XXXX XXXX		XXXX
	Configuration	TB	LPAG<7:0>	Data EA<15:0>		
		1xxx xxxx		XXXX XXXX XXXX XXXX		XXXX
Program Space Visibility	User	0 DSRPAG<7:0> ⁽²⁾ Data EA<		Data EA<14	:0> ⁽¹⁾	
(Block Remap/Read)		0	XXXX XXX	XX	XXX XXXX XX	xx xxxx

TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is DSRPAG<0>.

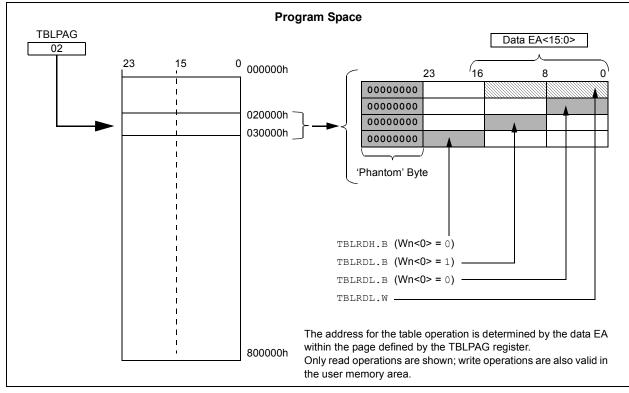
2: DSRPAG<9> is always '1' in this case. DSRPAG<8> decides whether the lower word or higher word of program memory is read. When DSRPAG<8> is '0', the lower word is read and when it is '1', the higher word is read.

PIC24FJ128GA204 FAMILY

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).
 In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are described in Section 6.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space where Device IDs are located; Table Write operations are not allowed.

FIGURE 4-9: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

4.3.3 READING DATA FROM PROGRAM MEMORY USING EDS

The upper 32 Kbytes of Data Space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the Data Space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the Data Space occurs when the MSb of EA is '1' and the DSRPAG<9> bit is also '1'. The lower 8 bits of DSRPAG are concatenated to the Wn<14:0> bits to form a 23-bit EA to access program memory. The DSRPAG<8> bit decides which word should be addressed; when the bit is '0', the lower word and when '1', the upper word of the program memory is accessed.

The entire program memory is divided into 512 EDS pages, from 200h to 3FFh, each consisting of 16K words of data. Pages, 200h to 2FFh, correspond to the lower words of the program memory, while 300h to 3FFh correspond to the upper words of the program memory.

Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported. Table 4-36 provides the corresponding 23-bit EDS address for program memory with EDS page and source addresses.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

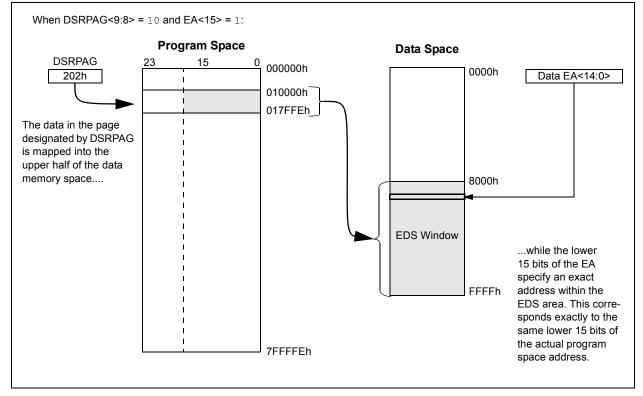
For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

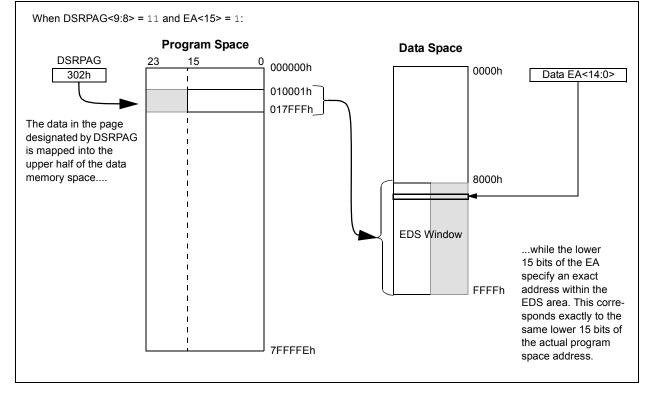
Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

DSRPAG (Data Space Read Register)	Source Address While Indirect Addressing	23-Bit EA Pointing to EDS	Comment
200h		000000h to 007FFEh	
•		•	Lower words of 4M program
•		•	instructions (8 Mbytes); for
•		•	read operations only
2FFh		7F8000h to 7FFFEh	
300h	8000h to FFFFh	000001h to 007FFFh	
•		•	Upper words of 4M program
•		•	instructions (4 Mbytes remaining,
•		•	4 Mbytes are phantom bytes); for read operations only
3FFh		7F8001h to 7FFFFFh	
000h		Invalid Address	Address error trap ⁽¹⁾

TABLE 4-36: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES


Note 1: When the source/destination address is above 8000h and DSRPAG/DSWPAG is '0', an address error trap will occur.

EXAMPLE 4-3: EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY


```
; Set the EDS page from where the data to be read
          #0x0202, w0
   mov
   mov
          w0, DSRPAG
                                  ;page 0x202, consisting lower words, is selected for read
         #0x000A, w1
                                  ;select the location (0x0A) to be read
   mov
   bset w1, #15
                                  ;set the MSB of the base address, enable EDS mode
;Read a byte from the selected location
  mov.b [w1++], w2
                                 ;read Low byte
  mov.b [w1++], w3
                                  ;read High byte
;Read a word from the selected location
   mov
       [w1], w2
                                  ;
;Read Double - word from the selected location
   mov.d [w1], w2
                                   ;two word read, stored in w2 and w3
```

PIC24FJ128GA204 FAMILY

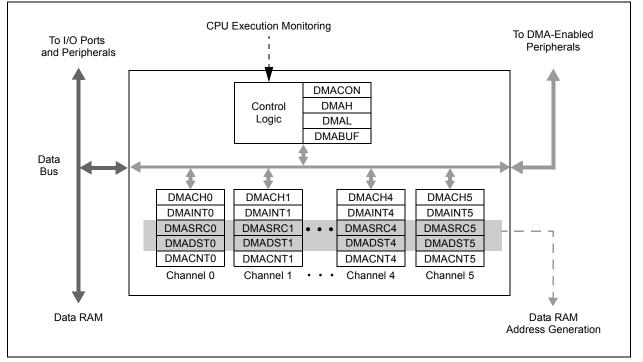
FIGURE 4-10: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS LOWER WORD

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS UPPER WORD

5.0 DIRECT MEMORY ACCESS CONTROLLER (DMA)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Direct Memory Access Controller (DMA)" (DS39742). The information in this data sheet supersedes the information in the FRM.

The Direct Memory Access (DMA) Controller is designed to service high data throughput peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU intensive management. By allowing these data-intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.


The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus between the CPU and DMA-enabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA capable peripherals located on the new DMA SFR bus. The controller serves as a master device on the DMA SFR bus, controlling data flow from DMA capable peripherals. The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations causing a processor stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- Six multiple independent and independently programmable channels
- Concurrent operation with the CPU (no DMA caused Wait states)
- DMA bus arbitration
- Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- · Byte or word support for data transfer
- 16-Bit Source and Destination Address register for each channel, dynamically updated and reloadable
- 16-Bit Transaction Count register, dynamically updated and reloadable
- Upper and Lower Address Limit registers
- Counter half-full level interrupt
- · Software triggered transfer
- Null Write mode for symmetric buffer operations

A simplified block diagram of the DMA Controller is shown in Figure 5-1.

FIGURE 5-1: DMA FUNCTIONAL BLOCK DIAGRAM

5.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction. In addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- Source and destination (SFRs and data RAM)
- · Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (Fixed Address or Address Blocks with or without Address Increment/Decrement)

In addition, the DMA Controller provides channel priority arbitration for all channels.

5.1.1 SOURCE AND DESTINATION

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 07FFh), or the data RAM space (0800h to FFFFh) can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 5-2.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL High/Low Address Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

5.1.2 DATA SIZE

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn<1>). By default, each channel is configured for word-size transactions. When byte-size transactions are chosen, the LSb of the source and/or destination address determines if the data represents the upper or lower byte of the data RAM location.

5.1.3 TRIGGER SOURCE

The DMA Controller can use 63 of the device's interrupt sources to initiate a transaction. The DMA trigger sources occur in reverse order than their natural interrupt priority and are shown in Table 5-1. Since the source and destination addresses for any transaction can be programmed independently of the trigger source, the DMA Controller can use any trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

5.1.4 TRANSFER MODE

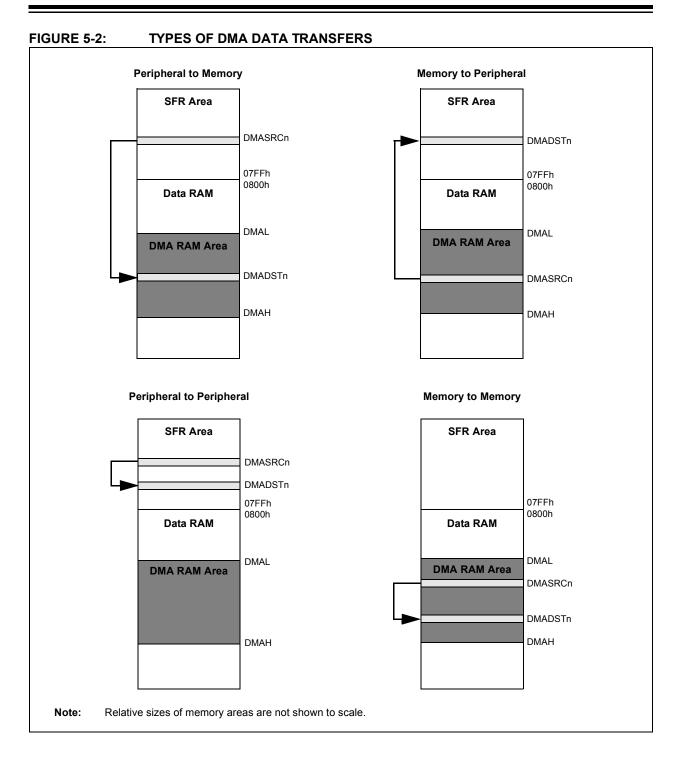
The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each trigger:

- One-Shot: A single transaction occurs for each trigger.
- Continuous: A series of back-to-back transactions occur for each trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per trigger, until the DMA channel is disabled.
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per trigger, until the DMA channel is disabled.

All Transfer modes allow the option to have the source and destination addresses, and counter value, automatically reloaded after the completion of a transaction; Repeated mode transfers do this automatically.

5.1.5 ADDRESSING MODES

The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:


- · Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- Block-to-Fixed: From a range of source addresses to a single, constant destination address
- Block-to-Block: From a range of source addresses to a range of destination addresses

The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.

In addition to the four basic modes, the DMA Controller also supports Peripheral Indirect Addressing (PIA) mode, where the source or destination address is generated jointly by the DMA Controller and a PIA capable peripheral. When enabled, the DMA channel provides a base source and/or destination address, while the peripheral provides a fixed range offset address.

For PIC24FJ128GA204 family devices, the 12-bit A/D Converter module is the only PIA capable peripheral. Details for its use in PIA mode are provided in Section 24.0 "12-Bit A/D Converter with Threshold Detect".

PIC24FJ128GA204 FAMILY

5.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority based on their channel number.
- Fixed Priority: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history.

5.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- 2. Program DMAH and DMAL with appropriate upper and lower address boundaries for data RAM operations.
- 3. Select the DMA channel to be used and disable its operation (CHEN = 0).
- Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers. For PIA Addressing mode, use the base address value.
- 5. Program the DMACNTn register for the number of triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE<1:0> bits to select the Data Transfer mode.
- 8. Program the SAMODE<1:0> and DAMODE<1:0> bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the trigger source interrupt.

5.3 Peripheral Module Disable

Unlike other peripheral modules, the channels of the DMA Controller cannot be individually powered down using the Peripheral Module Disable x (PMDx) registers. Instead, the channels are controlled as two groups. The DMA0MD bit (PMD7<4>) selectively controls DMACH0 through DMACH3. The DMA1MD bit (PMD7<5>) controls DMACH4 and DMACH5. Setting both bits effectively disables the DMA Controller.

5.4 Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Control Register (Register 5-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- DMABUF: DMA Transfer Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 5-2)
- DMAINTn: DMA Channel n Interrupt Control Register (Register 5-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n Register
- DMADSTn: DMA Data Destination Source for Channel n Register
- DMACNTn: DMA Transaction Counter for Channel n Register

For PIC24FJ128GA204 family devices, there are a total of 34 registers.

PIC24FJ128GA204 FAMILY

REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
DMAEN	_	—		—	_	—	—
bit 15				•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	PRSSEL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown

bit 15 DMAEN: DMA Module Enable bit

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round robin scheme

0 = Fixed priority scheme

PIC24FJ128GA204 FAMILY

REGISTER 5-2: DMACHn: DMA CHANNEL n CONTROL REGISTER

U-0	U-0	U-0	r-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	_	NULLW	RELOAD ⁽¹⁾	CHREQ ⁽³⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN
bit 7							bit 0

Legend:		r = Reserved bit		
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-13	Unimple	mented: Read as '0'		
bit 12	Reserve	d: Maintain as '0'		
bit 11	Unimple	mented: Read as '0'		
bit 10	NULLW:	Null Write Mode bit		
		mmy write is initiated to DMA ummy write is initiated	SRCn for every write to DMA	DSTn
bit 9	1 = DMA start	of the next operation		to their previous values upon th start of the next operation ⁽²⁾
bit 8	1 = A DN	DMA Channel Software Red IA request is initiated by soft MA request is pending		on completion of a DMA transfer
bit 7-6	11 = DM 10 = DM 01 = DM	ASRCn is decremented base	I Indirect Addressing and rema ed on the SIZE bit after a trans d on the SIZE bit after a transf	fer completion
bit 5-4	11 = DM 10 = DM 01 = DM	ADSTn is decremented base	Indirect Addressing and rema ed on the SIZE bit after a transf d on the SIZE bit after a transf	fer completion
bit 3-2	11 = Rep 10 = Cor 01 = Rep	E<1:0>: Transfer Mode Select coeated Continuous mode ntinuous mode coeated One-Shot mode e-Shot mode	ction bits	
bit 1	SIZE: Da 1 = Byte 0 = Word			
bit 0		MA Channel Enable bit		
		corresponding channel is ena corresponding channel is dis		

- 2: DMACNTn will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.
- 3: The number of transfers executed while CHREQ is set depends on the configuration of TRMODE<1:0>.

REGISTER 5-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DBUFWF ⁽¹⁾	0-0	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0
bit 15		CHSELS	CHSEL4	CHSELS	CHSELZ	CHSELI	bit 8
DIL 15							DILO
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
HIGHIF ^(1,2)	LOWIF ^(1,2)	DONEIF ⁽¹⁾	HALFIF ⁽¹⁾	OVRUNIF ⁽¹⁾	_	_	HALFEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15		MA Buffered Da	•				
		Cont of the Divi/		not been writter		on specified in	DMADSIN or
				been written	to the location	n specified in	DMADSTn or
	DMASRO	Cn in Null Write	mode				
bit 14	•	ted: Read as '0					
bit 13-8		: DMA Channe		ction bits			
		for a complete					
bit 7		A High Address		-			
			tempted to ac	cess an addres	s higher than E	MAH or the up	per limit of the
	data RAM 0 = The DMA		ot invoked the	e high address li	mit interrupt		
bit 6		Low Address L		-			
				ccess the DMA	SFR address	lower than DM	IAL, but above
		range (07FFh)					
				low address lir	nit interrupt		
bit 5		A Complete Op	eration Interru	ipt Flag bit ⁽¹⁾			
	$\frac{\text{If CHEN} = 1:}{1 = \text{The previ}}$	ous DMA sessi	n has ended	with completion	1		
		ent DMA session			I		
	If CHEN = 0:						
				with completion			
	•			without comple	tion		
bit 4		A 50% Waterma		1 0			
		n has reached in has not reach					
bit 3		MA Channel Ov					
			•	s still completing	the operation	based on the p	revious trigger
		run condition ha			•		
bit 2-1	Unimplemen	ted: Read as '0	,				
bit 0	HALFEN: DM	1A Halfway Con	pletion Water	rmark bit			
	•			has reached it		t and at comple	etion
	0 = An interru	ipt is invoked or	nly at the com	pletion of the tra	ansfer		
Note 1: Se	tting these flag	s in software do	bes not genera	ate an interrupt.			
2 : Te	sting for addres	ss limit violation	s (DMASRCn	or DMADSTn is	s either greate	r than DMAH o	r less than

2: Testing for address limit violations (DMASRCn or DMADSTn is either greater than DMAH or less than DMAL) is NOT done before the actual access.

CHSEL<5:0>	Trigger (Interrupt)	CHSEL<5:0>	Trigger (Interrupt)
000000	(Unimplemented)	100000	UART2 Transmit
000001	SPI3 General Event	100001	UART2 Receive
000010	I2C1 Slave Event	100010	External Interrupt 2
000011	UART4 Transmit	100011	Timer5
000100	UART4 Receive	100100	Timer4
000101	UART4 Error	100101	Output Compare 4
000110	UART3 Transmit	100110	Output Compare 3
000111	UART3 Receive	100111	DMA Channel 2
001000	UART3 Error	101000	I2C2 Slave Event
001001	CTMU Event	101001	External Interrupt 1
001010	HLVD	101010	Interrupt-on-Change
001011	CRC Done	101011	Comparators Event
001100	UART2 Error	101100	SPI3 Receive Event
001101	UART1 Error	101101	I2C1 Master Event
001110	RTCC	101110	DMA Channel 1
001111	DMA Channel 5	101111	A/D Converter
010000	External Interrupt 4	110000	UART1 Transmit
010001	External Interrupt 3	110001	UART1 Receive
010010	SPI2 Receive Event	110010	SPI1 Transmit Event
010011	I2C2 Master Event	110011	SPI1 General Event
010100	DMA Channel 4	110100	Timer3
010101	EPMP	110101	Timer2
010110	SPI1 Receive Event	110110	Output Compare 2
010111	Output Compare 6	110111	Input Capture 2
011000	Output Compare 5	111000	DMA Channel 0
011001	Input Capture 6	111001	Timer1
011010	Input Capture 5	111010	Output Compare 1
011011	Input Capture 4	111011	Input Capture 1
011100	Input Capture 3	111100	External Interrupt 0
011101	DMA Channel 3	111101	Reserved
011110	SPI2 Transmit Event	111110	SPI3 Transmit Event
011111	SPI2 General Event	111111	Cryptographic Done

TABLE 5-1: DMA CHANNEL TRIGGER SOURCES

6.0 FLASH PROGRAM MEMORY

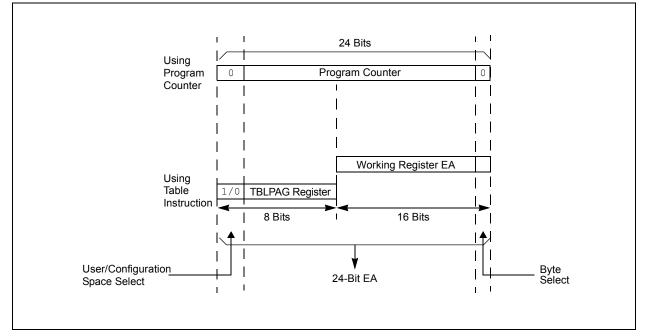
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Program Memory"** (DS39715). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ128GA204 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ128GA204 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.


6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS

6.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused address should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the Table Write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

6.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

6.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

6.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 6-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. For more information, refer to Section 6.6 "Programming Operations".

6.6 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

REGISTER 6-1: NVMCON: FLASH MEMORY CONTROL REGISTER
--

R/S-0, HC ⁽¹⁾	R/W-0 ⁽¹⁾	R-0, HSC ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	_	_	_	_	_
bit 15		<u> </u>					bit
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	ERASE		—	NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0 ⁽²⁾
bit 7							bit
Legend:		S = Settable b	it	HC = Hardwa	re Clearable bi	t	
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
HSC = Hardw	are Settable/C	learable bit					
	ما معتمما م						
	0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Writ 1 = An impro- automatic	or erase operat Enable bit ⁽¹⁾ Flash program/er lash program/er te Sequence Er oper program o cally on any set	ion is complet rase operation ase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the	ns s uence attempt ⊵WR bit)	, or terminatio	on has occurre	
bit 13	0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Writ 1 = An impro- automatic 0 = The prog	or erase operat Enable bit ⁽¹⁾ Flash program/er lash program/er te Sequence Er oper program o cally on any set ram or erase op	ion is complet rase operation ase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl	e and inactive ns s uence attempt wR bit)	, or terminatio	on has occurre	and the bit i ed (bit is se
bit 13 bit 12-7	0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Writ 1 = An impro- automatic 0 = The prog Unimplemen	or erase operat Enable bit ⁽¹⁾ Flash program/erash tash program/erash te Sequence Err oper program o cally on any set rram or erase op ted: Read as '0	ion is complet rase operation ase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl	e and inactive ns s uence attempt wR bit)	, or terminatic	on has occurre	
bit 13 bit 12-7	0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Writ 1 = An impro- automatic 0 = The prog Unimplemen ERASE: Erass 1 = Performs	or erase operat Enable bit ⁽¹⁾ Flash program/er lash program/er te Sequence Er oper program o cally on any set ram or erase op	ion is complet rase operation ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl ble bit ⁽¹⁾ ation specified	e and inactive ns s uence attempt WR bit) leted normally by the NVMOF	P<3:0> bits on t	he next WR co	ed (bit is se mmand
bit 13 bit 12-7 bit 6	 0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Write 1 = An impro- automatic 0 = The prog Unimplement ERASE: Erass 1 = Performs 0 = Performs 	or erase operat Enable bit ⁽¹⁾ Flash program/er te Sequence Err oper program of cally on any set ram or erase op ted: Read as '0 se/Program Ena the erase opera	rase operation ase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl ble bit ⁽¹⁾ ation specified eration specified	e and inactive ns s uence attempt WR bit) leted normally by the NVMOF	P<3:0> bits on t	he next WR co	ed (bit is se mmand
bit 13 bit 12-7 bit 6 bit 5-4	 0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Writi 1 = An impro- automatic 0 = The prog Unimplement ERASE: Erass 1 = Performs 0 = Performs Unimplement 	or erase operat Enable bit ⁽¹⁾ Flash program/erash te Sequence Erro oper program of cally on any set ram or erase op ted: Read as '0 se/Program Ena the erase operator the program op	ion is complet rase operation ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl , ble bit ⁽¹⁾ ation specified eration specifi	e and inactive ns s uence attempt WR bit) leted normally by the NVMOF ied by the NVM	P<3:0> bits on t	he next WR co	ed (bit is se mmand
bit 14 bit 13 bit 12-7 bit 6 bit 5-4 bit 3-0	 0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Write 1 = An impro- automatic 0 = The prog Unimplemen ERASE: Erass 1 = Performs 0 = Performs Unimplemen NVMOP<3:0> 1111 = Memo- 0011 = Memo- 0010 = Memo- 	or erase operat Enable bit ⁽¹⁾ Flash program/erash te Sequence Erro oper program of cally on any set rram or erase operative ted: Read as '0 se/Program Ena the erase operative the program op ted: Read as '0	ion is complet rase operation ase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the beration compl ble bit ⁽¹⁾ ation specified eration specified eration specified peration (ERA m operation (ERA	te and inactive hs s uence attempt e WR bit) leted normally by the NVMOF ied by the NVMOF ied by the NVM 1,2) ASE = 1) or no of ERASE = 0) or no	P<3:0> bits on t OP<3:0> bits of operation (ERA no operation (ER operation (ER/	he next WR co on the next WR SE = 0) ⁽³⁾ ERASE = 1) ASE = 0)	ed (bit is se mmand
bit 13 bit 12-7 bit 6 bit 5-4 bit 3-0 Note 1: The	 0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Write 1 = An impro- automatic 0 = The prog Unimplement ERASE: Erast 1 = Performs 0 = Performs Unimplement NVMOP<3:0> 1111 = Memo- 0011 = Memo- 0001 = Memo- ese bits can on 	or erase operations of erase operations of erase operations of enable bit ⁽¹⁾ Flash program/erases operations of erase oper program of erase oper train or erase operations of erase operations of the erase operations of th	ion is complet rase operation arase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl ble bit ⁽¹⁾ ation specified eration specified peration (ERA m operation (ERA m operation (ERA n operation (ERA	e and inactive hs s uence attempt e WR bit) leted normally by the NVMOF ied by P<3:0> bits on t OP<3:0> bits of operation (ERA no operation (ER operation (ER/	he next WR co on the next WR SE = 0) ⁽³⁾ ERASE = 1) ASE = 0)	ed (bit is s mmand	

3: Available in ICSP[™] mode only; refer to the device programming specification.

6.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 6-1):
 - a) Set the NVMOPx bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 6-3).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 6-4.

EXAMPLE 6-1: ERASING A PROGRAM MEMORY BLOCK (ASSEMBLY LANGUAGE CODE)

; Set up NVMCON for block erase operation MOV #0×4042, W0 MOV W0, NVMCON ; Initialize NVMCON ; Init pointer to row to be ERASED MOV #tblpage(PROG_ADDR), W0 ; MOV W0, TBLPAG ; Initialize Program Memory (PM) Page Boundary SFR MOV #tbloffset(PROG ADDR), W0 ; Initialize in-page EA<15:0> pointer TBLWTL WO, [WO] ; Set base address of erase block ; Block all interrupts with priority <7 DISI #5 ; for next 5 instructions MOV.B #0x55, W0 MOV WO. NVMKEY ; Write the 0x55 key MOV.B #0xAA, W1 : MOV W1, NVMKEY ; Write the OxAA key BSET NVMCON, #WR ; Start the erase sequence NOP ; Insert two NOPs after the erase NOP ; command is asserted

EXAMPLE 6-2: ERASING A PROGRAM MEMORY BLOCK ('C' LANGUAGE CODE)

<pre>// C example using MPLAB C30 unsigned long progAddr = 0xXXXXXX; unsigned int offset;</pre>	// Address of row to write
//Set up pointer to the first memory location t	to be written
<pre>TBLPAG = progAddr>>16;</pre>	// Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	<pre>// Initialize lower word of address</pre>
builtin_tblwtl(offset, 0x0000);	<pre>// Set base address of erase block</pre>
	// with dummy latch write
NVMCON = 0×4042 ;	// Initialize NVMCON
asm("DISI #5");	<pre>// Block all interrupts with priority <7</pre>
	// for next 5 instructions
builtin_write_NVM();	<pre>// check function to perform unlock</pre>
	// sequence and set WR

EXAMPLE 6-3: LOADING THE WRITE BUFFERS

; Se	et up NVMCO	N for row programming operations	
	MOV	#0x4001, W0	;
	MOV	W0, NVMCON	; Initialize NVMCON
; Se	et up a poi	nter to the first program memory	location to be written
; pr	cogram memo	ry selected, and writes enabled	
-	MOV	#0x0000, W0	;
	MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	; An example program memory address
; Pe	erform the	TBLWT instructions to write the 1	latches
; Ot	h_program_	word	
	MOV	#LOW_WORD_0, W2	;
	MOV	#HIGH_BYTE_0, W3	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
; 15	st_program_	word	
	MOV	#LOW_WORD_1, W2	;
	MOV	#HIGH_BYTE_1, W3	;
		W2, [W0]	; Write PM low word into program latch
		W3, [W0++]	; Write PM high byte into program latch
; 2	2nd_program	_	
		#LOW_WORD_2, W2	;
	MOV	#HIGH_BYTE_2, W3	;
		W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
	•		
	•		
	•		
; 63	Brd_program	_	
		#LOW_WORD_63, W2	;
	MOV	<pre>#HIGH_BYTE_63, W3</pre>	;
		W2, [W0]	; Write PM low word into program latch
	TBTMLH	W3, [W0]	; Write PM high byte into program latch

EXAMPLE 6-4: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV.B MOV	#0x55, W0 W0, NVMKEY	; Write the 0x55 key
MOV.B MOV BSET NOP NOP	#0xAA, W1 W1, NVMKEY NVMCON, #WR	; ; Write the 0xAA key ; Start the programming sequence ; Required delays
BTSC BRA	NVMCON, #15 \$-2	; and wait for it to be ; completed

6.6.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using Table Write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes (MSBs) of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write

latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOPx bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 6-5). An equivalent procedure in 'C' compiler language, using the MPLAB[®] C30 compiler and built-in hardware functions, is shown in Example 6-6.

EXAMPLE 6-5: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

MOV MOV	-	; ;Initialize PM Page Boundary SFR ;Initialize a register with program memory address
	#LOW_WORD_N, W2	;
MOV	#HIGH_BYTE_N, W3	;
TBLWTL	W2, [W0]	; Write PM low word into program latch
TBLWTH	W3, [W0++]	; Write PM high byte into program latch
MOV	MCON for programming one word t #0x4003, W0 W0, NVMCON	o data Program Memory ; ; Set NVMOP bits to 0011
DISI	#5	; Disable interrupts while the KEY sequence is written
MOV.B	#0x55, W0	; Write the key sequence
MOV	W0, NVMKEY	
MOV.B	#0xAA, W0	
MOV	W0, NVMKEY	
BSET	NVMCON, #WR	; Start the write cycle
NOP		; Required delays
NOP		

EXAMPLE 6-6: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY ('C' LANGUAGE CODE)

// C example using MPLAB C30	
unsigned int offset;	
unsigned long progAddr = 0xXXXXXX;	<pre>// Address of word to program</pre>
unsigned int progDataL = 0xXXXX;	// Data to program lower word
unsigned char progDataH = 0xXX;	// Data to program upper byte
//Set up NVMCON for word programming	
$NVMCON = 0 \times 4003;$	// Initialize NVMCON
//Oct we reinter to the first memory leasting	
//Set up pointer to the first memory locatio	
TBLPAG = progAddr>>16;	// Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	<pre>// Initialize lower word of address</pre>
//Perform TBLWT instructions to write latche	s
<pre>builtin tblwtl(offset, progDataL);</pre>	// Write to address low word
<pre>builtin tblwth(offset, progDataH);</pre>	// Write to upper byte
asm("DISI #5");	<pre>// Block interrupts with priority <7</pre>
	// for next 5 instructions
builtin_write_NVM();	// C30 function to perform unlock
	// sequence and set WR

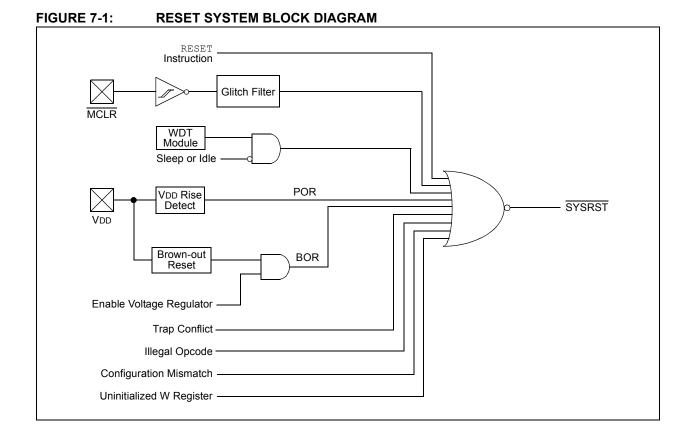
7.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset" (DS39712). The information in this data sheet supersedes the information in the FRM.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- · UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.


Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Resets will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). In addition, Reset events occurring while an extreme power-saving feature is in use (such as VBAT) will set one or more status bits in the RCON2 register (Register 7-2). A POR will clear all bits, except for the BOR and POR (RCON<1:0>) bits, which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON registers should be cleared after they are read so that the next RCON register values after a device Reset will be meaningful.

R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
TRAPR ⁽¹) IOPUWR ⁽¹⁾	_	RETEN ⁽²⁾	—	DPSLP ⁽¹⁾	CM ⁽¹⁾	VREGS ⁽³⁾			
bit 15	·		•				bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1			
EXTR ⁽¹⁾	-	SWDTEN ⁽⁴⁾	WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ⁽¹⁾	BOR ⁽¹⁾	POR ⁽¹⁾			
bit 7				0111	1011	Dorr	bit (
Legend:										
R = Reada	ble bit	W = Writable I	oit	U = Unimple	mented bit, read	as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15	TRAPR: Trap	Reset Flag bit	1)							
		onflict Reset ha								
	•	onflict Reset has								
bit 14		gal Opcode or			•					
	Ū.	l opcode detec Pointer and cau	. 0	al address mo	de or Uninitialize	ed W register	is used as an			
				aister Reset h	as not occurred					
bit 13	-	ted: Read as '0		0						
bit 12	RETEN: Rete	ntion Mode En	able bit ⁽²⁾							
	1 = Retention	RETEN: Retention Mode Enable bit ⁽²⁾ 1 = Retention mode is enabled while device is in Sleep modes (1.2V regulator supplies to the core)								
	0 = Retention	mode is disabl	ed; normal vo	Itage levels ar	e present					
bit 11	•	ted: Read as 'O								
bit 10		o Sleep Flag bit								
		as been in Deep as not been in D		ode						
bit 9	CM: Configura	ation Word Mis	match Reset I	Flag bit ⁽¹⁾						
	0	ration Word Mi			red					
bit 8	VREGS: Prog	gram Memory P	ower During S	Sleep bit ⁽³⁾						
		memory bias vo memory bias vo								
bit 7	EXTR: Extern	al Reset (MCL	R) Pin bit ⁽¹⁾							
		Clear (pin) Res Clear (pin) Res								
bit 6		re Reset (Instru								
		instruction has instruction has								
	All of the Reset st cause a device R	•	e set or cleare	ed in software.	Setting one of th	ese bits in sof	ftware does not			
2:	If the LPCFG Cor bit has no effect.		ʻ1' (unprogra	mmed), the ret	tention regulator	is disabled ar	nd the RETEN			
3:	Re-enabling the r Sleep. Applicatior occurring.									
4:	If the FWDTEN C		is '1' (unprog	rammed), the	WDT is always e	nabled, regar	dless of the			

REGISTER 7-1: RCON: RESET CONTROL REGISTER

REGISTER 7-1: RCON: RESET CONTROL REGISTER (CONTINUED)

bit 5	SWDTEN: Software Enable/Disable of WDT bit ⁽⁴⁾ 1 = WDT is enabled 0 = WDT is disabled
bit 4	WDTO: Watchdog Timer Time-out Flag bit ⁽¹⁾ 1 = WDT time-out has occurred 0 = WDT time-out has not occurred
bit 3	SLEEP: Wake from Sleep Flag bit ⁽¹⁾
	1 = Device has been in Sleep mode0 = Device has not been in Sleep mode
bit 2	IDLE: Wake from Idle Flag bit ⁽¹⁾
	1 = Device has been in Idle mode0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾
	 1 = A Brown-out Reset has occurred (also set after a Power-on Reset) 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred
Noto 1:	All of the Reset status hits may be set or cleared in software. Setting one of

- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the LPCFG Configuration bit is '1' (unprogrammed), the retention regulator is disabled and the RETEN bit has no effect.
 - **3:** Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.
 - 4: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 7-2: RCON2: RESET AND SYSTEM CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_			_			_	_
bit 15							bit 8
U-0	U-0	U-0	r-0	R/CO-1	R/CO-1	R/CO-1	R/CO-0
	_	_		VDDBOR ⁽¹⁾	VDDPOR ^(1,2)	VBPOR ^(1,3)	VBAT ⁽¹⁾
bit 7				·			bit C
Legend:		CO = Clearab	le Only bit	r = Reserved	bit		
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-5	Unimpleme	ented: Read as '	0'				
bit 4	Reserved:	Maintain as '0'					
bit 3	VDDBOR: V	VDD Brown-out F	Reset Flag bit ⁽¹)			
		Brown-out Reset Brown-out Reset			e)		
bit 2	VDDPOR: \	VDD Power-on R	eset Flag bit ^{(1,}	2)			
		Power-on Reset Power-on Reset	· · · · · · · · · · · · · · · · · · ·		:)		
bit 1	VBPOR: VE	3POR Flag bit ^{(1,:}	3)				
	Sleep S	POR has occur Semaphore regis POR has not oc	ter retention le			VBAT power be	elow the Deep
bit 0	VBAT: VBAT	г Flag bit ⁽¹⁾					
		exit has occurre exit from VBAT h			he VBAT pin (se	t by hardware)	
Note 1: T	This bit is set ir	hardware only;	it can only be	cleared in softw	are.		

- 2: This bit indicates a VDD Power-on Reset. Setting the POR bit (RCON<0>) indicates a VCORE Power-on Reset.
- **3:** This bit is set when the device is originally powered up, even if power is present on VBAT.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	CLRWDT, PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #0 Instruction	POR
DPSLP (RCON<10>)	PWRSAV #0 Instruction while DSEN bit is Set	POR
IDLE (RCON<2>)	PWRSAV #1 Instruction	POR
BOR (RCON<1>)	POR, BOR	
POR (RCON<0>)	POR	_

TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

7.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC<2:0> bits in Flash Configuration Word 2 (CW2); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the Master Reset Signal, SYSRST, is released after the POR delay time expires.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

7.3 Brown-out Reset (BOR)

PIC24FJ128GA204 family devices implement a BOR circuit that provides the user with several configuration and power-saving options. The BOR is controlled by the BOREN (CW3<12>) Configuration bit.

When BOR is enabled, any drop of VDD below the BOR threshold results in a device BOR. Threshold levels are described in **Section 32.1** "**DC Characteristics**" (Parameter DC17A).

7.4 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator"** (DS39700).

TABLE 7-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC<2:0> Configuration bits
BOR	(CW2<10:8>)
MCLR	
WDTO	COSC<2:0> Control bits (OSCCON<14:12>)
SWR	(00000114.122)

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR	EC	TPOR + TSTARTUP + TRST		1, 2, 3
	ECPLL	TPOR + TSTARTUP + TRST	Тьоск	1, 2, 3, 5
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Тоѕт	1, 2, 3, 4
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	Tost + Tlock	1, 2, 3, 4, 5
	FRC, FRCDIV	TPOR + TSTARTUP + TRST	TFRC	1, 2, 3, 6, 7
	FRCPLL	TPOR + TSTARTUP + TRST	TFRC + TLOCK	1, 2, 3, 5, 6
	LPRC	TPOR + TSTARTUP + TRST	TLPRC	1, 2, 3, 6
BOR	EC	TSTARTUP + TRST	—	2, 3
	ECPLL	TSTARTUP + TRST	TLOCK	2, 3, 5
	XT, HS, SOSC	TSTARTUP + TRST	Тоѕт	2, 3, 4
	XTPLL, HSPLL	TSTARTUP + TRST	Tost + Tlock	2, 3, 4, 5
	FRC, FRCDIV	TSTARTUP + TRST	TFRC	2, 3, 6, 7
	FRCPLL	TSTARTUP + TRST	TFRC + TLOCK	2, 3, 5, 6
	LPRC	TSTARTUP + TRST	Tlprc	2, 3, 6
MCLR	Any Clock	Trst		3
WDT	Any Clock	Trst	—	3
Software	Any clock	Trst	_	3
Illegal Opcode	Any Clock	Trst	_	3
Uninitialized W	Any Clock	Trst	—	3
Trap Conflict	Any Clock	Trst	_	3

Note 1: TPOR = Power-on Reset Delay (10 μ s nominal).

- 2: TSTARTUP = TVREG.
- 3: TRST = Internal State Reset Time (2 µs nominal).
- **4:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5:** TLOCK = PLL Lock Time.
- 6: TFRC and TLPRC = RC Oscillator Start-up Times.
- 7: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC so the system clock delay is just TFRC, and in such cases, FRC start-up time is valid; it switches to the Primary Oscillator after its respective clock delay.

7.4.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.4.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Interrupts" (DS70000600). The information in this data sheet supersedes the information in the FRM.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- · Up to 8 processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- Unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

8.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 8-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ128GA204 family devices implement nonmaskable traps and unique interrupts. These are summarized in Table 8-1 and Table 8-2.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The ALTIVT (INTCON2<15>) control bit provides access to the AIVT. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the PC to zero. The micro-controller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

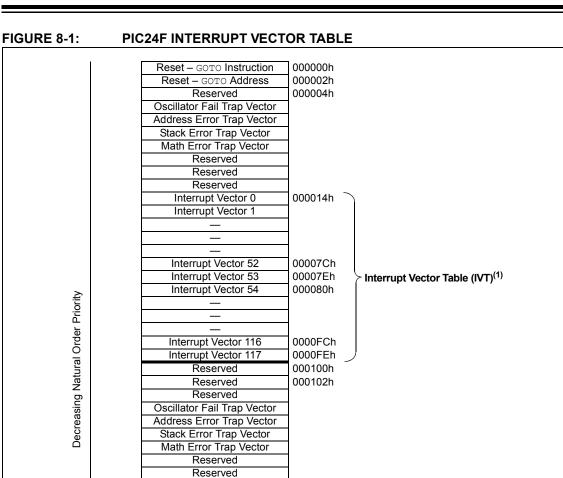


TABLE 8-1: TRAP VECTOR DETAILS

Reserved Interrupt Vector 0

Interrupt Vector 1

Interrupt Vector 52 Interrupt Vector 53

Interrupt Vector 54

Interrupt Vector 116 Interrupt Vector 117

Start of Code

See Table 8-2 for the interrupt vector list.

Vector Number	IVT Address	AIVT Address	Trap Source				
0	000004h	000104h	Reserved				
1	000006h	000106h	Oscillator Failure				
2	000008h	000108h	Address Error				
3	00000Ah	00010Ah	Stack Error				
4	00000Ch	00010Ch	Math Error				
5	00000Eh	00010Eh	Reserved				
6	000010h	000110h	Reserved				
7	000012h	000112h	Reserved				

000114h

00017Ch

00017Eh

000180h

0001FEh

000200h

Note 1:

Alternate Interrupt Vector Table (AIVT)⁽¹⁾

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS
--

Interrupt Source	Vector	IRQ	IVT	ΑΙΥΤ	Inte	errupt Bit Locat	tions
Interrupt Source	#	#	Address	Address	Flag	Enable	Priority
ADC1 Interrupt	21	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>
Comparator Event	26	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>
CRC Generator	75	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>
CTMU Event	85	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>
Cryptographic Operation Done	63	55	000082h	000182h	IFS3<7>	IEC3<7>	IPC13<14:12>
Cryptographic Key Store Program Done	64	56	000084h	000184h	IFS3<8>	IEC3<8>	IPC14<2:0>
Cryptographic Buffer Ready	42	34	000058h	000158h	IFS2<2>	IEC2<2>	IPC8<10:8>
Cryptographic Rollover	43	35	00005Ah	00015Ah	IFS2<3>	IEC2<3>	IPC8<14:12>
DMA Channel 0	12	4	00001Ch	00011Ch	IFS0<4>	IEC0<4>	IPC1<2:0>
DMA Channel 1	22	14	000030h	000130h	IFS0<14>	IEC0<14>	IPC3<10:8>
DMA Channel 2	32	24	000044h	000144h	IFS1<8>	IEC1<8>	IPC6<2:0>
DMA Channel 3	44	36	00005Ch	00015Ch	IFS2<4>	IEC2<4>	IPC9<2:0>
DMA Channel 4	54	46	000070h	000170h	IFS2<14>	IEC2<14>	IPC11<10:8>
DMA Channel 5	69	61	00008Eh	00018Eh	IFS3<13>	IEC3<13>	IPC15<6:4>
External Interrupt 0	8	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>
External Interrupt 1	28	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>
External Interrupt 2	37	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>
External Interrupt 3	61	53	00007Eh	00017Eh	IFS3<5>	IEC3<5>	IPC13<6:4>
External Interrupt 4	62	54	000080h	000180h	IFS3<6>	IEC3<6>	IPC13<10:8>
FRC Self-Tune	114	106	0000E8h	0001E8h	IFS6<10>	IEC6<10>	IPC26<10:8>
I2C1 Master Event	25	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>
I2C1 Slave Event	24	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>
I2C1 Bus Collision	92	84	0000BC	0001BC	IFS5<4>	IEC5<4>	IPC21<2:0>
I2C2 Master Event	58	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>
I2C2 Slave Event	57	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>
I2C2 Bus Collision.	93	85	0000BE	0001BE	IFS5<5>	IEC5<5>	IPC21<6:4>
Input Capture 1	9	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>
Input Capture 2	13	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>
Input Capture 3	45	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>
Input Capture 4	46	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>
Input Capture 5	47	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>
Input Capture 6	48	40	000064h	000164h	IFS2<8>	IEC2<8>	IPC10<2:0>
JTAG	125	117	0000FEh	0001FEh	IFS7<5>	IEC7<5>	IPC29<6:4>
Input Change Notification (ICN)	27	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>
High/Low-Voltage Detect (HLVD)	80	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC18<2:0>
Output Compare 1	10	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>
Output Compare 2	14	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>
Output Compare 3	33	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>
Output Compare 4	34	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>
Output Compare 5	49	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>
Output Compare 6	50	42	000068h	000168h	IFS2<10>	IEC2<10>	IPC10<10:8>
Enhanced Parallel Master Port (EPMP)	53	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>
Real-Time Clock and Calendar (RTCC)	70	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

	Vector	IRQ	IRQ IVT	AIVT	Interrupt Bit Locations		
Interrupt Source	#	#	Address	Address	Flag	Enable	Priority
SPI1 General	17	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Transmit	18	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>
SPI1 Receive	66	58	000088h	000188h	IFS3<10>	IEC3<10>	IPC14<10:8>
SPI2 General	40	32	000054h	000154h	IFS2<0>	IEC2<0>	IPC8<2:0>
SPI2 Transmit	41	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>
SPI2 Receive	67	59	00008Ah	00018Ah	IFS3<11>	IEC3<11>	IPC14<14:12>
SPI3 General	98	90	0000C8h	0001C8h	IFS5<10>	IEC5<10>	IPC22<10:8>
SPI3 Transmit	99	91	0000CAh	0001CAh	IFS5<11>	IEC5<11>	IPC22<14:12>
SPI3 Receive	68	60	000054h	000154h	IFS3<12>	IEC3<12>	IPC15<2:0>
Timer1	11	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	15	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	16	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
Timer4	35	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
Timer5	36	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
UART1 Error	73	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	19	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	20	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	74	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	38	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	39	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>
UART3 Error	89	81	0000B6h	0001B6h	IFS5<1>	IEC5<1>	IPC20<6:4>
UART3 Receiver	90	82	0000B8h	0001B8h	IFS5<2>	IEC5<2>	IPC20<10:8>
UART3 Transmitter	91	83	0000BAh	0001BAh	IFS5<3>	IEC5<3>	IPC20<14:12>
UART4 Error	95	87	0000C2h	0001C2h	IFS5<7>	IEC5<7>	IPC21<14:12>
UART4 Receiver	96	88	0000C4h	0001C4h	IFS5<8>	IEC5<8>	IPC22<2:0>
UART4 Transmitter	97	89	0000C6h	0001C6h	IFS5<9>	IEC5<9>	IPC22<6:4>

8.3 Interrupt Control and Status Registers

The PIC24FJ128GA204 family of devices implements a total of 43 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS7
- IEC0 through IEC7
- IPC0 through IPC16, IPC18 through IPC22, IPC26 and IPC29
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or an external signal and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<7:0>) and the Interrupt Priority Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the order of their vector numbers, as shown in Table 8-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user can change the current CPU priority level by writing to the IPLx bits.

The CORCON register contains the IPL3 bit, which together with the IPL<2:0> bits, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

The interrupt controller has the Interrupt Controller Test register, INTTREG, which displays the status of the interrupt controller. When an interrupt request occurs, its associated vector number and the new Interrupt Priority Level are latched into INTTREG. This information can be used to determine a specific interrupt source if a generic ISR is used for multiple vectors (such as when ISR remapping is used in bootloader applications) or to check if another interrupt is pending while in an ISR.

All Interrupt registers are described in Register 8-1 through Register 8-45 in the succeeding pages.

REGISTER 8-1: SR: ALU STATUS REGISTER (IN CPU)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

		•				
	bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)				
		111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled				
110 = CPU Interrupt Priority Level is 6 (14)						
		101 = CPU Interrupt Priority Level is 5 (13)				
		100 = CPU Interrupt Priority Level is 4 (12)				
		011 = CPU Interrupt Priority Level is 3 (11)				
		010 = CPU Interrupt Priority Level is 2 (10)				
		001 = CPU Interrupt Priority Level is 1 (9)				
		000 = CPU Interrupt Priority Level is 0 (8)				

- **Note 1:** See Register 3-1 for the description of the remaining bits (bits 8, 4, 3, 2, 1 and 0) that are not dedicated to interrupt control functions.
 - **2:** The IPLx bits are concatenated with the IPL3 (CORCON<3>) bit to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - **3:** The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 8-2: CORCON: CPU CORE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit	C = Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 Reserved: Read as PSV bit

bit 1-0 Unimplemented: Read as '0'

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-2 for bit description.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
NSTDIS	—	—	—	—	—	—				
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
_	<u> </u>	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_			
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared		x = Bit is unkno	own			
bit 15 bit 14-5	1 = Interrupt r 0 = Interrupt r	NSTDIS: Interrupt Nesting Disable bit 1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled Unimplemented: Read as '0'								
bit 4	1 = Overflow f	rithmetic Erro trap has occur trap has not o		t						
bit 3	1 = Address e	Address Error ⁻ error trap has c error trap has r								
bit 2		ick Error Trap or trap has occ or trap has not	urred							
bit 1	OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred									
bit 0	Unimplement	ted: Read as	0'							
		onimplemented. Road as 0								

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—		—	_		—
oit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
oit 7							bit C
_egend:		HSC = Hardw	are Settable/C	learable bit			
R = Readabl	e bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 14 bit 13-5	1 = DISI inst 0 = DISI inst Unimplement	struction Status ruction is active ruction is not ac ted: Read as '0	ctive				
bit 4 bit 3	1 = Interrupt c 0 = Interrupt c INT3EP: Exte 1 = Interrupt c	rnal Interrupt 4 on negative edg on positive edge rnal Interrupt 3 on negative edge on positive edge	e Edge Detect F e	·			
bit 2	INT2EP: Exte	rnal Interrupt 2 on negative edg on positive edge	Edge Detect F e	Polarity Select b	bit		
bit 1	1 = Interrupt o 0 = Interrupt o	rnal Interrupt 1 on negative edg on positive edge	e e	·			
bit 0	1 = Interrupt o	rnal Interrupt 0 on negative edg on positive edge	e	Polarity Select b	bit		

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1TXIF	SPI1IF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF
bit 7							bit C
Legend:							
R = Readabl		W = Writable			nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	Unimplemer	nted: Read as '	0'				
bit 14	-	IA Channel 1 Ir		atus bit			
	1 = Interrupt	request has oc request has no	curred				
bit 13	•	Event Interrupt					
51(15)		request has oc	•				
	•	request has no					
bit 12	U1TXIF: UAF	RT1 Transmitte	r Interrupt Flag	Status bit			
		request has oc request has no					
pit 11	U1RXIF: UA	RT1 Receiver l	nterrupt Flag St	tatus bit			
		request has oc request has no					
bit 10	SPI1TXIF: S	PI1 Transmit In	terrupt Flag Sta	atus bit			
	•	request has oc request has no					
bit 9	•	General Interr		bit			
	1 = Interrupt	request has oc request has no	curred				
bit 8		Interrupt Flag					
	1 = Interrupt	request has oc request has no	curred				
bit 7		Interrupt Flag					
	1 = Interrupt	request has oc request has no	curred				
bit 6		ut Compare Ch		ot Flag Status I	bit		
	1 = Interrupt	request has oc request has no	curred				
bit 5	-	Capture Chann		lag Status bit			
	1 = Interrupt	request has oc request has no	curred				
bit 4		IA Channel 0 Ir		atus bit			
		request has oc					
		request has no					
bit 3		Interrupt Flag					
	1 = Interrupt	request has oc	curred				

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF					
bit 15	•						bit					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF					
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown					
bit 15	U2TXIF: UAF	RT2 Transmitter	Interrupt Flag	Status bit								
		request has occ										
		request has not										
bit 14		RT2 Receiver Ir		tatus bit								
	 I = Interrupt request has occurred Interrupt request has not occurred 											
bit 13		rnal Interrupt 2										
		request has occ										
		request has not										
bit 12	T5IF: Timer5	T5IF: Timer5 Interrupt Flag Status bit										
	•	request has occ										
	•	request has not										
bit 11		Interrupt Flag S										
		request has occ request has not										
bit 10	•	-		ot Flag Status b	bit							
	-	OC4IF: Output Compare Channel 4 Interrupt Flag Status bit 1 = Interrupt request has occurred										
		request has not										
bit 9	OC3IF: Outp	ut Compare Ch	annel 3 Interru	pt Flag Status b	pit							
	•	request has occ										
	-	request has not										
bit 8		A Channel 2 In		atus bit								
	•	request has occ request has not										
bit 7-5	-	ited: Read as '										
bit 4	•	rnal Interrupt 1										
		request has occ	•									
	0 = Interrupt	request has not	occurred									
bit 3	CNIF: Input C	Change Notifica	tion Interrupt F	lag Status bit								
		request has occ										
	0 = Interrupt	request has not	occurred									

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 2 CMIF: Comparator Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 MI2C1IF: Master I2C1 Event Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
_	DMA4IF	PMPIF	—	_	OC6IF	OC5IF	IC6IF			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IC5IF	IC4IF	IC3IF	DMA3IF	CRYROLLIF	CRYFREEIF	SPI2TXIF	SPI2IF			
bit 7	10 111	10011		ORTROLEM	ORTINEE	01 12 1741	bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
bit 15	Unimplemen	ted: Read as ')'							
bit 14	DMA4IF: DM	A Channel 4 In	terrupt Flag S	tatus bit						
		request has occ request has not								
bit 13	PMPIF: Para	llel Master Port	Interrupt Flag	Status bit						
	1 = Interrupt	request has occ request has not	curred							
bit 12-11	•	ted: Read as '								
bit 10	-			upt Flag Status I	oit					
	1 = Interrupt	request has occ request has not	curred	1 0						
bit 9	OC5IF: Output Compare Channel 5 Interrupt Flag Status bit									
	1 = Interrupt	request has occ request has not	curred							
bit 8	•	Capture Channe		-lag Status bit						
		request has occ request has not								
bit 7	IC5IF: Input Capture Channel 5 Interrupt Flag Status bit									
	1 = Interrupt	request has occ request has not	curred	0						
bit 6	•	Capture Channe		-lag Status bit						
	1 = Interrupt	request has occ request has not	curred	Ū						
bit 5	•	Capture Channe		-lag Status bit						
	1 = Interrupt	request has occ request has not	curred							
bit 4	•	A Channel 3 In		tatus bit						
	1 = Interrupt	request has occ	curred							
hit 0	•	request has not		ua hit						
bit 3		: Cryptographic request has occ								
		request has oct								
bit 2		•		totuo hit						
DILZ		. Cryptographic	Dullel Flee 3	ialus Dil						

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

- bit 1 SPI2TXIF: SPI2 Transmit Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SPI2IF: SPI2 General Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
_	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	—	KEYSTRIF
pit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
CRYDNIF	INT4IF	INT3IF	—		MI2C2IF	SI2C2IF	—
oit 7	·	·					bit 0
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as ')'				
oit 14	-	-Time Clock/Cale		Flag Status bit			
		request has occ request has not					
oit 13	•	IA Channel 5 Int		tus bit			
	1 = Interrupt	request has occ request has not	urred				
oit 12	•	PI3 Receive Inte		us bit			
		request has occ request has not					
pit 11		PI2 Receive Inte		us bit			
		request has occ					
	0 = Interrupt	request has not	occurred				
bit 10		PI1 Receive Inte		us bit			
		request has occ request has not					
oit 9	-	nted: Read as '					
bit 8	1 = Interrupt	Cryptographic Ko request has occ request has not	urred	am Done Interro	upt Flag Status	bit	
oit 7	CRYDNIF: C	ryptographic Op	eration Done I	nterrupt Flag St	atus bit		
	•	request has occ request has not					
oit 6	-	rnal Interrupt 4					
		request has occ request has not					
bit 5	INT3IF: Exte	rnal Interrupt 3	-lag Status bit				
		request has occ request has not					
bit 4-3	Unimpleme	nted: Read as ')'				
bit 2	MI2C2IF: Ma	ster I2C2 Event	Interrupt Flag	Status bit			
		request has occ request has not					
bit 1	SI2C2IF: Sla	ve I2C2 Event Ir	terrupt Flag St	atus bit			
		request has occ request has not					
		•					

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
	—	CTMUIF		—	_	—	HLVDIF			
oit 15	·			•			bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0			
—	—	—		CRCIF	U2ERIF	U1ERIF	—			
bit 7							bit (
Legend:										
R = Readab		W = Writable b	t	U = Unimplem						
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 15-14	•	nted: Read as '0'								
pit 13		CTMUIF: CTMU Interrupt Flag Status bit								
		request has occu								
L:1 1 0 0	•	request has not o	occurrea							
oit 12-9	-	nted: Read as '0'								
bit 8	-	h/Low-Voltage De		t Flag Status bit						
		request has occurrequest has not of								
bit 7-4	-	nted: Read as '0'								
bit 3	-	Generator Interr	upt Flag Stat	us bit						
		request has occu								
		request has not o								
oit 2	U2ERIF: UA	RT2 Error Interru	pt Flag Statu	s bit						
		request has occu								
	0 = Interrupt	request has not o	occurred							
oit 1		RT1 Error Interru		s bit						
		request has occu								
	-	request has not on ted: Read as '0'	occurrea							
oit O										

REGISTER	8-10: IFS5:	INTERRUPT	FLAGSIAI	US REGISTE	:K 5		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	_		SPI3TXIF	SPI3IF	U4TXIF	U4RXIF
bit 15							bit 8
		5444	5444	5444.0		5444.6	
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U4ERIF	—	I2C2BCIF	I2C1BCIF	U3TXIF	U3RXIF	U3ERIF	— hit 0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	-	ted: Read as '					
bit 11		PI3 Transmit In		atus bit			
		request has oco request has no					
bit 10	-	General Interro		bit			
		request has oc					
		request has no					
bit 9		RT4 Transmitter		Status bit			
		request has oco request has no					
bit 8		RT4 Receiver Ir		tatus bit			
		request has oc					
		request has no					
bit 7		RT4 Error Interr		s bit			
	•	request has oco request has not					
bit 6	•	ited: Read as '					
bit 5	-	C2 Bus Collisio		a Status bit			
		request has oc		9			
	0 = Interrupt	request has no	toccurred				
bit 4		C1 Bus Collisio		g Status bit			
	•	request has oco request has not					
bit 3	•	RT3 Transmitter		Status hit			
bit o		request has oc		Oldius bit			
		request has no					
bit 2	U3RXIF: UAF	RT3 Receiver Ir	nterrupt Flag S	tatus bit			
		request has oc					
bit 1	-	request has no [:] RT3 Error Interr		- hit			
		request has oc					
		request has not					
bit 0	Unimplemen	ted: Read as '	0'				

REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

REGISTER 8-11: IFS6: INTERRUPT FLAG STATUS REGISTER 6

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
—	—	—	—	—	FSTIF	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

	—	—
bit 7		bit 0

Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10	FSTIF: FRC Self-Tune Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 9-0	Unimplemented: Read as '0'

REGISTER 8-12: IFS7: INTERRUPT FLAG STATUS REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	—	JTAGIF	—	—	—	—	—
bit 7							bit 0
DIL 7							DI

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5 JTAGIF: JTAG Controller Interrupt Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

bit 4-0 Unimplemented: Read as '0'

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1TXIE	SPI1IE	T3IE				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE				
bit 7		I					bit (
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14	-		iterrupt Enable	bit							
	1 = Interrupt r	equest is enab	led								
L:1 1 0	-	equest is not e									
bit 13		AD1IE: A/D Interrupt Enable bit									
	 I = Interrupt request is enabled Interrupt request is not enabled 										
bit 12	U1TXIE: UART1 Transmitter Interrupt Enable bit										
		equest is enab equest is not e									
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit										
	1 = Interrupt r	equest is enab	led								
bit 10	 Interrupt request is not enabled SPI1TXIE: SPI1 Transmit Complete Interrupt Enable bit 										
		equest is enab	•								
	0 = Interrupt r	equest is not e	enabled								
bit 9	SPI1IE: SPI1 General Interrupt Enable bit										
		equest is enab equest is not e									
bit 8	T3IE: Timer3	Interrupt Enab	le bit								
		equest is enat equest is not e									
bit 7	T2IE: Timer2	Interrupt Enab	le bit								
		equest is enab equest is not e									
bit 6	OC2IE: Output Compare Channel 2 Interrupt Enable bit										
	•	equest is enab equest is not e		-							
bit 5	IC2IE: Input Capture Channel 2 Interrupt Enable bit										
		equest is enat equest is not e									
bit 4	-	-	iterrupt Enable	bit							
	1 = Interrupt r	equest is enab	led								
bit 3	-	Interrupt Enab									
		equest is enab	led								

REGISTER 8-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

REGISTER 8-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

- bit 2 OC1IE: Output Compare Channel 1 Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 INTOIE: External Interrupt 0 Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U2TXIE	U2RXIE	INT2IE ⁽¹⁾	T5IE	T4IE	OC4IE	OC3IE	DMA2IE			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
0-0	0-0	0-0	INT1IE ⁽¹⁾	CNIE	CMIE	MI2C1IE	SI2C1IE			
 bit 7	_	_		CINIE	CIVIL	WIZCHE	bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15	U2TXIE: UAF	RT2 Transmitter	Interrupt Enab	ole bit						
		equest is enab	•							
	0 = Interrupt r	request is not e	nabled							
bit 14		RT2 Receiver Ir	•	bit						
		equest is enab equest is not e								
bit 13	•	•								
	INT2IE: External Interrupt 2 Enable bit ⁽¹⁾ 1 = Interrupt request is enabled									
		equest is not e								
bit 12	T5IE: Timer5 Interrupt Enable bit									
	•	request is enab								
bit 11	 0 = Interrupt request is not enabled T4IE: Timer4 Interrupt Enable bit 									
	1 = Interrupt request is enabled									
	0 = Interrupt request is not enabled									
bit 10	OC4IE: Output Compare Channel 4 Interrupt Enable bit									
		equest is enab equest is not e								
bit 9	-	•		nt Enable bit						
bit o	OC3IE: Output Compare Channel 3 Interrupt Enable bit 1 = Interrupt request is enabled									
	0 = Interrupt request is not enabled									
bit 8	DMA2IE: DMA Channel 2 Interrupt Enable bit									
		equest is enab equest is not e								
bit 7-5	•	ted: Read as '								
bit 4		nal Interrupt 1								
		request is enab								
		request is not e								
bit 3	CNIE: Input C	Change Notifica	tion Interrupt E	nable bit						
	1 = Interrupt r	equest is enab	led							
		equest is not e								

REGISTER 8-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 8-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

- bit 2 CMIE: Comparator Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 1 MI2C1IE: Master I2C1 Event Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 SI2C1IE: Slave I2C1 Event Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	DMA4IE	PMPIE	_		OC6IE	OC5IE	IC6IE
pit 15	·	•		÷			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IE	IC4IE	IC3IE	DMA3IE	CRYROLLIE	CRYFREEIE	SPI2TXIE	SPI2IE
bit 7						I	bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
oit 15	Unimplemen	ted: Read as '	0'				
oit 14	DMA4IE: DM	A Channel 4 Ir	iterrupt Enable	e bit			
		request is enat request is not e					
oit 13	PMPIE: Para	Ilel Master Port	Interrupt Enal	ble bit			
		request is enab request is not e					
oit 12-11	Unimplemen	ted: Read as '	0'				
oit 10	OC6IE: Output	ut Compare Ch	annel 6 Interru	upt Enable bit			
		request is enab request is not e					
oit 9	OC5IE: Output	ut Compare Ch	annel 5 Interru	upt Enable bit			
		request is enab request is not e					
oit 8	IC6IE: Input (Capture Chann	el 6 Interrupt E	Enable bit			
	•	request is enab					
oit 7	•	request is not e Capture Chann		ablo bit			
JIL 7	•	request is enab	•				
		request is not e					
bit 6	IC4IE: Input (Capture Chann	el 4 Interrupt E	Enable bit			
		request is enab request is not e					
bit 5	IC3IE: Input (Capture Chann	el 3 Interrupt E	Enable bit			
	•	request is enat request is not e					
oit 4	-	A Channel 3 Ir		e bit			
		request is enat request is not e					
oit 3	•	•		rupt Enable bit			
		request is enab					
	-	request is not e					
bit 2				nterrupt Enable	bit		
		request is enab					
	0 = interrupt	request is not e	napieu				

REGISTER 8-15: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

- bit 1 SPI2TXIE: SPI2 Transmit Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 SPI2IE: SPI2 General Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
—	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE	—	KEYSTRIE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
CRYDNIE	INT4IE ⁽¹⁾	INT3IE ⁽¹⁾		_	MI2C2IE	SI2C2IE	
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown
		1 Bit lo cot		Bit lo bio			
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	RTCIE: Real-	Time Clock/Ca	lendar Interrup	t Enable bit			
		request is enab					
bit 13	•	request is not e		hit			
DIC 13		A Channel 5 In request is enab	-	DIL			
		request is enaction of e					
bit 12	•	PI3 Receive Int		bit			
		request is enab	•				
	0 = Interrupt i	request is not e	nabled				
bit 11		PI2 Receive Int	•	bit			
		request is enab					
bit 10	-	request is not e		h:+			
		PI1 Receive Int request is enab	•	DIL			
		request is not e					
bit 9	Unimplemen	ted: Read as '	0'				
bit 8	KEYSTRIE: (Cryptographic k	ey Store Progr	ram Done Inter	rupt Enable bit		
		request is enab					
	•	request is not e					
bit 7				Interrupt Enable	e bit		
		request is enab request is not e					
bit 6	•	nal Interrupt 4					
		request is enab					
	•	request is not e					
bit 5		mal Interrupt 3					
		request is enab					
bit 4-3	•	request is not e					
bit 2	-	ted: Read as ' ster I2C2 Even		hla hit			
		request is enab	-				
		request is not e					
Note 1: If	f an external inte	rrupt is enabled	d. the interrupt	input must also	be configured	to an available	e RPn or RPIn

REGISTER 8-16: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

REGISTER 8-16: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 (CONTINUED)

- bit 1 SI2C2IE: Slave I2C2 Event Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 Unimplemented: Read as '0'
- **Note 1:** If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
_	_	CTMUIE	_	—	—	_	HLVDIE
oit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
—		—	—	CRCIE	U2ERIE	U1ERIE	—
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit				•	nented bit, rea		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
oit 15-14	•	nted: Read as '0					
oit 13		MU Interrupt Ena					
		request is enable request is not en					
bit 12-9	•	nted: Read as '0					
bit 8	•	h/Low-Voltage D		ot Enable bit			
	•	request is enable					
		request is not en					
bit 7-4	Unimpleme	nted: Read as '0	3				
bit 3	CRCIE: CRC	Generator Inter	rupt Enable b	bit			
		request is enable					
	0 = Interrupt	request is not en	abled				
bit 2	U2ERIE: UA	RT2 Error Interru	ipt Enable bit				
		request is enable					
	•	request is not en					
bit 1		RT1 Error Interru					
	•	request is enable request is not en					
bit 0	•	nted: Read as '0					
	Simplemen						

REGISTER 8-17: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

REGISTER 8-18: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	SPI3TXIE	SPI3IE	U4TXIE	U4RXIE
bit 15							bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U4ERIE	_	I2C2BCIE	I2C1BCIE	U3TXIE	U3RXIE	U3ERIE	
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15-12	Unimplemer	nted: Read as ') '				
bit 11	SPI3TXIE: S	PI3 Transmit In	terrupt Enable	bit			
	•	request is enab					
		request is not e					
bit 10		3 General Interro	•				
		request is enab request is not e					
bit 9	•	RT4 Transmitter		ole hit			
bit 0		request is enab	•				
		request is not e					
bit 8	U4RXIE: UA	RT4 Receiver Ir	nterrupt Enable	e bit			
		request is enab					
bit 7	-	request is not e RT4 Error Interr					
		request is enab	•				
		request is not e					
bit 6	Unimplemer	nted: Read as '	o '				
bit 5	12C2BCIE: 12	2C2 Bus Collisio	on Interrupt Ena	able bit			
	1 = Interrupt	request is enab	led				
	•	request is not e					
bit 4		2C1 Bus Collisio request is enab		able bit			
		request is not e					
bit 3	-	RT3 Transmitter		ole bit			
	1 = Interrupt	request is enab	led				
	-	request is not e					
bit 2		RT3 Receiver Ir	-	bit			
		request is enab request is not e					
bit 1	-	RT3 Error Interr					
		request is enab	-				
	•	request is not e					

REGISTER 8-19: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
_	_	_	—	—	FSTIE	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7			•				bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown		
bit 15-11	Unimplemen	ted: Read as '	כי				

bit 10	FSTIE: FRC Self-Tune Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 9-0	Unimplemented: Read as '0'

REGISTER 8-20: IEC7: INTERRUPT ENABLE CONTROL REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
	—	JTAGIE	—	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-6	Unimplemer	nted: Read as '0)'					
bit 5	JTAGIE: JTA	G Interrupt Ena	ble bit					
		request is enabl						
	0 = Interrupt	request is not e	nabled					

bit 4-0 Unimplemented: Read as '0'

REGISTER 8-21: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0				
bit 15		•					bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	IC1IP2	IC1IP1	IC1IP0	<u> </u>	INT0IP2	INT0IP1	INT0IP0				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 15	Unimplemer	nted: Read as 'o)'								
bit 14-12	T1IP<2:0>: Timer1 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)										
	111 = Interru	upt is Priority 7(highest priorit	y interrupt)							
	•										
	•										
		upt is Priority 1									
		upt source is dis									
bit 11	-	nted: Read as '0		Internut Drievit	. hite						
bit 10-8		: Output Compa upt is Priority 7 (y bits						
	•		nighest phone	y interrupt)							
	•										
	•	unt in Driarity 1									
		upt is Priority 1 upt source is dis	abled								
bit 7		nted: Read as '0									
bit 6-4		Input Capture C		rupt Priority bits	S						
		upt is Priority 7 (
	•										
	•										
	001 = Interru	upt is Priority 1									
		upt source is dis	abled								
bit 3	Unimplemer	nted: Read as '0)'								
bit 2-0	INT0IP<2:0>	: External Interr	upt 0 Priority I	oits							
	111 = Interru	upt is Priority 7 (highest priorit	y interrupt)							
	•										
	•										
		upt is Priority 1 upt source is dis									

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0			
bit 15			·	·		·	bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	IC2IP2	IC2IP1	IC2IP0	_	DMA0IP2	DMA0IP1	DMA0IP0			
bit 7							bit C			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	Unimplemer	ted: Read as '	0'							
bit 14-12	T2IP<2:0>: ⊺	imer2 Interrupt	Priority bits							
	111 = Interru	pt is Priority 7 (highest priorit	ty interrupt)						
	•									
	•									
		pt is Priority 1								
		ipt source is dis								
oit 11	•	ted: Read as '								
bit 10-8		: Output Compa		-	ty bits					
	•	pt is Priority 7 (ingnest priori	ty interrupt)						
	•									
	• 001 - Interru	unt in Driarity 1								
		ipt is Priority 1 ipt source is dis	abled							
		000 = Interrupt source is disabled								
bit 7										
bit 7 bit 6-4	-	∙ ited: Read as 'i Input Capture 0	0'	rrupt Priority bi	ts					
	IC2IP<2:0>:	ted: Read as '	o' Channel 2 Inte		ts					
	IC2IP<2:0>:	n ted: Read as ' Input Capture C	o' Channel 2 Inte		ts					
	IC2IP<2:0>:	n ted: Read as ' Input Capture C	o' Channel 2 Inte		ts					
	IC2IP<2:0>: 111 = Interru	n ted: Read as ' Input Capture C	o' Channel 2 Inte		ts					
	IC2IP<2:0>: 111 = Interru	nted: Read as f Input Capture C upt is Priority 7 (upt is Priority 1 upt source is dis	₀ , Channel 2 Inte (highest priorit sabled		ts					
bit 6-4 bit 3	IC2IP<2:0>: 111 = Internu	nted: Read as f Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as f	^{0'} Channel 2 Inte (highest priorit sabled	ty interrupt)	ts					
bit 6-4 bit 3	IC2IP<2:0>: 111 = Internu 001 = Internu 000 = Internu Unimplemen DMA0IP<2:0	nted: Read as ' Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as ' >: DMA Chann	0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts					
	IC2IP<2:0>: 111 = Internu 001 = Internu 000 = Internu Unimplemen DMA0IP<2:0	nted: Read as f Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as f	0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts					
bit 6-4 bit 3	IC2IP<2:0>: 111 = Internu 001 = Internu 000 = Internu Unimplemen DMA0IP<2:0	nted: Read as ' Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as ' >: DMA Chann	0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts					
bit 6-4 bit 3	IC2IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen DMA0IP<2:0 111 = Interru	nted: Read as f Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as f >: DMA Chann opt is Priority 7 (0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts					
bit 6-4 bit 3	IC2IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen DMA0IP<2:0 111 = Interru 001 = Interru	nted: Read as ' Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as ' >: DMA Chann	0' Channel 2 Inte (highest priorif sabled 0' el 0 Interrupt I (highest priorif	ty interrupt) Priority bits	ts					

REGISTER 8-23: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0			
bit 15	•	•				•	bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	SPI1IP2	SPI1IP1	SPI1IP0	_	T3IP2	T3IP1	T3IP0			
bit 7							bit			
Legend:										
R = Readabl	le hit	W = Writable	hit	II = Unimplen	nented bit, read	l as '0'				
-n = Value at		'1' = Bit is set	5 N	'0' = Bit is cle		x = Bit is unkr	nown			
bit 15	Unimplemen	ted: Read as ')'							
bit 14-12	U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits									
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)						
	•									
	•									
	001 = Interru									
		pt source is dis								
bit 11		ted: Read as '								
bit 10-8		0>: SPI1 Trans		-						
	111 = Interru •	pt is Priority 7 (highest priority	/ interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1 pt source is dis	abled							
bit 7		ted: Read as '								
bit 6-4	-	SPI1 General		tv bits						
		pt is Priority 7 (•						
	•	. , ,								
	•									
	• 001 = Interru	pt is Priority 1								
		pt source is dis	abled							
bit 3	Unimplemen	ted: Read as ')'							
bit 2-0	T3IP<2:0>: ⊤	imer3 Interrupt	Priority bits							
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)						
	•									
	•									
	001 = Interru									
		pt source is dis	ablad							

REGISTER	(0-24. IF 03.			CONTROL RE			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_					DMA1IP2	DMA1IP1	DMA1IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0
bit 7			1			1	bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 10-8 bit 7 bit 6-4	111 = Interru 001 = Interru 000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru 001 = Interru	>: DMA Chann pt is Priority 7 (pt is Priority 1 pt source is dis ited: Read as ' A/D Interrupt F pt is Priority 7 (pt is Priority 1	(highest priority abled o' Priority bits (highest priority	/ interrupt)			
bit 3 bit 2-0	Unimplemen U1TXIP<2:0> 111 = Interru • • 001 = Interru	<pre>ipt source is dis ited: Read as 'i >: UART1 Trans ipt is Priority 7 (ipt is Priority 1 ipt source is dis</pre>	₀ ' smitter Interrup (highest priority	•			

REGISTER 8-24: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

REGISTER 8-25: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0					
bit 15	·						bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0					
bit 7							bit					
Legend:												
R = Readabl		W = Writable		-	nented bit, read							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15	Unimplemen	tod: Read as '	∩'									
bit 14-12	-	Unimplemented: Read as '0' CNIP<2:0>: Input Change Notification Interrupt Priority bits										
			(highest priority									
	•	,	ις - μ	F 7								
	•											
	• 001 = Interru	pt is Priority 1										
		pt source is dis	sabled									
bit 11	Unimplemen	ted: Read as '	0'									
bit 10-8	CMIP<2:0>: (Comparator Int	errupt Priority b	oits								
	111 = Interru	pt is Priority 7	(highest priority	v interrupt)								
	•											
	•											
	001 = Interru											
		pt source is dis										
bit 7	-	ted: Read as '										
bit 6-4			Event Interrup	•								
	•	pt is Priority 7	(highest priority	(interrupt)								
	•											
	•											
		pt is Priority 1 pt source is dis	sabled									
bit 3		ted: Read as '										
bit 2-0	-		event Interrupt	Priority bits								
			highest priority	•								
	•	. ,		. ,								
	•											
	•											
	001 = Interru	pt is Priority 1										

REGISTER 8-26: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—		INT1IP<2:0>	
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, rea	d as '0'	

R = Readable bit	VV = VVritable bit	U = Unimplemented bit, real	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 8-27: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	OC3IP2	OC3IP1	OC3IP0	—	DMA2IP2	DMA2IP1	DMA2IP0
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	-	ted: Read as '					
bit 14-12		imer4 Interrupt pt is Priority 7 (-	(interrunt)			
	•	ipt is Fridily 7 (ingriest priority	/ interrupt)			
	•						
	•						
		pt is Priority 1 pt source is dis	ahled				
bit 11		ited: Read as '					
bit 10-8	-	Output Compa		nterrupt Priorit	v bits		
		pt is Priority 7 (-	<i>y</i> 2.00		
	•						
	•						
	• 001 = Interru	pt is Priority 1					
		pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	OC3IP<2:0>:	Output Compa	are Channel 3	nterrupt Priorit	y bits		
	111 = Interru	pt is Priority 7 ((highest priority	/ interrupt)			
	•						
	•						
		pt is Priority 1					
hit 2		pt source is dis					
bit 3 bit 2.0	-	ited: Read as ' >: DMA Chann		riority bite			
bit 2-0		>: DIVIA Chann pt is Priority 7 (•	•			
	•	ipt is Fridily 7 (ingriest phone	/ interrupt)			
	•						
	•						
		pt is Priority 1					
	000 - Intorru	pt source is dis	ablad				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U2TXIP2	U2TXIP1	U2TXIP0		U2RXIP2	U2RXIP1	U2RXIP0
bit 15	•		÷			÷	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	n '				
bit 14-12	-	: UART2 Trans		ot Priority bits			
		pt is Priority 7 (•	•			
	•						
	•						
	001 = Interru						
L:1 1 1		pt source is dis					
bit 11 bit 10-8	-	ted: Read as '		Driority bite			
DIL TU-0		pt is Priority 7 (-	-			
	•			,			
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	-	ted: Read as '					
bit 6-4		External Interr					
	111 = Interru	pt is Priority 7 ((highest priority	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1 pt source is dis	abled				
bit 3		ted: Read as '					
bit 2-0	-	imer5 Interrupt					
	111 = Interru	pt is Priority 7	highest priority	y interrupt)			
	•						
	•						
	•						
	• 001 = Interru	pt is Priority 1 pt source is dis					

REGISTER 8-28: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

REGISTER 8-29: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	CRYROLLIP2	CRYROLLIP1	CRYROLLIP0	—	CRYFREEIP2	CRYFREEIP1	CRYFREEIP0
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0	_	SPI2IP2	SPI2IP1	SPI2IP0
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	Unimplen	nented: Read as '0'		
bit 14-12	CRYROL	LIP<2:0>: Cryptographic Rol	lover Interrupt Priority bits	
	111 = Inte	errupt is Priority 7 (highest pri	iority interrupt)	
	•			
	•			
		errupt is Priority 1		
	000 = Inte	errupt source is disabled		
bit 11	Unimplen	nented: Read as '0'		
bit 10-8			fer Free Interrupt Priority bits	
	111 = Inte	errupt is Priority 7 (highest pri	iority interrupt)	
	•			
	•			
		errupt is Priority 1 errupt source is disabled		
bit 7	Unimplen	nented: Read as '0'		
bit 6-4	SPI2TXIP	<2:0>: SPI2 Transmit Interru	pt Priority bits	
	111 = Inte	errupt is Priority 7 (highest pr	riority interrupt)	
	•			
	•			
		errupt is Priority 1		
1.11.0		errupt source is disabled		
bit 3	-	nented: Read as '0'		
bit 2-0		:0>: SPI2 General Interrupt F		
	111 = Inte	errupt is Priority 7 (highest pri	iority interrupt)	
	•			
	•			
		errupt is Priority 1		
	000 = Interv	errupt source is disabled		

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	IC3IP2	IC3IP1	IC3IP0		DMA3IP2	DMA3IP1	DMA3IP0
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	IC5IP<2:0>:	nput Capture (Channel 5 Inter	rrupt Priority bi	ts		
	111 = Interru	pt is Priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1 pt source is dis	abled				
bit 11		ted: Read as '					
bit 10-8	-			rrupt Priority bi	ts		
		pt is Priority 7					
	•	. ,					
	•						
	• 001 = Interru						
		pt source is dis	abled				
bit 7	-	ted: Read as '					
bit 6-4				rrupt Priority bi	ts		
	111 = Interru	pt is Priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled				
bit 3		ted: Read as '					
bit 2-0	-	>: DMA Chann		Priority bits			
		pt is Priority 7	-	-			
	•						
	•						
	•						
	• • 001 = Interru	pt is Priority 1 pt source is dis					

REGISTER 8-31: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	_	—	_	OC6IP2	OC6IP1	OC6IP0
bit 15	•					•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	OC5IP2	OC5IP1	OC5IP0	—	IC6IP2	IC6IP1	IC6IP0
bit 7							bit C
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 10-8 bit 7 bit 6-4	<pre>111 = Interru</pre>	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (highest priority abled o' ire Channel 5 li	interrupt)			
bit 3	• • 001 = Interru 000 = Interru		abled				
bit 2-0	IC6IP<2:0>:	nput Capture C pt is Priority 7 (Channel 6 Interr		5		

				CONTROL			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	DMA4IP2	DMA4IP1	DMA4IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	PMPIP2	PMPIP1	PMPIP0	—		—	
bit 7							bit 0
							
Legend:			,				
R = Readable		W = Writable		•	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 10-8 bit 7 bit 6-4	111 = Interru 001 = Interru 000 = Interru Unimplement PMPIP<2:0>:	>: DMA Channer pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Parallel Master pt is Priority 7 (highest priority abled o ['] r Port Interrup	y interrupt) t Priority bits			
bit 3-0	• • • • • • • • • • • • • • • • • • •	-	abled	y interrupt)			

REGISTER 8-32: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

REGISTER 8-33: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
					MI2C2IP2	MI2C2IP1	MI2C2IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	—		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-8	MI2C2IP<2:0	>: Master I2C2	Event Interrup	ot Priority bits			
	111 = Interru	pt is Priority 7	highest priority	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
		pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	SI2C2IP<2:0	>: Slave I2C2 E	Event Interrupt	Priority bits			
	111 = Interru	pt is Priority 7	highest priority	y interrupt)			
	•						
	•						
	• 001 = Interru	pt is Priority 1					
		pt source is dis	abled				
bit 3-0		ited: Read as '					

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	CRYDNIP2	CRYDNIP1	CRYDNIP0		INT4IP2	INT4IP1	INT4IP0
bit 15							bit
	D 0.04 4	D /// 0	DAVA				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
 bit 7	INT3IP2	INT3IP1	INT3IP0	—	_	_	bit
5117							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
			.1				
bit 15	-	ted: Read as '					
bit 14-12	CRYDNIP<2:	0>: Cryptograp	hic Operation	Done Interrupt	Priority bits		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	•						
	001 = Interru	nt is Priority 1					
		pt is Priority 1 pt source is dis	abled				
bit 11	000 = Interru						
bit 11 bit 10-8	000 = Interru	pt source is dis)'	bits			
	000 = Interru Unimplemen INT4IP<2:0>:	pt source is dis ted: Read as '(External Interr	o' aupt 4 Priority b				
	000 = Interru Unimplemen INT4IP<2:0>:	pt source is dis ted: Read as '(o' aupt 4 Priority b				
	000 = Interru Unimplemen INT4IP<2:0>:	pt source is dis ted: Read as '(External Interr	o' aupt 4 Priority b				
	000 = Interru Unimplement INT4IP<2:0>: 111 = Interru • •	pt source is dis ted: Read as '(External Interr pt is Priority 7 (o' aupt 4 Priority b				
	000 = Interru Unimplement INT4IP<2:0>: 111 = Interru • • • 001 = Interru	pt source is dis ted: Read as '(External Interr pt is Priority 7 (pt is Priority 1	^{),} upt 4 Priority b highest priority				
bit 10-8	000 = Interru Unimplement INT4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru	pt source is dis ted: Read as '(External Interr pt is Priority 7 (pt is Priority 1 pt source is dis	_o , upt 4 Priority t highest priority abled				
bit 10-8 bit 7	000 = Interru Unimplement INT4IP<2:0>: 111 = Interru • • • 001 = Interru 000 = Interru Unimplement	pt source is dis ted: Read as '(External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(o ⁾ upt 4 Priority k highest priority abled	/ interrupt)			
bit 10-8	000 = Interru Unimplement INT4IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(External Interr	^{D)} upt 4 Priority k highest priority abled D ⁾ upt 3 Priority k	γ interrupt) bits			
bit 10-8 bit 7	000 = Interru Unimplement INT4IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(^{D)} upt 4 Priority k highest priority abled D ⁾ upt 3 Priority k	γ interrupt) bits			
bit 10-8 bit 7	000 = Interru Unimplement INT4IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(External Interr	^{D)} upt 4 Priority k highest priority abled D ⁾ upt 3 Priority k	γ interrupt) bits			
bit 10-8 bit 7	000 = Interru Unimplement INT4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplement INT3IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(External Interr pt is Priority 7 (^{D)} upt 4 Priority k highest priority abled D ⁾ upt 3 Priority k	γ interrupt) bits			
bit 10-8 bit 7	000 = Interru Unimplement INT4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplement INT3IP<2:0>: 111 = Interru 001 = Interru	pt source is dis ted: Read as '(External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(External Interr pt is Priority 7 (pt is Priority 1	^{D)} upt 4 Priority b highest priority abled D' upt 3 Priority b highest priority	γ interrupt) bits			
bit 10-8 bit 7	000 = Interru Unimplement INT4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplement INT3IP<2:0>: 111 = Interru 001 = Interru 001 = Interru	pt source is dis ted: Read as '(External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(External Interr pt is Priority 7 (o) upt 4 Priority k highest priority abled o) upt 3 Priority k highest priority	γ interrupt) bits			

REGISTER 8-34: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
—	SPI2RXIP2	SPI2RXIP1	SPI2RXIPO	—	SPI1RXIP2	SPI1RXIP1	SPI1RXIPO		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
0-0	0-0	0-0	0-0	0-0	KEYSTRIP2	KEYSTRIP1	KEYSTRIP0		
 bit 7	_	_		_	KE13TRIF2	KETSTRIFT	bit (
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15	Unimplement	ted: Read as '	0'						
bit 14-12	SPI2RXIP<2:	0>: SPI2 Rece	ive Interrupt Pr	iority bits					
	111 = Interru	pt is Priority 7 (highest priority	interrupt)					
	•								
	•								
	001 = Interru	ot is Priority 1							
		ot source is dis	abled						
bit 11	Unimplement	ted: Read as '	0'						
bit 10-8	SPI1RXIP<2:	0>: SPI1 Rece	ive Interrupt Pr	iority bits					
			highest priority	•					
	•								
	•								
	• 001 = Interrupt is Priority 1								
		ot source is dis	abled						
bit 7-3	Unimplement	ted: Read as '	0'						
bit 2-0	-			Program Don	e Interrupt Prior	ity bits			
bit 2-0 KEYSTRIP<2:0>: Cryptographic Key Store Program Done Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)									
	•								
	•								
	• • 001 = Interru	nt is Priority 1							

REGISTER 8-35: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

REGISTER 8-36: **IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15** U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0 RTCIP1 ____ ____ ____ ____ RTCIP2 RTCIP0 _ bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 DMA5IP2 DMA5IP0 SPI3RXIP2 SPI3RXIP1 SPI3RXIP0 DMA5IP1 _ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 10-8 RTCIP<2:0>: Real-Time Clock and Calendar Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 DMA5IP<2:0>: DMA Channel 5 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 SPI3RXIP<2:0>: SPI3 Receive Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled

REGISTER 8-37: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
—	U1ERIP2	U1ERIP1	U1ERIP0	—	—	—	—			
bit 7							bit 0			
Legend:										
R = Readab	le hit	W = Writable	hit	II = I Inimplem	nented bit, read	l as 'N'				
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 15	Unimplemen	ted: Read as ') '							
bit 14-12	-	CRC Generate		pt Priority bits						
		ot is Priority 7 (
	•									
	•									
	001 = Interru 000 = Interru		abled							
bit 11	000 = Interrupt source is disabled Unimplemented: Read as '0'									
bit 11	Unimplemen									
bit 10-8	-		כ'	rity bits						
	U2ERIP<2:0>	ted: Read as '	o' • Interrupt Prio	•						
	U2ERIP<2:0>	ted: Read as '(•: UART2 Error	o' • Interrupt Prio	•						
	U2ERIP<2:0>	ted: Read as '(•: UART2 Error	o' • Interrupt Prio	•						
	U2ERIP<2:0> 111 = Interru	ted: Read as '(•: UART2 Error ot is Priority 7 (ot is Priority 1	^{)'} Interrupt Prio highest priority	•						
	U2ERIP<2:0> 111 = Interru	ted: Read as ' •: UART2 Error pt is Priority 7 (pt is Priority 1 pt source is dis	_D ' Interrupt Prio highest priority abled	•						
	U2ERIP<2:0> 111 = Interru	ted: Read as '(: UART2 Error ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as '(D' Interrupt Prio highest priority abled	/ interrupt)						
bit 10-8	U2ERIP<2:0> 111 = Interru	ted: Read as '(: UART2 Error ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as '(: UART1 Error	D' Interrupt Prio highest priority abled D'	/ interrupt)						
bit 10-8 bit 7	U2ERIP<2:0> 111 = Interru	ted: Read as '(: UART2 Error ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as '(D' Interrupt Prio highest priority abled D'	/ interrupt)						
bit 10-8 bit 7	U2ERIP<2:0> 111 = Interru	ted: Read as '(: UART2 Error ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as '(: UART1 Error	D' Interrupt Prio highest priority abled D'	/ interrupt)						
bit 10-8 bit 7	U2ERIP<2:0> 111 = Interru	ted: Read as '(•: UART2 Error pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(•: UART1 Error pt is Priority 7 (D' Interrupt Prio highest priority abled D'	/ interrupt)						
bit 10-8 bit 7	U2ERIP<2:0> 111 = Interru	ted: Read as '(•: UART2 Error pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(•: UART1 Error pt is Priority 7 (pt is Priority 1	^{D'} Interrupt Prio highest priority abled D' Interrupt Prio highest priority	/ interrupt)						
bit 10-8 bit 7	U2ERIP<2:0> 111 = Interru	ted: Read as '(•: UART2 Error pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(•: UART1 Error pt is Priority 7 (D' Interrupt Prio highest priority abled D' Interrupt Prio highest priority	/ interrupt)						

REGISTER 8-38: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—		HLVDIP<2:0>	
bit 7							bit 0
Legend:							

D Decide bla bit M Muitable bit H bla bla branche and a (0)	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow	n

bit 15-3 Unimplemented: Read as '0'

bit 2-0 HLVDIP<2:0>: High/Low-Voltage Detect Interrupt Priority bits
111 = Interrupt is Priority 7 (highest priority interrupt)
.
.

- 001 = Interrupt is Priority 1
- 000 = Interrupt source is disabled

REGISTER 8-39: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		CTMUIP<2:0>	1	—	—	—	—
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 15-7	Unimplemen	ted: Read as ')'				
bit 6-4	CTMUIP<2:0	>: CTMU Interr	upt Priority bits	3			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	•						
	001 = Interru						
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '0)'				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
	U3ERIP2	U3ERIP1	U3ERIP0	0-0	<u> </u>	<u> </u>	0-0			
bit 7	USERI 2	UJEINI	USEI(III U				bit (
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	-	ted: Read as '								
bit 14-12		: UART3 Trans	-	-						
	111 = Interru	pt is Priority 7 (highest priority	(interrupt)						
	•									
	•									
		pt is Priority 1 pt source is dis	abled							
bit 11	Unimplemen	ted: Read as '	o'							
bit 10-8	U3RXIP<2:0>: UART3 Receiver Interrupt Priority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•	•								
	001 = Interrupt is Priority 1									
		pt source is dis								
bit 7	•	ted: Read as '								
bit 6-4		: UART3 Error	•							
	111 = Interru	pt is Priority 7 (highest priority	interrupt)						
	•									
	•									
	001 = Interru									
	0.0.0 1.1.	- +								
bit 3-0		pt source is dis i ted: Read as 'o								

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	U4ERIP2	U4ERIP1	U4ERIP0			_	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 14-12 bit 11-7	111 = Interrup • • 001 = Interrup 000 = Interrup	ot is Priority 7(
bit 6-4	I2C2BCIP<2: 111 = Interrup	0>: I2C2 Bus C ot is Priority 7(Collision Interru highest priority	• •			
bit 3	Unimplemen	ted: Read as '	כ'				
bit 2-0	111 = Interrup • •	ot is Priority 7(Collision Interru highest priority				
	001 = Interrup 000 = Interrup	ot is Priority 1 ot source is dis	abled				

REGISTER 8-41: IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0		SPI3IP2	SPI3IP1	SPI3IP0				
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	U4TXIP2	U4TXIP1	U4TXIP0		U4RXIP2	U4RXIP1	U4RXIP0				
bit 7	0117412	O TIXE T	0 TIXII 0		0 notin 2	O HOULT	bit				
Legend:											
R = Readabl		W = Writable			mented bit, reac						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN				
bit 15	Unimplement	ted: Read as ')'								
bit 14-12	-			riority bits							
	SPI3TXIP<2:0>: SPI3 Transmit Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	001 = Interrup										
	000 = Interrupt source is disabled										
bit 11	-	ted: Read as '									
bit 10-8		SPI3 General	•								
	 111 = Interrupt is Priority 7 (highest priority interrupt) • 										
	•										
	•										
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled										
bit 7	-	ted: Read as '									
bit 6-4	-			t Priority bits							
	U4TXIP<2:0>: UART4 Transmitter Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	001 = Interrupt is Priority 1										
	-	ot source is dis									
bit 3	-	ted: Read as '									
bit 2-0		: UART4 Rece ot is Priority 7 (
	•		nighest phonty	interrupt)							
	•										
	• 001 = Interrup	t is Drigrity 1									

REGISTER 8-42: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22

REGISTER 8-43: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
			_			FSTIP<2:0>			
bit 15									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	_	—	—	—	—	—		
bit 7		-	-	-			bit 0		
Legend:									
R = Readab	ole bit	W = Writable bit U = Unimplemented bit, read as '0'				d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15-11	Unimplemen	ted: Read as '	0'						
bit 10-8	FSTIP<2:0>:	FRC Self-Tune	e Interrupt Prior	ity bits					
	111 = Interru	pt is Priority 7 ((highest priority	interrupt)					
	•								
	•								
	•								
		pt is Priority 1							
		pt source is dis							
bit 7-0	Unimplemen	ted: Read as '	0'						

REGISTER 8-44: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	_	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
_		JTAGIP<2:0>		—	—	—	—	
bit 7	·						bit 0	
Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-7	Unimpleme	nted: Read as ')'					
bit 6-4	JTAGIP<2:0	>: JTAG Interru	ot Priority bits					
	111 = Interr	upt is Priority 7 (highest priority	interrupt)				
	•							
	•							
	•							
	001 = Interr	upt is Priority 1						

000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

REGISTER 8-45: INTTREG: INTERRUPT CONTROLLER TEST REGISTER

R-0	r-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CPUIRQ: CPU Interrupt Request from Interrupt Controller bit
	 1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU 0 = No interrupt request is unacknowledged
bit 14	Reserved: Maintain as '0'
bit 13	VHOLD: Vector Number Capture Configuration bit
	 1 = VECNUM<7:0> contain the value of the highest priority pending interrupt 0 = VECNUM<7:0> contain the value of the last Acknowledged interrupt (i.e., the last interrupt that has occurred with higher priority than the CPU, even if other interrupts are pending)
bit 12	Unimplemented: Read as '0'
bit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits
	1111 = CPU Interrupt Priority Level is 15
	•
	0001 = CPU Interrupt Priority Level is 1 0000 = CPU Interrupt Priority Level is 0
h :+ 7 0	
bit 7-0	VECNUM<7:0>: Vector Number of Pending Interrupt or Last Acknowledged Interrupt bits
	<u>When VHOLD = 1:</u> Indicates the vector number (from 0 to 118) of the last interrupt to occur.
	When VHOLD = 0:
	Indicates the vector number (from 0 to 118) of the interrupt request currently being handled.

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS (INTCON1<15>) control bit if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE (ISR)

The method that is used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler), and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles; otherwise, the ISR will be reentered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

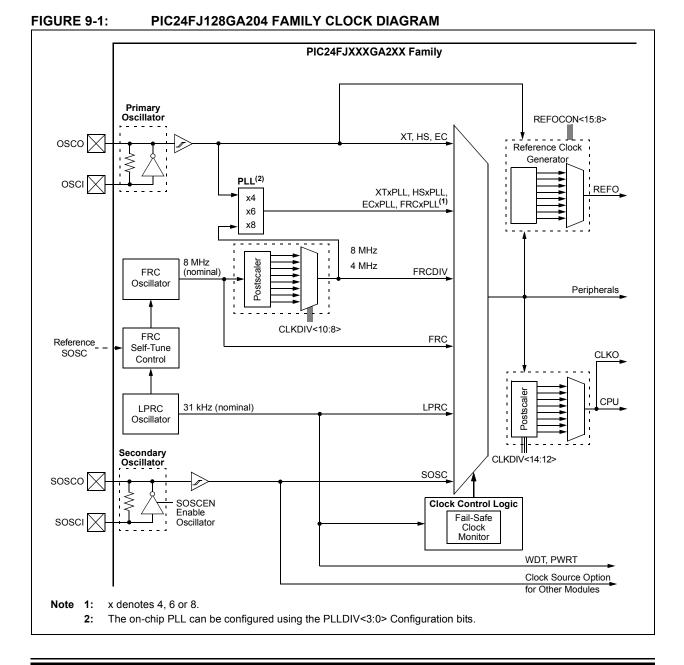
- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, 0Eh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

9.0 OSCILLATOR CONFIGURATION


Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to
	the "dsPIC33/PIC24 Family Reference
	Manual", "Oscillator" (DS39700).

The oscillator system for PIC24FJ128GA204 family devices has the following features:

- A total of four external and internal oscillator options as clock sources, providing 15 different Clock modes
- An on-chip PLL (x4, x6, x8) block available for the Primary Oscillator (POSC) source or FRCDIV (see Section 9.7 "On-Chip PLL")

- Software-controllable switching between various clock sources
- Software-controllable postscaler for selective clocking of CPU for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- A separate and independently configurable system clock output for synchronizing external hardware

A simplified diagram of the oscillator system is shown in Figure 9-1.

9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- · Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The internal FRC provides an 8 MHz clock source. It can optionally be reduced by the programmable clock divider to provide a range of system clock frequencies.

The selected clock source generates the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FcY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in program memory (for more information, refer to **Section 29.1 "Configuration Bits"**). The Primary Oscillator Configuration bits, POSCMD<1:0> (Configuration Word 2<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (Configuration Word 2<10:8>), select the oscillator source that is used at a Power-on Reset. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes, as shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (Configuration Word 2<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
Fast RC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
(Reserved)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	11	100	1
Primary Oscillator (XT) with PLL Module (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
Fast RC Oscillator (FRC)	Internal	11	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers:

- · OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. The CLKDIV register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator.

The OSCTUN register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 1.5\%$. It also controls the FRC self-tuning features described in Section 9.5 "FRC Self-Tuning".

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0	R-0	R-0	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0	R/W-0	R-0 ⁽³⁾	U-0	R/CO-0	R/W-0	R/W-0	R/W-0
CLKLOCK	IOLOCK ⁽²⁾	LOCK	—	CF	POSCEN	SOSCEN	OSWEN
bit 7							bit 0

Legend:	CO = Clearable Only bit	SO = Settable Only bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

- bit 14-12 **COSC<2:0>:** Current Oscillator Selection bits
 - 111 = Fast RC Oscillator with Postscaler (FRCDIV)
 - 110 = Reserved
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
 - 010 = Primary Oscillator (XT, HS, EC)
 - 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
 - 000 = Fast RC Oscillator (FRC)

bit 11 Unimplemented: Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽¹⁾

- 111 = Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = Reserved
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
- 000 = Fast RC Oscillator (FRC)
- Note 1: Reset values for these bits are determined by the FNOSCx Configuration bits.
 - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1', once the IOLOCK bit is set, it cannot be cleared.
 - 3: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit
	If FSCM is Enabled (FCKSM1 = 1):
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is Disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	IOLOCK: I/O Lock Enable bit ⁽²⁾
	1 = I/O lock is active
	0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit ⁽³⁾
	1 = PLL module is in lock or PLL module start-up timer is satisfied
	0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	POSCEN: Primary Oscillator (POSC) Sleep Enable bit
	1 = Primary Oscillator continues to operate during Sleep mode
	0 = Primary Oscillator is disabled during Sleep mode
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables Secondary Oscillator
	0 = Disables Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiates an oscillator switch to a clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.

- 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1', once the IOLOCK bit is set, it cannot be cleared.
- 3: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

REGISTER	9-2: CLKD			GISTER				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0	
bit 15							bit 8	
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
0-0	0-0	PLLEN	0-0	0-0	0-0		0-0	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15 bit 14-12	1 = Interrupts 0 = Interrupts	have no effect	EN bit and res on the DOZEI		pheral clock ra	itio to 1:1		
	111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1	110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2						
bit 11	1 = DOZE<2:	e Mode Enable 0> bits specify oheral clock rat	the CPU perip	heral clock ratio)			
bit 10-8	RCDIV<2:0>: FRC Postscaler Select bits $111 = 31.25 \text{ kHz}$ (divide-by-256) $100 = 125 \text{ kHz}$ (divide-by-64) $101 = 250 \text{ kHz}$ (divide-by-32) $100 = 500 \text{ kHz}$ (divide-by-16) $011 = 1 \text{ MHz}$ (divide-by-8) $010 = 2 \text{ MHz}$ (divide-by-4) $001 = 4 \text{ MHz}$ (divide-by-2) $000 = 8 \text{ MHz}$ (divide-by-1)							
bit 7-6		ted: Read as ')'					
bit 5	1 = PLL is ena	PLLEN: PLL Enable bit 1 = PLL is enabled 0 = PLL is disabled						
bit 4-0	Unimplemen	Unimplemented: Read as '0'						

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

R/W-0	U-0	R/W-0	R/W-0	R-0	R/W-0	R-0	R/W-0		
STEN	—	STSIDL	STSRC ⁽¹⁾	STLOCK	STLPOL	STOR	STORPOL		
bit 15							bit		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	-	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0		
bit 7							bit		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15	1 = FRC sel	Self-Tune Enat f-tuning is enabl f-tuning is disab	ed; TUNx bits a			bits			
bit 14	Unimpleme	nted: Read as '	0'						
bit 13	STSIDL: FR	C Self-Tune Sto	p in Idle bit						
		ng stops during ng continues du							
bit 12	STSRC: FR	C Self-Tune Ret	ference Clock S	Source bit ⁽¹⁾					
		1 = Reserved 0 = FRC is tuned to approximately match the 32.768 kHz SOSC tolerance							
bit 11	STLOCK: F	RC Self-Tune Lo	ock Status bit						
		curacy is current curacy may not l							
bit 10	STLPOL: FI	RC Self-Tune Lo	ock Interrupt Po	larity bit					
		ne lock interrup							
bit 9	STOR: FRC	Self-Tune Out	of Range Status	s bit					
		reference clock reference clock					med		
bit 8	STORPOL:	FRC Self-Tune	Out of Range li	nterrupt Polarity	y bit				
		ne out of range ne out of range							
bit 7-6	Unimpleme	nted: Read as '	0'						
bit 5-0	TUN<5:0>:	FRC Oscillator	Funing bits						
		laximum freque	ncy deviation						
	011110 =								
	•								
	•								
	000001 = 000000 = C 111111 =	enter frequency	, oscillator is ru	nning at factory	v calibrated free	quency			
	•								
	•								
	100001 =								
	100000 = M	linimum frequen	cv deviation						

Note 1: Use of either clock recovery source has specific application requirements. For more information, see Section 9.5 "FRC Self-Tuning".

9.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMDx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in CW2 must be programmed to '0'. (For more information, refer to **Section 29.1 "Configuration Bits"**.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or SOSC (if SOSCEN remains set).
 - Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock- sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON,#0

9.5 FRC Self-Tuning

PIC24FJ128GA204 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses clock recovery from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that exceeds 0.25%, which is well within the requirements.

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN<15>) enables the system, causing it to recover a calibration clock from a source selected by the STSRC bit (OSCTUN<12>). When STSRC = 0, the system uses the crystal controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN<5:0> bits (OSCTUN<5:0>) to change the FRC's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

Note:	If the SOSC is to be used as the clock					
	recovery source (STSRC = 0), the SOSC					
	must always be enabled.					

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference by greater than 0.2% in either direction or whenever the frequency deviation is beyond the ability of the TUNx bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN<11,9>) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN<10,8>) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

9.6 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain Oscillator modes, the device clock in the PIC24FJ128GA204 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCONL, REFOCONH and REFOTRIML registers (Register 9-4, Register 9-5 and Register 9-6). Setting the ROEN bit (REFOCONL<15>) enables the module. Setting the ROOUT bit (REFOCONL<12>) makes the clock signal available on the REFO pin.

The RODIVx bits (REFOCONH<14:0>) enable the selection of 32768 different clock divider options.

9.6.1 CLOCK SOURCE REQUEST

The ROSEL<3:0> bits determine different base clock sources for the module.

If the selected clock source has a global device enable (via device Configuration Fuse settings), the user must enable the clock source before selecting it as a base clock source.

The ROACTIVE bit (REFOCONL<8>) synchronizes the REFO module during the turn on and turn off of the module.

Note:	Once the ROEN bit is set, it should not be
	cleared until the ROACTIVE bit is read as '1'.

9.6.2 CLOCK SWITCHING

The base clock to the module can be switched. First, turn off the module by clearing the ROEN bit (REFOCONL<15> = 0) and wait for the ROACTIVE (REFOCONL<8>) bit to be cleared by the hardware.

This avoids a glitch in the REFO output.

The ROTRIMx and RODIVx bits can be changed onthe-fly. Follow the below mentioned steps before changing the ROTRIMx and RODIVx bits.

- REFO is not actively performing the divider switch (ROSWEN = 0).
- Update the ROTRIMx and RODIVx bits with the latest values.
- · Set the ROSWEN bit.
- Wait for the ROSWEN bit to be cleared by hardware.

The ROTRIMx bits allow a fractional divisor to be added to the integer divisor, specified in the RODIVx bits.

EQUATION 9-1: FRACTIONAL DIVISOR FOR ROTRIMX BITS

For RODIV<14:0> = 0, No Divide: RODIV<14:0> > 0, Period = 2 * (RODIVx + ROTRIMx)

9.6.3 OPERATION IN SLEEP MODE

The ROSLP and ROSELx bits (REFOCONL<11,3:0>) control the availability of the reference output during Sleep mode.

The ROSLP bit determines if the reference source is available on the REFO pin when the device is in Sleep mode.

To use the reference clock output in Sleep mode, the ROSLP bit must be set and the reference base clock should not be the system clock or peripheral clock (ROSELx bits should not be '0b0000' or '0b0001').

The device clock must also be configured for either:

- One of the Primary modes (EC, HS or XT); the POSCEN bit should be set
- The Secondary Oscillator bit (SOSCEN) should be set
- The LPRC Oscillator

If one of the above conditions is not met, then the oscillators on OSC1, OSC2 and SOSCI will be powered down when the device enters Sleep mode.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
ROEN	_	ROSIDL	ROOUT	ROSLP	_	ROSWEN	ROACTIVE	
bit 15								
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—	_	ROSEL3	ROSEL2	ROSEL1	ROSEL0	
bit 7			•				bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	1 = Reference	ence Oscillator e oscillator is e e oscillator is d	nabled	e bit				
bit 14	Unimplement	ted: Read as ')'					
bit 13		erence Oscillat	•					
		e oscillator is d e oscillator con						
bit 12	ROOUT: Refe	erence Clock O	utput Enable b	bit				
		ck output is dri ck output is dis		FO pin				
bit 11	1 = Reference		out continues to	eep Mode bit o run in Sleep n in Sleep mode	node			
bit 10	Unimplement	ted: Read as ')'					
bit 9	ROSWEN: Re	eference Oscill	ator Clock Sou	irce Switch Ena	ble bit			
		e clock source e clock source		rrently in progre	ess			
bit 8	ROACTIVE: F	Reference Cloc	k Request Sta	tus bit				
				[.] should not upo user can update)	
bit 7-4		ted: Read as ' additional RO						
bit 3-0		: Reference Cl		elect bits				
	Selects one o	f the various cl	ock sources to	be used as the	reference clo	ck:		
	0111 = Reser 0110 = 8x PL 0101 = Secor 0100 = Low-F 0011 = Fast F 0010 = Prima 0001 = Peripł	(Reference Clo ved L ndary Oscillato Power RC Osci RC Oscillator (I ry Oscillator (X	r (SOSC) llator (LPRC) FRC) (T, HS, EC) 3CLK) – interna	al instruction cy	cle clock, Fcy			

REGISTER 9-4: REFOCONL: REFERENCE OSCILLATOR CONTROL LOW REGISTER

REGISTER 9-5: REFOCONH: REFERENCE OSCILLATOR CONTROL HIGH REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_				RODIV<14:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			RODI	V<7:0>				
bit 7							bit 0	
Legend:								
R = Readal	ole bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15	Unimpleme	nted: Read as '0'						
bit 14-0		0>: Reference Osci						
	•••	e 1/2 period of the						
		e: Period of ref_clk_						
		111111 = REFO c						
	111111111	111110 = REFO c	IOCK IS THE D	ase clock frequ	iency divided i	by 65,532 (32,7)	ob * 2)	
	•							
	•							
	•	000011 = REFO c	lock is the h	ase clock frequ	ency divided l	N/ 6 (3 * 2)		
		000010 = REFO c						
		000001 = REFO c						
		000000 = REFO c)(1)	
				anio noquonoy			/	

Note 1: The ROTRIMx values are ignored.

REGISTER 9-6: REFOTRIML: REFERENCE OSCILLATOR TRIM REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			ROTR	M<15:8>						
bit 15							bit 8			
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
ROTRIM7		—		—	—	_	_			
bit 7						·	bit 0			
Legend:										
R = Readable	e bit	W = Writable t	bit	U = Unimplen	nented bit, rea	bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-7	ROTRIM<15	:7>: Reference (Oscillator Trin	n bits						
	Provides frac	ctional additive to	the RODIVx	value for the 1/	2 period of the	REFO clock.				
		= 511/512 (0.998			•					
	111111110	= 510/512 (0.99	609375) divis	or added to RO	DIVx value					
	•									
	•									
	•									
	100000000	= 256/512 (0.50	00) divisor ad	ded to RODIVx	value					
	•									
	•									
	•									
	000000010	= 2/512 (0.0039	0625) divisor	added to RODI	Vx value					
		= 1/512 (0.0019 = 0/512 (0.0) div			IVx value					
bit 6-0	Unimpleme	nted: Read as '0	,							
	ommplemented. Read as 0									

9.7 On-Chip PLL

An on-chip PLL (x4, x6, x8) can be selected by the Configuration Fuse bits, PLLDIV<3:0>. The Primary Oscillator and FRC sources (FRCDIV) have the option of using this PLL.

Using the internal FRC source, the PLL module can generate the following frequencies, as shown in Table 9-2.

TABLE 9-2: VALID FRC CONFIGURATION FOR ON-CHIP PLL⁽¹⁾

FRC	RCDIV<2:0> (FRCDIV)	x4 PLL	x6 PLL	x8 PLL	
8 MHz	000 (divide-by-1)	32 MHz	—	_	
8 MHz	001 (divide-by-2)	16 MHz	24 MHz	32 MHz	
8 MHz	010 (divide-by-4)	8 MHz	12 MHz	16 MHz	

Note 1: The minimum frequency input to the on-chip PLL is 2 MHz.

NOTES:

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Power-Saving Features with Deep Sleep" (DS39727).

The PIC24FJ128GA204 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked reduce consumed power.

PIC24FJ128GA204 family devices manage power consumption with five strategies:

- Instruction-Based Power Reduction Modes
- Hardware-Based Power Reduction Features
- Clock Frequency Control
- Software Controlled Doze Mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

10.1 Overview of Power-Saving Modes

In addition to full-power operation, otherwise known as Run mode, the PIC24FJ128GA204 family of devices offers three instruction-based, power-saving modes and one hardware-based mode:

- Idle
- Sleep (Sleep and Low-Voltage Sleep)
- Deep Sleep
- VBAT (with and without RTCC)

All four modes can be activated by powering down different functional areas of the microcontroller, allowing progressive reductions of operating and Idle power consumption. In addition, three of the modes can be tailored for more power reduction at a trade-off of some operating features. Table 10-1 lists all of the operating modes in order of increasing power savings. Table 10-2 summarizes how the microcontroller exits the different modes. Specific information is provided in the following sections.

		Active Systems							
Mode	Entry	Core	Peripherals	Data RAM Retention	RTCC ⁽¹⁾	DSGPR0/ DSGPR1 Retention			
Run (default)	N/A	Y	Y	Y	Y	Y			
Idle	Instruction	Ν	Y	Y	Y	Y			
Sleep:			•						
Sleep	Instruction	Ν	S ⁽²⁾	Y	Y	Y			
Low-Voltage Sleep	Instruction + RETEN bit	Ν	S ⁽²⁾	Y	Y	Y			
Deep Sleep:									
Deep Sleep	Instruction + DSEN bit	Ν	N	Ν	Y	Y			
VBAT:			•		-				
with RTCC	Hardware	Ν	N	Ν	Y	Y			

TABLE 10-1: OPERATING MODES FOR PIC24FJ128GA204 FAMILY DEVICES

Note 1: If RTCC is otherwise enabled in firmware.

2: A select peripheral can operate during this mode from LPRC or an external clock.

TABLE 10-2: EXITING POWER-SAVING MODES

	Exit Conditions								Code
Mode	Interrupts		Resets		RTCC	WDT	Vdd	Execution	
	All	INT0	All	POR	MCLR	Alarm	WDT	Restore ⁽²⁾	Resumes
Idle	Y	Y	Y	Y	Y	Y	Y	N/A	Next instruction
Sleep (all modes)	Y	Y	Y	Y	Y	Y	Y	N/A	
Deep Sleep	Ν	Y	Ν	Y	Y	Y	Y ⁽¹⁾	N/A	Reset vector
VBAT	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Reset vector

Note 1: Deep Sleep WDT.

2: A POR or POR like Reset results whenever VDD is removed and restored in any mode except for Retention Deep Sleep mode.

10.1.1 INSTRUCTION-BASED POWER-SAVING MODES

Three of the power-saving modes are entered through the execution of the PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. Deep Sleep mode stops clock operation, code execution, and all peripherals, except RTCC and DSWDT. It also freezes I/O states and removes power to Flash memory, and may remove power to SRAM.

The assembly syntax of the PWRSAV instruction is shown in Example 10-1. Sleep and Idle modes are entered directly with a single assembler command. Deep Sleep requires an additional sequence to unlock and enable the entry into Deep Sleep, which is described in Section 10.4.1 "Entering Deep Sleep Mode".

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

The features enabled with the low-voltage/retention regulator results in some changes to the way that Sleep and Deep Sleep modes behave. See Section 10.3 "Sleep Mode" and Section 10.4 "Deep Sleep Mode" for additional information.

10.1.1.1 Interrupts Coincident with Power Save Instructions

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

For Deep Sleep mode, interrupts that coincide with the execution of the PWRSAV instruction may be lost. If the low-voltage/retention regulator is not enabled, the microcontroller resets on leaving Deep Sleep and the interrupt will be lost.

Interrupts that occur during the Deep Sleep unlock sequence will interrupt the mandatory five-instruction cycle sequence timing and cause a failure to enter Deep Sleep. For this reason, it is recommended to disable all interrupts during the Deep Sleep unlock sequence.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

// Syntax to enter Sleep mode: PWRSAV #SLEEP MODE ; Put the device into SLEEP mode 11 //Synatx to enter Idle mode: PWRSAV #IDLE MODE ; Put the device into IDLE mode 11 // Syntax to enter Deep Sleep mode: // First use the unlock sequence to set the DSEN bit (see Example 10-2) BSET DSCON, #DSEN ; Enable Deep Sleep BSET DSCON, #DSEN ; Enable Deep Sleep(repeat the command) #SLEEP MODE PWRSAV ; Put the device into Deep SLEEP mode

10.1.2 HARDWARE-BASED POWER-SAVING MODE

The hardware-based VBAT mode does not require any action by the user during code development. Instead, it is a hardware design feature that allows the micro-controller to retain critical data (using the DSGPRx registers) and maintain the RTCC when VDD is removed from the application. This is accomplished by supplying a backup power source to a specific power pin. VBAT mode is described in more detail in Section 10.5 "VBAT Mode".

10.1.3 LOW-VOLTAGE/RETENTION REGULATOR

PIC24FJ128GA204 family devices incorporate a second on-chip voltage regulator, designed to provide power to select microcontroller features at 1.2V nominal. This regulator allows features, such as data RAM and the WDT, to be maintained in power-saving modes where they would otherwise be inactive, or maintain them at a lower power than would otherwise be the case.

The low-voltage/retention regulator is only available when Sleep mode is invoked. It is controlled by the LPCFG Configuration bit (CW1<10>) and in firmware by the RETEN bit (RCON<12>). LPCFG must be programmed (= 0) and the RETEN bit must be set (= 1) for the regulator to be enabled.

10.2 Idle Mode

Idle mode includes these features:

- · The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.8 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

10.3 Sleep Mode

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT or RTCC, with LPRC as the clock source, is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

10.3.1 LOW-VOLTAGE/RETENTION SLEEP MODE

Low-Voltage/Retention Sleep mode functions as Sleep mode with the same features and wake-up triggers. The difference is that the low-voltage/retention regulator allows core digital logic voltage (VCORE) to drop to 1.2V nominal. This permits an incremental reduction of power consumption over what would be required if VCORE was maintained at a 1.8V (minimum) level.

Low-Voltage Sleep mode requires a longer wake-up time than Sleep mode, due to the additional time required to bring VCORE back to 1.8V (known as TREG). In addition, the use of the low-voltage/retention regulator limits the amount of current that can be sourced to any active peripherals, such as the RTCC, etc.

10.4 Deep Sleep Mode

Deep Sleep mode provides the lowest levels of power consumption available from the instruction-based modes.

Deep Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Deep Sleep mode if the WDT or RTCC, with LPRC as the clock source, is enabled.
- The dedicated Deep Sleep WDT and BOR systems, if enabled, are used.
- The RTCC and its clock source continue to run, if enabled. All other peripherals are disabled.

Entry into Deep Sleep mode is completely under software control. Exiting from the Deep Sleep mode can be triggered from any of the following events:

- POR event
- MCLR event
- RTCC alarm (If the RTCC is present)
- External Interrupt 0
- Deep Sleep Watchdog Timer (DSWDT) time-out

10.4.1 ENTERING DEEP SLEEP MODE

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register and then executing a Sleep command (PWRSAV #SLEEP_MODE), within one instruction cycle, to minimize the chance that Deep Sleep will be spuriously entered.

If the PWRSAV command is not given within one instruction cycle, the DSEN bit will be cleared by the hardware and must be set again by the software before entering Deep Sleep mode. The DSEN bit is also automatically cleared when exiting Deep Sleep mode.

Note: To re-enter Deep Sleep after a Deep Sleep wake-up, allow a delay of at least 3 TcY after clearing the RELEASE bit.

The sequence to enter Deep Sleep mode is:

- If the application requires the Deep Sleep WDT, enable it and configure its clock source. For more information on Deep Sleep WDT, see Section 10.4.5 "Deep Sleep WDT".
- If the application requires Deep Sleep BOR, enable it by programming the DSBOREN Configuration bit (CW4<6>).
- 3. If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module. For more information on RTCC, see Section 21.0 "Real-Time Clock and Calendar (RTCC)".
- If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).
- Note: A repeat sequence is required to set the DSEN bit. The repeat sequence (repeating the instruction twice) is required to write into any of the Deep Sleep registers (DSCON, DSWAKE, DSGPR0, DSGPR1). This is required to prevent the user from entering Deep Sleep by mistake. Any write to these registers has to be done twice to actually complete the write (see Example 10-2).
- 6. Enter Deep Sleep mode by issuing 3 NOP commands and then a PWRSAV #0 instruction.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

EXAMPLE 10-2: THE REPEAT SEQUENCE

; enable DS
; second write required to
actually write to DSCON
; enable DS (two writes required)

10.4.2 EXITING DEEP SLEEP MODE

Deep Sleep mode exits on any one of the following events:

- POR event on VDD supply. If there is no DSBOR circuit to rearm the VDD supply POR circuit, the external VDD supply must be lowered to the natural arming voltage of the POR circuit.
- DSWDT time-out. When the DSWDT times out, the device exits Deep Sleep.
- RTCC alarm (if RTCEN = 1).
- Assertion ('0') of the $\overline{\text{MCLR}}$ pin.
- Assertion of the INT0 pin (if the interrupt was enabled before Deep Sleep mode was entered). The polarity configuration is used to determine the assertion level ('0' or '1') of the pin that will cause an exit from Deep Sleep mode. Exiting from Deep Sleep mode requires a change on the INT0 pin while in Deep Sleep mode.

Note: Any interrupt pending when entering Deep Sleep mode is cleared.

Exiting Deep Sleep generally does not retain the state of the device and is equivalent to a Power-on Reset (POR) of the device. Exceptions to this include the RTCC (if present), which remains operational through the wake-up, the DSGPRx registers and the DSWDT.

Wake-up events that occur from the time Deep Sleep exits until the time the POR sequence completes are not ignored. The DSWAKE register will capture ALL wake-up events, from setting the DSEN bit to clearing the RELEASE bit.

The sequence for exiting Deep Sleep mode is:

- 1. After a wake-up event, the device exits Deep Sleep and performs a POR. The DSEN bit is cleared automatically. Code execution resumes at the Reset vector.
- To determine if the device exited Deep Sleep, read the Deep Sleep bit, DPSLP (RCON<10>). This bit will be set if there was an exit from Deep Sleep mode. If the bit is set, clear it.
- 3. Determine the wake-up source by reading the DSWAKE register.
- Determine if a DSBOR event occurred during Deep Sleep mode by reading the DSBOR bit (DSCON<1>).
- 5. If application context data has been saved, read it back from the DSGPR0 and DSGPR1 registers.
- 6. Clear the RELEASE bit (DSCON<0>).

10.4.3 SAVING CONTEXT DATA WITH THE DSGPRx REGISTERS

As exiting Deep Sleep mode causes a POR, most Special Function Registers reset to their default POR values. In addition, because VCORE power is not supplied in Deep Sleep mode, information in data RAM may be lost when exiting this mode.

Applications which require critical data to be saved prior to Deep Sleep, may use the Deep Sleep General Purpose registers, DSGPR0 and DSGPR1, or data EEPROM (if available). Unlike other SFRs, the contents of these registers are preserved while the device is in Deep Sleep mode. After exiting Deep Sleep, software can restore the data by reading the registers and clearing the RELEASE bit (DSCON<0>).

Note: User software should enable the DSSWEN (CW4<8>) Configuration Fuse bit for saving critical data in the DSGPRx registers.

10.4.4 I/O PINS IN DEEP SLEEP MODE

During Deep Sleep, the general purpose I/O pins retain their previous states and the Secondary Oscillator (SOSC) will remain running, if enabled. Pins that are configured as inputs (TRISx bit is set), prior to entry into Deep Sleep, remain high-impedance during Deep Sleep. Pins that are configured as outputs (TRISx bit is clear), prior to entry into Deep Sleep, remain as output pins during Deep Sleep. While in this mode, they continue to drive the output level determined by their corresponding LATx bit at the time of entry into Deep Sleep.

Once the device wakes back up, all I/O pins continue to maintain their previous states, even after the device has finished the POR sequence and is executing application code again. Pins configured as inputs during Deep Sleep remain high-impedance and pins configured as outputs continue to drive their previous value. After waking up, the TRISx and LATx registers, and the SOSCEN bit (OSCCON<1>) are reset. If firmware modifies any of these bits or registers, the I/O will not immediately go to the newly configured states. Once the firmware clears the RELEASE bit (DSCON<0>), the I/O pins are "released". This causes the I/O pins to take the states configured by their respective TRISx and LATx bit values.

This means that keeping the SOSC running after waking up requires the SOSCEN bit to be set before clearing RELEASE.

If the Deep Sleep BOR (DSBOR) is enabled, and a DSBOR or a true POR event occurs during Deep Sleep, the I/O pins will be immediately released, similar to clearing the RELEASE bit. All previous state information will be lost, including the general purpose DSGPR0 and DSGPR1 contents.

If a MCLR Reset event occurs during Deep Sleep, the DSGPRx, DSCON and DSWAKE registers will remain valid, and the RELEASE bit will remain set. The state of the SOSC will also be retained. The I/O pins, however, will be reset to their MCLR Reset state. Since RELEASE is still set, changes to the SOSCEN bit (OSCCON<1>) cannot take effect until the RELEASE bit is cleared.

In all other Deep Sleep wake-up cases, application firmware must clear the RELEASE bit in order to reconfigure the I/O pins.

10.4.5 DEEP SLEEP WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (CW4<7>). The device WDT need not be enabled for the DSWDT to function. Entry into Deep Sleep modes automatically resets the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (CW4<5>). The postscaler options are programmed by the DSWDTPS<4:0> Configuration bits (CW4<4:0>). The minimum time-out period that can be achieved is 1 ms and the maximum is 25.7 days. For more information on the CW4 Configuration register and DSWDT configuration options, refer to **Section 29.0 "Special Features"**.

10.4.5.1 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCLK<1:0> bits (RTCPWC<11:10>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention. However, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

10.4.6 CHECKING AND CLEARING THE STATUS OF DEEP SLEEP

Upon entry into Deep Sleep mode, the status bit, DPSLP (RCON<10>), becomes set and must be cleared by the software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, the following three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set; this is a normal Power-on Reset.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

10.4.7 POWER-ON RESETS (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep mode functionally looks like a POR, the technique described in Section 10.4.6 "Checking and Clearing the Status of Deep Sleep" should be used to distinguish between Deep Sleep and a true POR event. When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers, RTCC, DSWDT, etc.) is reset.

10.5 VBAT Mode

This mode represents the lowest power state that the microcontroller can achieve and still resume operation. VBAT mode is automatically triggered when the micro-controller's main power supply on VDD fails. When this happens, the microcontroller's on-chip power switch connects to a backup power source, such as a battery, supplied to the VBAT pin. This maintains a few key systems at an extremely low-power draw until VDD is restored.

The power supplied on VBAT only runs two systems: the RTCC and the Deep Sleep Semaphore registers (DSGPR0 and DSGPR1). To maintain these systems during a sudden loss of VDD, it is essential to connect a power source, other than VDD or AVDD, to the VBAT pin.

When the RTCC is enabled, it continues to operate with the same clock source (SOSC or LPRC) that was selected prior to entering VBAT mode. There is no provision to switch to a lower power clock source after the mode switch.

Since the loss of VDD is usually an unforeseen event, it is recommended that the contents of the Deep Sleep Semaphore registers be loaded with the data to be retained at an early point in code execution.

10.5.1 VBAT MODE WITH NO RTCC

By disabling RTCC operation during VBAT mode, power consumption is reduced to the lowest of all powersaving modes. In this mode, only the Deep Sleep Semaphore registers are maintained.

10.5.2 WAKE-UP FROM VBAT MODES

When VDD is restored to a device in VBAT mode, it automatically wakes. Wake-up occurs with a POR, after which, the device starts executing code from the Reset vector. All SFRs, except the Deep Sleep Semaphores, are reset to their POR values. If the RTCC was not configured to run during VBAT mode, it will remain disabled and RTCC will not run. Wake-up timing is similar to that for a normal POR.

To differentiate a wake-up from VBAT mode from other POR states, check the VBAT status bit (RCON2<0>). If this bit is set while the device is starting to execute the code from the Reset vector, it indicates that there has been an exit from VBAT mode. The application must clear the VBAT bit to ensure that future VBAT wake-up events are captured.

If a POR occurs without a power source connected to the VBAT pin, the VBPOR bit (RCON2<1>) is set. If this bit is set on a Power-on Reset, it indicates that a battery needs to be connected to the VBAT pin.

In addition, if the VBAT power source falls below the level needed for Deep Sleep Semaphore operation while in VBAT mode (e.g., the battery has been drained), the VBPOR bit will be set. VBPOR is also set when the microcontroller is powered up the very first time, even if power is supplied to VBAT.

10.5.3 I/O PINS DURING VBAT MODES

All I/O pins switch to Input mode during VBAT mode. The only exceptions are the SOSCI and SOSCO pins, which maintain their states if the Secondary Oscillator is being used as the RTCC clock source. It is the user's responsibility to restore the I/O pins to their proper states, using the TRISx and LATx bits, once VDD has been restored.

10.5.4 SAVING CONTEXT DATA WITH THE DSGPRx REGISTERS

As with Deep Sleep mode (i.e., without the low-voltage/ retention regulator), all SFRs are reset to their POR values after VDD has been restored. Only the Deep Sleep Semaphore registers are preserved. Applications which require critical data to be saved should save it in DSGPR0 and DSGPR1.

Note:	If the VBAT mode is not used, it is
	recommended to connect the VBAT pin
	to VDD.

The POR should be enabled for the reliable operation of the VBAT.

REGISTER 10-1: DSCON: DEEP SLEEP CONTROL REGISTER⁽¹⁾

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
DSEN	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	r-0	R/W-0	R/C-0, HS	
		<u> </u>		<u> </u>	<u> </u>	DSBOR ⁽²⁾	RELEASE	
bit 7							bit 0	
Legend:		C = Clearable	bit	U = Unimplem	nented bit, read	as '0'		
R = Readabl	le bit	W = Writable	bit	HS = Hardware Settable bit r = Reserved bit				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15	DSEN: Deep	Sleep Enable b	bit					
		ep Sleep on ex						
		rmal Sleep on		WRSAV #0				
bit 14-3	•	ted: Read as '	כ'					
bit 2	Reserved: Ma							
bit 1	DSBOR: Dee	p Sleep BOR E	Event bit ⁽²⁾					
	1 = The DSB0	OR was active	and a BOR eve	ent was detecte	ed during Deep	Sleep		
	0 = The DSBC	OR was not act	ive, or was act	ive, but did not	t detect a BOR	event during D	eep Sleep	
bit 0	RELEASE: 1/0	O Pin State Re	lease bit					
					ir states previou		· ·	
	 Releases I/O pins from their state previous to Deep Sleep entry and allows their respective TRISx and LATx bits to control their states 							

- **Note 1:** All register bits are reset only in the case of a POR event outside of Deep Sleep mode.
 - **2:** Unlike all other events, a Deep Sleep BOR event will NOT cause a wake-up from Deep Sleep; this re-arms the POR.

REGISTER 10-2: DSWAKE: DEEP SLEEP WAKE-UP SOURCE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS
—	—	—	—	—		—	DSINT0
bit 15 bit 8							

R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0
DSFLT	—	—	DSWDT	DSRTCC	DSMCLR	—	—
bit 7 bit 0							

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9	Unimplemented: Read as '0'
bit 8	DSINT0: Deep Sleep Interrupt-on-Change bit
	 1 = Interrupt-on-change was asserted during Deep Sleep 0 = Interrupt-on-change was not asserted during Deep Sleep
bit 7	DSFLT: Deep Sleep Fault Detect bit
	1 = A Fault occurred during Deep Sleep and some Deep Sleep configuration settings may have been corrupted
	0 = No Fault was detected during Deep Sleep
bit 6-5	Unimplemented: Read as '0'
bit 4	DSWDT: Deep Sleep Watchdog Timer Time-out bit
	 1 = The Deep Sleep Watchdog Timer timed out during Deep Sleep 0 = The Deep Sleep Watchdog Timer did not time out during Deep Sleep
bit 3	DSRTCC: Deep Sleep Real-Time Clock and Calendar Alarm bit
	 1 = The Real-Time Clock and Calendar triggered an alarm during Deep Sleep 0 = The Real-Time Clock and Calendar did not trigger an alarm during Deep Sleep
bit 2	DSMCLR: Deep Sleep MCLR Event bit
	 1 = The MCLR pin was active and was asserted during Deep Sleep 0 = The MCLR pin was not active, or was active, but not asserted during Deep Sleep
bit 1-0	Unimplemented: Read as '0'

Note 1: All register bits are cleared when the DSEN (DSCON<15>) bit is set.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_		—	_		
oit 15							bit 8
U-0	U-0	U-0	r-0	R/CO-1	R/CO-1	R/CO-1	R/CO-0
	—	—	_	VDDBOR ⁽¹⁾	VDDPOR ^(1,2)	VBPOR ^(1,3)	VBAT ⁽¹⁾
bit 7							bit C
Legend:		CO = Clearab	-	r = Reserved			
R = Read		W = Writable b	bit		nented bit, read		
-n = Valu	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15-5	•	ted: Read as 'C	1-				
bit 4	Reserved: M		(1)				
bit 3		D Brown-out R	•				
		own-out Reset ł own-out Reset ł	·		e)		
bit 2		D Power-on Re					
5.12		wer-on Reset h			e)		
		wer-on Reset h	•	•			
bit 1	VBPOR: VBA	T Power-on Res	set Flag bit ^(1,3)				
	1 = A VBAT F	OR has occurr	ed (no battery	connected to	the VBAT pin o	r VBAT power is	s below Deep
		maphore retent		oy hardware)			
		OR has not occ	curred				
bit 0	VBAT: VBAT F	0					
		xit has occurred xit from Vват ha			e VBAT pin (set	by hardware)	
	0 = A POR e		as not occurre	u			
Note 1:	This bit is set in h	ardware only; it	can only be c	leared in softwa	are.		
2:	This bit indicates Power-on Reset.	a VDD Power-o	n Reset. Settir	ng the POR bit	(RCON<0>) inc	licates a VCORE	I
3:	This bit is set whe	en the device is	originally pow	ered up, even i	f power is pres	ent on VBAT.	

REGISTER 10-3: RCON2: RESET AND SYSTEM CONTROL REGISTER 2

10.6 Clock Frequency and Clock Switching

In Run and Idle modes, all PIC24FJ devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

10.7 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.8 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMDx Control registers (XXXMD bits are in the PMD1, PMD2, PMD3, PMD4, PMD6, PMD7, PMD8 registers).

Both bits have similar functions in enabling or disabling its associated module. Setting the PMDx bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMDx bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as the use of the PMDx bits. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXSIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

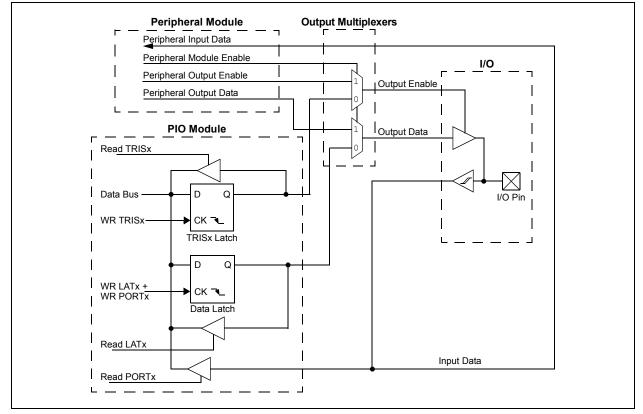
NOTES:

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "I/O Ports with Peripheral Pin Select (PPS)" (DS39711). The information in this data sheet supersedes the information in the FRM.

All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger (ST) inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports


A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/Os and one register associated with their operation as analog inputs. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LATx), read the latch; writes to the latch, write the latch. Reads from the PORTx register, read the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers, that are not valid for a particular device, will be disabled. That means the corresponding LATx and TRISx registers, and the port pin, will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of inputs.

11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits (see Register 11-1 through Register 11-3), which decides if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

 Table 11-2
 summarizes
 the
 different
 voltage
 tolerances.

 ances.
 For
 more
 information,
 refer
 to
 Section 32.0

 "Electrical Characteristics"
 for
 more
 details.

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description		
PORTA<10:7,4> ⁽¹⁾				
PORTB<11:10,8:4>	5.5V	Tolerates input levels above VDD; useful for most standard logic.		
PORTC<9:3> ⁽¹⁾				
PORTA<3:0>				
PORTB<15:13,9,3:0>	VDD	Only VDD input levels are tolerated.		
PORTC<2:0> ⁽¹⁾				

Note 1: Not all of these pins are implemented in 28-pin devices. Refer to **Section 1.0 "Device Overview**" for a complete description of port pin implementation.

REGISTER 11-1: ANSA: PORTA ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_	_	ANSA<3:0>			

bit 7		

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4 Unimplemented: Read as '0'

bit 3-0 ANSA<3:0>: PORTA Analog Function Selection bits 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled

REGISTER 11-2: ANSB: PORTB ANALOG FUNCTION SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	R/W-1	U-0
	ANSB<	:15:12>		—	—	ANSB9	—
bit 15							bit 8

U-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	ANSB6	—	—		ANSE	3<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	ANSB<15:12>: PORTB Analog Function Selection bits
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 11-10	Unimplemented: Read as '0'
bit 9	ANSB9: PORTB Analog Function Selection bit
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 8-7	Unimplemented: Read as '0'
bit 6	ANSB6: PORTB Analog Function Selection bit
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 5-4	Unimplemented: Read as '0'
bit 3-0	ANSB<3:0>: PORTB Analog Function Selection bits
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled

© 2013-2015 Microchip Technology Inc.

bit 0

REGISTER 11-3: ANSC: PORTC ANALOG FUNCTION SELECTION REGISTER⁽¹⁾

Legend: R = Readable		W = Writable			nented hit read		
bit 7							bit C
—	_	_	_	—		ANSC<2:0>	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
bit 15							bit 8
	_	—		—	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 ANSC<2:0>: PORTC Analog Function Selection bits 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled

Note 1: These pins are not available in 28-pin devices.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC24FJ128GA204 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 82 external inputs that may be selected (enabled) for generating an interrupt request on a Change-of-State.

Registers, CNEN1 through CNEN3, contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. Each CN pin has both a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source that is connected to the pin, while the pull-downs act as a current sink that is connected to the pin. These eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are separately enabled using the CNPU1 through CNPU3 registers (for pull-ups), and the CNPD1 through CNPD3 registers (for pull-downs). Each CN pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.

When the internal pull-up is selected, the pin pulls up to VDD - 1.1V (typical). When the internal pull-down is selected, the pin pulls down to Vss.

Note: Pull-ups on Input Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT READ/WRITE IN ASSEMBLY

MOV 0xFF00,	W0 ;	Configure PORTB<15:8> as inputs
MOV W0, TRIS	в;	and PORTB<7:0> as outputs
NOP	;	Delay 1 cycle
BTSS PORTB, #	13 ;	Next Instruction

EXAMPLE 11-2: PORT READ/WRITE IN 'C'

TRISB = 0xFF00;	<pre>// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs</pre>
Nop();	// Delay 1 cycle
<pre>If (PORTBbits.RB13) { };</pre>	// Next Instruction

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ128GA204 family devices support a larger number of remappable input only pins than remappable input/output pins. In this device family, there are up to 25 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered, RP0 through RP25.

See Table 1-3 for a summary of pinout options in each package offering.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals. PPS is not available for these peripherals:

- I^2C^{TM} (input and output)
- Change Notification Inputs
- RTCC Alarm Output(s)
- EPMP Signals (input and output)
- Analog (inputs and outputs)
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

11.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., output compare, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pinselectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

11.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-4 through Register 11-22).

Each register contains two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

TABLE 11-3:	SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) ⁽¹⁾
IADLE II-J.	SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Input Name	Function Name	Register	Function Mapping Bits
DSM Modulation Input	MDMIN	RPINR30	MDMIR<5:0>
DSM Carrier 1 Input	MDCIN1	RPINR31	MDC1R<5:0>
DSM Carrier 2 Input	MDCIN2	RPINR31	MDC2R<5:0>
External Interrupt 1	INT1	RPINR0	INT1R<5:0>
External Interrupt 2	INT2	RPINR1	INT2R<5:0>
External Interrupt 3	INT3	RPINR1	INT3R<5:0>
External Interrupt 4	INT4	RPINR2	INT4R<5:0>
Input Capture 1	IC1	RPINR7	IC1R<5:0>
Input Capture 2	IC2	RPINR7	IC2R<5:0>
Input Capture 3	IC3	RPINR8	IC3R<5:0>
Input Capture 4	IC4	RPINR8	IC4R<5:0>
Input Capture 5	IC5	RPINR9	IC5R<5:0>
Input Capture 6	IC6	RPINR9	IC6R<5:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<5:0>
Output Compare Fault B	OCFB	RPINR11	OCFBR<5:0>
Output Compare Trigger 1	OCTRIG1	RPINR0	OCTRIG1R<5:0>
Output Compare Trigger 2	OCTRIG2	RPINR2	OCTRIG2R<5:0>
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R<5:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<5:0>
SPI1 Slave Select Input	SS1IN	RPINR21	SS1R<5:0>
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<5:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<5:0>
SPI2 Slave Select Input	SS2IN	RPINR23	SS2R<5:0>
SPI3 Clock Input	SCK3IN	RPINR28	SCK3R<5:0>
SPI3 Data Input	SDI3	RPINR28	SDI3R<5:0>
SPI3 Slave Select Input	SS3IN	RPINR29	SS3R<5:0>
Generic Timer External Clock	TMRCK	RPINR23	TMRCKR<5:0>
UART1 Clear-to-Send	U1CTS	RPINR18	U1CTSR<5:0>
UART1 Receive	U1RX	RPINR18	U1RXR<5:0>
UART2 Clear-to-Send	U2CTS	RPINR19	U2CTSR<5:0>
UART2 Receive	U2RX	RPINR19	U2RXR<5:0>
UART3 Clear-to-Send	U3CTS	RPINR21	U3CTSR<5:0>
UART3 Receive	U3RX	RPINR17	U3RXR<5:0>
UART4 Clear-to-Send	U4CTS	RPINR27	U4CTSR<5:0>
UART4 Receive	U4RX	RPINR27	U4RXR<5:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.

11.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 11-23 through Register 11-35). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-4).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TARI E 11-4.	SELECTABLE OUTPUT SOURCES	(MAPS FUNCTION TO OUTPUT)
IADLE II-4.	SELECTABLE COTTOT SCOROLS	

Output Function Number ⁽¹⁾	Function	Output Name	
0	NULL ⁽²⁾	Null	
1	C1OUT	Comparator 1 Output	
2	C2OUT	Comparator 2 Output	
3	U1TX	UART1 Transmit	
4	U1RTS ⁽³⁾	UART1 Request-to-Send	
5	U2TX	UART2 Transmit	
6	U2RTS ⁽³⁾	UART2 Request-to-Send	
7	SDO1	SPI1 Data Output	
8	SCK10UT	SPI1 Clock Output	
9	SS1OUT	SPI1 Slave Select Output	
10	SDO2	SPI2 Data Output	
11	SCK2OUT	SPI2 Clock Output	
12	SS2OUT	SPI2 Slave Select Output	
13	OC1	Output Compare 1	
14	OC2	Output Compare 2	
15	OC3	Output Compare 3	
16	OC4	Output Compare 4	
17	OC5	Output Compare 5	
18	OC6	Output Compare 6	
19	U3TX	UART3 Transmit	
20	U3RTS	UART3 Request-to-Send	
21	U4TX	UART4 Transmit	
22	U4RTS ⁽³⁾	UART4 Request-to-Send	
23	SDO3	SPI3 Data Output	
24	SCK3OUT	SPI3 Clock Output	
25	SS3OUT SPI3 Slave Select Output		
26	C3OUT	Comparator 3 Output	
27	MDOUT	DSM Modulator Output	

Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.

2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.

3: IrDA[®] BCLKx functionality uses this output.

11.4.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lockouts. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

11.4.3.4 Mapping Exceptions for PIC24FJ128GA204 Family Devices

Although the PPS registers theoretically allow for up to 24 remappable I/O pins, not all of these are implemented in all devices. For PIC24FJ128GA204 family devices, the maximum number of remappable pins available is 24, which includes one input only pin. The differences in available remappable pins are summarized in Table 11-5.

When developing applications that use remappable pins, users should also keep these things in mind:

- For the RPINRx registers, bit combinations corresponding to an unimplemented pin for a particular device are treated as invalid; the corresponding module will not have an input mapped to it.
- For RPORx registers, the bit fields corresponding to an unimplemented pin will also be unimplemented; writing to these fields will have no effect.

11.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit remapping lock

11.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

11.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

11.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW4<15>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

TABLE 11-5: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ128GA204 FAMILY DEVICES

Device		RPn Pins (I/O)	RPIn Pins		
Device	Total	Total Unimplemented		Unimplemented	
PIC24FJXXXGA202	14	RP4, RP12	1	—	
PIC24FJXXXGA204	24	RP4, RP12	1	—	

11.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss, and all Peripheral Pin Select outputs are disconnected.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pinselectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following a device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

Example 11-3 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 11-3:	CONFIGURING UART1
	INPUT AND OUTPUT
	FUNCTIONS

```
// Unlock Registers
asm volatile
              ("MOV
                       #OSCCON, w1
                                     \n"
                "MOV
                       #0x46, w2
                                     \n"
                "MOV
                                     \n"
                       #0x57, w3
                "MOV.b w2, [w1]
                                     \n"
                "MOV.b w3, [w1]
                                     \n"
                "BCLR OSCCON, #6")
                                     ;
// or use C30 built-in macro:
// __builtin_write_OSCCONL(OSCCON & 0xbf);
// Configure Input Functions (Table 11-3)
   // Assign UlRX To Pin RPO
   RPINR18bits.U1RXR = 0;
   // Assign U1CTS To Pin RP1
   RPINR18bits.U1CTSR = 1;
// Configure Output Functions (Table 11-4)
   // Assign UlTX To Pin RP2
   RPOR1bits.RP2R = 3;
   // Assign U1RTS To Pin RP3
   RPOR1bits.RP3R = 4;
// Lock Registers
asm volatile
              ("MOV #OSCCON, w1
                                     \n"
               "MOV
                     #0x46, w2
                                     \n"
               "MOV
                      #0x57, w3
                                     \n"
               "MOV.b w2, [w1]
                                     \n"
               "MOV.b w3, [w1]
                                     \n"
               "BSET OSCCON, #6")
                                     ;
// or use C30 built-in macro:
// builtin write OSCCONL(OSCCON | 0x40);
```

11.4.6 PERIPHERAL PIN SELECT REGISTERS

The PIC24FJ128GA204 family of devices implements a total of 32 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (19)
- Output Remappable Peripheral Registers (13)

Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 11.4.4.1 "Control Register Lock" for a specific command sequence.

REGISTER 11-4: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCTRIG1R5	OCTRIG1R4	OCTRIG1R3	OCTRIG1R2	OCTRIG1R1	OCTRIG1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	INT1R<5:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	OCTRIG1R<5:0>: Assign Output Compare Trigger 1 to Corresponding RPn or RPIn Pin bits

REGISTER 11-5: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
bit 7							bit 0

Legend:								
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	, read as '0'				
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-14	Unimple	Unimplemented: Read as '0'						
bit 13-8	INT3R<5	:0>: Assign External Interrup	ot 3 (INT3) to Corresponding R	Pn or RPIn Pin bits				
bit 7-6	Unimplemented: Read as '0'							
bit 5-0		• Accien External Interrun	ot 2 (INT2) to Corresponding R	Dn or DDIn Din hite				

REGISTER 11-6: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCTRIG2R5	OCTRIG2R4	OCTRIG2R3	OCTRIG2R2	OCTRIG2R1	OCTRIG2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	OCTRIG2R<5:0>: Assign Output Compare Trigger 2 to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	INT4R<5:0>: Assign External Interrupt 4 (INT4) to Corresponding RPn or RPIn Pin bits

REGISTER 11-7: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC2R<5:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC1R<5:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-8: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0
bit 15							bit 8

bit 7	·	•		•			bit 0
_	—	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

Logondi
Leaena:

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	IC4R<5:0>: Assign Input Capture 4 (IC4) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

REGISTER 11-9: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC6R<5:0>: Assign Input Capture 6 (IC6) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC5R<5:0>: Assign Input Capture 5 (IC5) to Corresponding RPn or RPIn Pin bits

REGISTER 11-10: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15	•						bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0
Legend:							

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	OCFBR<5:0>: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits

REGISTER 11-11: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3RXR<5:0>					
bit 15		- -					bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7 bit 0							

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3RXR<5:0>: Assign UART3 Receive (U3RX) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-12: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U1CTSR<5:0>: Assign UART1 Clear-to-Send (U1CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U1RXR<5:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits

REGISTER 11-13: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U2CTSR<5:0>: Assign UART2 Clear-to-Send (U2CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U2RXR<5:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits

REGISTER 11-14: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
-	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit read	l as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-15: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3CTSR<5:0>: Assign UART3 Clear-to-Send (U3CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

REGISTER 11-16: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 11-17: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	TMRCKR5	TMRCKR4	TMRCKR3	TMRCKR2	TMRCKR1	TMRCKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 TMRCKR<5:0>: Assign General Timer External Input (TMRCK) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

REGISTER 11-18: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U4CTSR<5:0>: Assign UART4 Clear-to-Send Input (U4CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U4RXR<5:0>: Assign UART4 Receive Input (U4RX) to Corresponding RPn or RPIn Pin bits

REGISTER 11-19: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 SCK3R<5:0>: Assign SPI3 Clock Input (SCK3IN) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SDI3R<5:0>: Assign SPI3 Data Input (SDI3) to Corresponding RPn or RPIn Pin bits

REGISTER 11-20: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		—		—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—			SS3R	<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS3R<5:0>: Assign SPI3 Slave Select Input (SS3IN) to Corresponding RPn or RPIn Pin bits

REGISTER 11-21: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—		—	—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_			MDMI	R<5:0>		
bit 7		-					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 MDMIR<5:0>: Assign TX Modulation Input (MDMI) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		MDC2R5	MDC2R4	MDC2R3	MDC2R2	MDC2R1	MDC2R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		MDC1R5	MDC1R4	MDC1R3	MDC1R2	MDC21R1	MDC1R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown		nown		

REGISTER 11-22: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

bit 15-14 Unimplemented: Read as '0'

bit 13-8 MDC2R<5:0>: Assign TX Carrier 2 Input (MDCIN2) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 MDC1R<5:0>: Assign TX Carrier 1 Input (MDCIN1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-23: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15				-		·	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7					•		bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'			
-n = Value at	n = Value at POR '1' = Bit is set '0' = Bit is cleared		ared	x = Bit is unkr	nown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP1R<5:0>: RP1 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP1 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP0R<5:0>: RP0 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP0 (see Table 11-4 for peripheral function numbers).

REGISTER 11-24: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP2 (see Table 11-4 for peripheral function numbers).

REGISTER 11-25: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP5R	<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—		—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplemented bit, read as '0'			
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-14	Unimpleme	nted: Read as 'o)'				
bit 13-8	RP5R<5:0>:	RP5 Output Pir	Mapping bits	3			
	Peripheral O	utput Number n	is assigned to	o pin, RP5 (see	Table 11-4 for	peripheral funct	tion numbers).

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-26: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP7R<5:0>:** RP7 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP7 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP6R<5:0>:** RP6 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP6 (see Table 11-4 for peripheral function numbers).

REGISTER 11-27: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit 7 bit 0							
		RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIL 15							DILO
bit 15	•						bit 8
_	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 13-8	RP9R<5:0>: RP9 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP9 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP8R<5:0>: RP8 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP8 (see Table 11-4 for peripheral function numbers).

REGISTER 11-28: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15 bit							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:			
R = Readable bit W = Writable bit		U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R<5:0>:** RP11 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP11 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP10R<5:0>:** RP10 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP10 (see Table 11-4 for peripheral function numbers).

REGISTER 11-29: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0 U-0 R/W-0 R/W-0 R/W-0					
	R/W-0	R/W-0	R/W-0		
— — RP13R5 RP13R4 RP13R3	RP13R2	RP13R1	RP13R0		
bit 15		·	bit 8		
U-0 U-0 U-0 U-0 U-0	U-0	U-0	U-0		
RP12R5 RP12R4 RP12R3	RP12R2	RP12R1	RP12R0		
bit 7			bit 0		
Legend:					
R = Readable bit W = Writable bit U = Unimpler	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cle	'0' = Bit is cleared		x = Bit is unknown		
bit 15-14 Unimplemented: Read as '0'					
bit 15-14Unimplemented: Read as '0'bit 13-8RP13R<5:0>: RP13 Output Pin Mapping bits					
	Table 11-4 for	peripheral func	tion numbers).		

bit 5-0 **RP12R<5:0>:** RP12 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP12 (see Table 11-4 for peripheral function numbers).

REGISTER 11-30: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP15R<5:0>:** RP15 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP15 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP14R<5:0>:** RP14 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP14 (see Table 11-4 for peripheral function numbers).

REGISTER 11-31: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

_	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP17R<5:0>: RP17 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP17 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP16R<5:0>: RP16 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP16 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

REGISTER 11-32: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15	·			-			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

REGISTER 11-33: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-14	Unimpleme	nted: Read as '	0'					
bit 13-8	RP21R<5:0	>: RP21 Output	Pin Mapping b	oits				
	Peripheral C	utput Number n	is assigned to	pin, RP21 (see	Table 11-4 for	peripheral func	tion numbers).	

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP20R<5:0>:** RP20 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP20 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

REGISTER 11-34: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
bit 15				•			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
bit 7							bit 0
l edenq.							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP23R<5:0>:** RP23 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP23 (see Table 11-4 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'

bit 5-0 **RP22R<5:0>:** RP22 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP22 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	
bit 7		•			•	•	bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13-8	RP25R<5:0>:	RP25 Output	Pin Mapping b	its				
	Peripheral Ou	itput Number n	is assigned to	pin, RP25 (see	Table 11-4 for	peripheral func	tion numbers).	
bit 7-6	Unimplemen	ted: Read as '	0'					
bit 5-0	RP24R<5:0>: RP24 Output Pin Mapping bits							

Peripheral Output Number n is assigned to pin, RP24 (see Table 11-4 for peripheral function numbers).

REGISTER 11-35: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12⁽¹⁾

Note 1: These pins are not available in 28-pin devices.

NOTES:

12.0 TIMER1

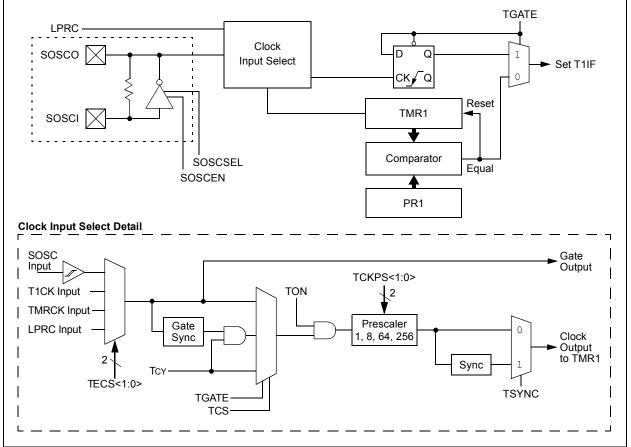
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704). The information in this data sheet supersedes the information in the FRM.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

16-Bit Timer

FIGURE 12-1:

- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- · Timer Gate Operation
- · Selectable Prescaler Settings
- · Timer Operation during CPU Idle and Sleep modes
- · Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 shows a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS, TECS<1:0> and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

16-BIT TIMER1 MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON		TSIDL	_		_	TECS1	TECS0
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0		TSYNC	TCS	—
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TON: Timer1	On bit					
	1 = Starts 16- 0 = Stops 16-						
bit 14	-	ited: Read as '	י,				
bit 13	-	r1 Stop in Idle N					
		ues module op		levice enters Id	lle mode		
		s module opera					
bit 12-10	Unimplemen	ted: Read as ')'				
bit 9-8	TECS<1:0>:	Timer1 Extende	ed Clock Sour	ce Select bits (selected when ⁻	TCS = 1)	
	When TCS =						
	11 = Generic 10 = LPRC C	Timer (TMRCk	() External Inp	ut			
		xternal Clock Ir	iput				
	00 = SOSC						
	When TCS =						
				d from the inter	rnal system cloo	ck (Fosc/2).	
bit 7	•	nted: Read as '					
bit 6	-	er1 Gated Time	Accumulation	Enable bit			
	When TCS = This bit is ign						
	When TCS =						
		ne accumulatior	n is enabled				
	0 = Gated tim	ne accumulatior	n is disabled				
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3	Unimplemen	ted: Read as ')'				
	-			is runnina (TON	N = 1) causes th	ne timer presca	le coun

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER⁽¹⁾

Note 1: Changing the value of T1CON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 2
 TSYNC: Timer1 External Clock Input Synchronization Select bit
 When TCS = 1:
 1 = Synchronizes external clock input
 0 = Does not synchronize external clock input
 When TCS = 0:
 This bit is ignored.
- bit 1 **TCS:** Timer1 Clock Source Select bit 1 = Extended clock selected by the TECS<1:0> bits 0 = Internal clock (Fosc/2)
- bit 0 Unimplemented: Read as '0'
- **Note 1:** Changing the value of T1CON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

NOTES:

13.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Timers"** (DS39704). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

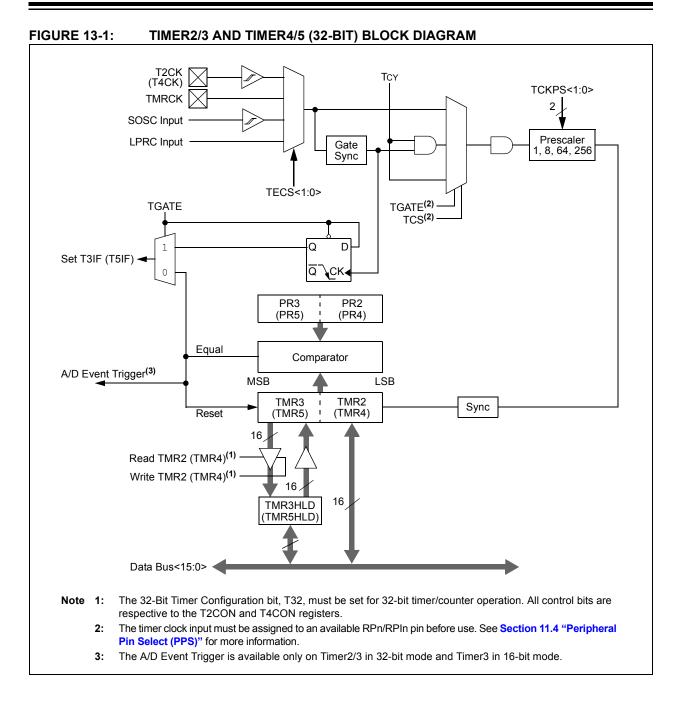
- Two Independent 16-Bit Timers with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

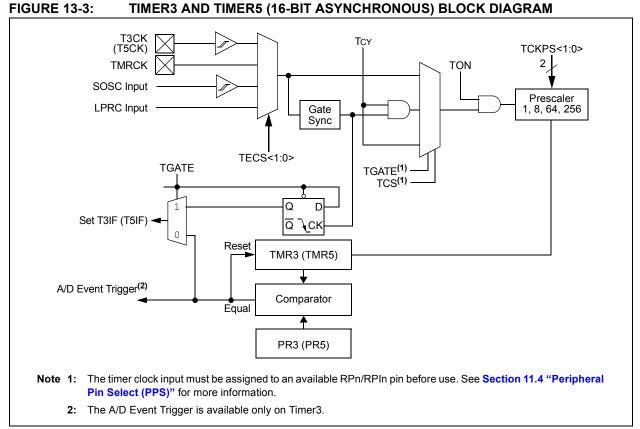
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger (only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D Event Trigger. This trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1; T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer5 are the most significant word of the 32-bit timers.


Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 or Timer5 interrupt flags. To configure Timer2/3 or Timer4/5 for 32-bit operation:


- 1. Set the T32 or T45 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word (msw) of the value, while PR2 (or PR4) contains the least significant word (lsw).
- 5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).


The timer value, at any point, is stored in the register pair, TMR<3:2> (or TMR<5:4>). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON (TxCON<15> = 1) bit.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON	—	TSIDL	_	_		TECS1 ⁽²⁾	TECS0 ⁽²⁾
bit 15							bita
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
0-0	TGATE	TCKPS1	TCKPS0	T32 ⁽³⁾	0-0	TCS ⁽²⁾	0-0
 bit 7	IGATE	ICKPSI	TCKP30	132(*)		103.4	bit
Legend:							
R = Reada		W = Writable		U = Unimplem			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
L:1 4 F		On hit					
bit 15	TON: Timerx						
	When TxCOM 1 = Starts 32						
	0 = Stops 32-						
	When TxCO						
	1 = Starts 16						
	0 = Stops 16-	-bit Timerx					
bit 14	Unimplemer	ted: Read as '	כ'				
bit 13	TSIDL: Time	rx Stop in Idle N	lode bit				
		ues module op			e mode		
bit 12-10		s module opera ited: Read as '		le			
	-			- Calast bits (a		$T_{00} = 1)(2)$	
bit 9-8		Timerx Extende	ed Clock Sourc	e Select dits (s	elected when	$105 = 1)^{-1}$	
	When TCS =	<u>⊥.</u> ∶Timer (TMRCł	() External Innu	t .			
	10 = LPRC C						
		xternal Clock Ir	iput				
	00 = SOSC						
	When TCS =						
		e ignored; the]		from the inter	nal system clo	ock (Fosc/2).	
bit 7	•	ted: Read as '					
bit 6		erx Gated Time	Accumulation I	Enable bit			
	When TCS =						
	This bit is ign When TCS =						
		<u>^.</u>					
			n is enabled				
	1 = Gated tim	<u>0:</u> ne accumulatior ne accumulatior					
bit 5-4	1 = Gated tin 0 = Gated tin	ne accumulation	n is disabled	Select bits			
bit 5-4	1 = Gated tin 0 = Gated tin	ne accumulation ne accumulation	n is disabled	Select bits			
bit 5-4	1 = Gated tin 0 = Gated tin TCKPS<1:0> 11 = 1:256 10 = 1:64	ne accumulation ne accumulation	n is disabled	Select bits			
bit 5-4	1 = Gated tin 0 = Gated tin TCKPS<1:0> 11 = 1:256 10 = 1:64 01 = 1:8	ne accumulation ne accumulation	n is disabled	Select bits			
	1 = Gated tin 0 = Gated tin TCKPS<1:0> 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1	e accumulation e accumulation : Timerx Input	n is disabled Clock Prescale				
	1 = Gated tin 0 = Gated tin TCKPS<1:0> 11 = 1:256 10 = 1:64 01 = 1:8	The accumulation the accumulation the interval the interval the interval of the n is disabled Clock Prescale		= 1) causes t	he timer presca	le counter to	
Note 1:	1 = Gated tin 0 = Gated tin TCKPS<1:0> 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 Changing the val reset and is not r If TCS = 1 and T	ue of TxCON w ecommended. ECS<1:0> = x1	n is disabled Clock Prescale hile the timer is , the selected e	s running (TON external timer in	nput (TMRCK	or TxCK) must	pe configure
Note 1:	1 = Gated tin 0 = Gated tin TCKPS<1:0> 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 Changing the val reset and is not r	ue of TxCON w ecommended. ECS<1:0> = x1 Pn/RPIn pin. Fo	h is disabled Clock Prescale while the timer is , the selected e or more informa	s running (TON external timer ir tion, see Sect i	nput (TMRCK on 11.4 "Peri	or TxCK) must pheral Pin Sele	pe configure ect (PPS)".

REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER⁽¹⁾

REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3 **T32:** 32-Bit Timer Mode Select bit⁽³⁾
 - 1 = Timerx and Timery form a single 32-bit timer
 - 0 = Timerx and Timery act as two 16-bit timers
 - In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS**: Timerx Clock Source Select bit⁽²⁾
 - 1 = Timer source is selected by TECS<1:0>0 = Internal clock (Fosc/2)
- bit 0 Unimplemented: Read as '0'
- **Note 1:** Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
 - 2: If TCS = 1 and TECS<1:0> = x1, the selected external timer input (TMRCK or TxCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - **3:** In T4CON, the T45 bit is implemented instead of T32 to select 32-bit mode. In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON ⁽²⁾	—	TSIDL ⁽²⁾	—	_	_	TECS1 ^(2,3)	TECS0 ^{(2,3}
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	_	—	TCS ^(2,3)	_
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	TON: Timery						
	1 = Starts 16- 0 = Stops 16-						
bit 14	•	ted: Read as ')'				
bit 13	TSIDL: Timer	ry Stop in Idle M	lode bit ⁽²⁾				
		ues module ope			lle mode		
		s module opera		de			
bit 12-10	-	ted: Read as '				(2.2)	
bit 9-8		Timery Extende		-	selected when	TCS = 1) ^(2,3)	
	11 = Generic 10 = LPRC C	Timer (TMRCK	() External Inpu	ut			
		xternal Clock In	put				
	00 = SOSC		•				
bit 7	Unimplemen	ted: Read as ')'				
bit 6	TGATE: Time	ery Gated Time	Accumulation	Enable bit ⁽²⁾			
	When TCS =						
	This bit is ign When TCS =						
		<u></u> ne accumulatio	n is enabled				
	0 = Gated tin	ne accumulatio	n is disabled				
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescale	Select bits ⁽²⁾			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	01 = 1.8 00 = 1:1						
bit 3-2		ted: Read as ')'				
bit 1	-	Clock Source S					
	-	clock from pin,		sing edge)			
	0 = Internal c	lock (Fosc/2)					
bit 0	Unimplemen	ted: Read as ')'				
	Changing the value reset and is not re	-	nile the timer is	running (TON	= 1) causes th	e timer prescale	counter to
	When 32-bit oper operation; all time					ts have no effect	on Timery
	If TCS = 1 and TI available RPn/RF				• • • •	•	

14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, *"Input Capture with Dedicated Timer"* (DS39722). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ128GA204 family contain six independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

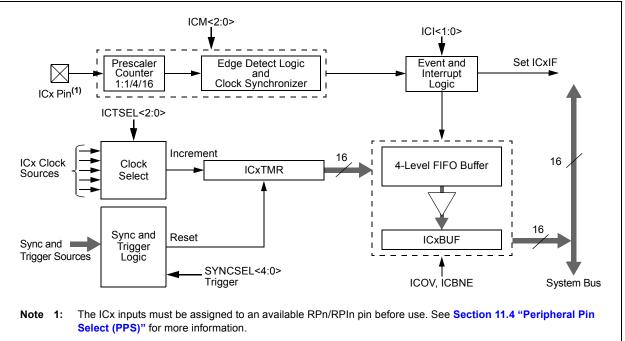
Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation with up to 30 user-selectable sync/trigger sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to 6 clock sources available for each module, driving a separate, internal 16-bit counter

The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES


When the input capture module operates in a Free-Running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSEL<4:0> bits (ICxCON2<4:0>) to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module, Input Capture x (ICx), provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module, Input Capture y (ICy), provides the Most Significant 16 bits. Wrap arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired sync/trigger source.
- 5. Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSELx bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICMx bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected sync/trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- Set the IC32 bits for both modules (ICyCON2<8> and ICxCON2<8>), enabling the even numbered module first. This ensures that the modules will start functioning in unison.
- Set the ICTSELx and SYNCSELx bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bit settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- **Note:** For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired Capture mode.

The module is ready to capture events when the time base and the sync/trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0
—	ICI1	ICI0	ICOV	ICBNE	ICM2 ⁽¹⁾	ICM1 ⁽¹⁾	ICM0 ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
1 40	

- bit 13 ICSIDL: Input Capture x Module Stop in Idle Control bit 1 = Input capture module halts in CPU Idle mode
 - 0 = Input capture module continues to operate in CPU Idle mode

bit 12-10 ICTSEL<2:0>: Input Capture x Timer Select bits

- 111 = System clock (Fosc/2)
- 110 = Reserved
- 101 = Reserved
- 100 = Timer1
- 011 = Timer5
- 010 = Timer4 001 = Timer2
- 001 = Timer2 000 = Timer3
- bit 9-7 Unimplemented: Read as '0'
- bit 6-5 ICI<1:0>: Select Number of Captures per Interrupt bits
 - 11 = Interrupt on every fourth capture event
 - 10 = Interrupt on every third capture event
 - 01 = Interrupt on every second capture event
 - 00 = Interrupt on every capture event
- bit 4 ICOV: Input Capture x Overflow Status Flag bit (read-only)
 - 1 = Input capture overflow has occurred
 - 0 = No input capture overflow has occurred
- bit 3 ICBNE: Input Capture x Buffer Empty Status bit (read-only)
 - 1 = Input capture buffer is not empty, at least one more capture value can be read
 - 0 = Input capture buffer is empty
- bit 2-0 ICM<2:0>: Input Capture x Mode Select bits⁽¹⁾
 - 111 = Interrupt mode: Input capture functions as an interrupt pin only when the device is in Sleep or Idle mode (rising edge detect only, all other control bits are not applicable)
 - 110 = Unused (module is disabled)
 - 101 = Prescaler Capture mode: Capture on every 16th rising edge
 - 100 = Prescaler Capture mode: Capture on every 4th rising edge
 - 011 = Simple Capture mode: Capture on every rising edge
 - 010 = Simple Capture mode: Capture on every falling edge
 - 001 = Edge Detect Capture mode: Capture on every edge (rising and falling); ICI<1:0> bits do not control interrupt generation for this mode
 - 000 = Input capture module is turned off
- Note 1: The ICx input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9	Unimplemented: Read as '0'
bit 8	IC32: Cascade Two IC Modules Enable bit (32-bit operation)
	 1 = ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules) 0 = ICx functions independently as a 16-bit module
bit 7	ICTRIG: Input Capture x Sync/Trigger Select bit
	 1 = Triggers ICx from the source designated by the SYNCSELx bits 0 = Synchronizes ICx with the source designated by the SYNCSELx bits
bit 6	TRIGSTAT: Timer Trigger Status bit
	 1 = Timer source has been triggered and is running (set in hardware, can be set in software) 0 = Timer source has not been triggered and is being held clear
bit 5	Unimplemented: Read as '0'

- **Note 1:** Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an ICx module as its own trigger source by selecting this mode.

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits
 - 1111x = Reserved
 - 11101 = Reserved
 - 11100 = CTMU⁽¹⁾
 - 11011 = A/D⁽¹⁾
 - $11010 = \text{Comparator 3}^{(1)}$
 - 11001 = Comparator 2⁽¹⁾
 - 11000 = Comparator 1⁽¹⁾
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Input Capture $6^{(2)}$
 - 10100 = Input Capture 5⁽²⁾ 10011 = Input Capture 4⁽²⁾
 - $10011 = \text{Input Capture 4}^{(1)}$ $10010 = \text{Input Capture 3}^{(2)}$
 - 10010 = Input Capture 3(*)10001 = Input Capture 2(2)
 - 10001 = Input Capture 2()10000 = Input Capture 1(2)
 - 01111 = Timer5
 - 01110 = Timer3
 - 01101 = Timer3
 - 01100 = Timer3
 - 01011 = Timer1
 - 01010 = **Reserved**
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = **Reserved**
 - 00110 = Output Compare 6
 - 00101 = Output Compare 5
 - 00100 = Output Compare 4
 - 00011 = Output Compare 3
 - 00010 = Output Compare 2
 - 00001 = Output Compare 1
 - 00000 = Not synchronized to any other module
- Note 1: Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an ICx module as its own trigger source by selecting this mode.

NOTES:

15.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Output Compare with Dedicated Timer" (DS70005159). The information in this data sheet supersedes the information in the FRM.

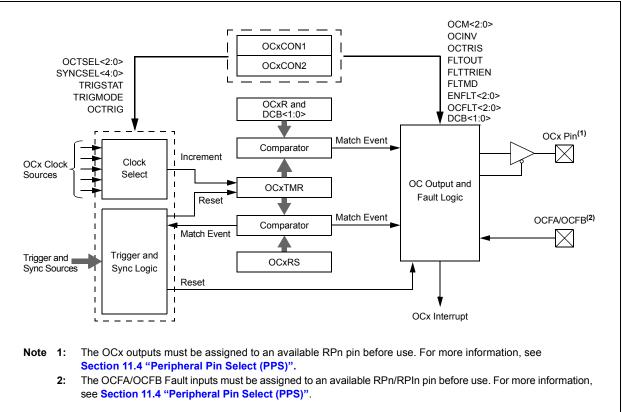
Devices in the PIC24FJ128GA204 family all feature six independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the output compare module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 31 user-selectable trigger/sync sources available
- Two separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths
- Configurable for single pulse or continuous pulse generation on an output event, or continuous PWM waveform generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

15.1 General Operating Modes

15.1.1 SYNCHRONOUS AND TRIGGER MODES


When the output compare module operates in a Free-Running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow. Its period is synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs. In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSEL<4:0> bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

15.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module, Output Compare x (OCx), provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module, Output Compare y (OCy), provides the Most Significant 16 bits. Wrap arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more information on cascading, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Output Compare with Dedicated Timer"** (DS70005159).

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for single-shot or continuous pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

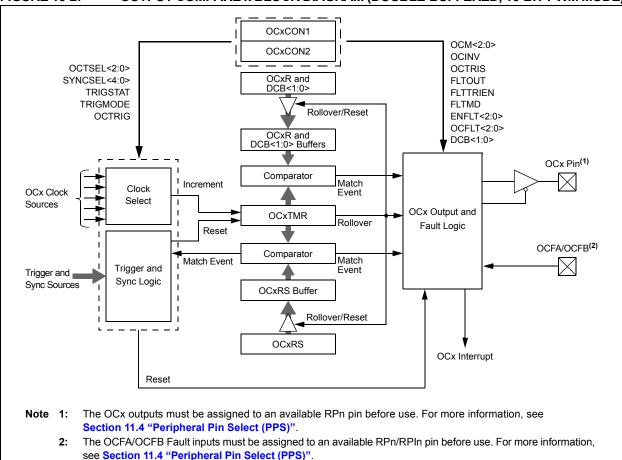
- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation ('0xx').
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no sync/trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a trigger source event occurs.

For 32-bit cascaded operation, these steps are also necessary:

- Set the OC32 bits for both registers (OCyCON2<8>) and (OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSELx (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.


15.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are doublebuffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing '0x1F' to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON1<12:10>).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 15-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

FIGURE 15-2: OUTPUT COMPARE x BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)

15.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timery Period register. The PWM period can be calculated using Equation 15-1.

EQUATION 15-1: CALCULATING THE PWM PERIOD⁽¹⁾

 $PWM Period = [(PRy) + 1] \bullet TCY \bullet (Timer Prescale Value)$

where:

PWM Frequency = 1/[*PWM Period*]

Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.

Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7, written into the PRy register, will yield a period consisting of 8 time base cycles.

15.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 15-1 for PWM mode timing details. Table 15-1 and Table 15-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

$$Maximum PWM Resolution (bits) = \frac{\log_{10} \left(\frac{FCY}{FPWM \bullet (Timer Prescale Value)}\right)}{\log_{10}} bits$$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.
TCY = 2 * TOSC = 62.5 ns
PWM Period = $1/PWM$ Frequency = $1/52.08$ kHz = 19.2 ms
PWM Period = $(PR2 + 1) \cdot TCY \cdot (Timer2 Prescale Value)$
$19.2 \ \mu s = (PR2 + 1) \cdot 62.5 \ ns \cdot 1$
PR2 = 306
Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:
PWM Resolution = $\log_{10}(FCY/FPWM)/\log_{10}2)$ bits
= $(\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2)$ bits
= 8.3 bits

TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)	TABLE 15-1 :	EXAMPLE PWM FREQUENCIES	AND RESOLUTIONS AT 4 MIPS	$(FCY = 4 MHz)^{(1)}$
---	---------------------	-------------------------	---------------------------	-----------------------

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

^{© 2013-2015} Microchip Technology Inc.

REGISTER 15-1:

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ENFLT1⁽²⁾ OCSIDL OCTSEL2 OCTSEL1 **OCTSEL0** ENFLT2⁽²⁾ bit 15 bit 8 R/W-0 R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0 R/W-0 R/W-0 R/W-0 OCFLT2^(2,3) OCFLT0^(2,4) OCM0⁽¹⁾ ENFLT0⁽²⁾ OCFLT1^(2,4) OCM2⁽¹⁾ OCM1⁽¹⁾ TRIGMODE bit 7 bit 0 Legend: HSC = Hardware Settable/Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 OCSIDL: Output Compare x Stop in Idle Mode Control bit 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode bit 12-10 OCTSEL<2:0>: Output Compare x Timer Select bits 111 = Peripheral clock (FCY) 110 = Reserved 101 = Reserved 100 = Timer1 clock (only synchronous clock is supported) 011 = Timer5 clock 010 = Timer4 clock 001 = Timer3 clock 000 = Timer2 clock bit 9 ENFLT2: Fault Input 2 Enable bit⁽²⁾ 1 = Fault 2 (Comparator 1/2/3 out) is enabled⁽³⁾ 0 = Fault 2 is disabled ENFLT1: Fault Input 1 Enable bit⁽²⁾ bit 8 1 = Fault 1 (OCFB pin) is enabled⁽⁴⁾ 0 = Fault 1 is disabled ENFLT0: Fault Input 0 Enable bit⁽²⁾ bit 7 1 = Fault 0 (OCFA pin) is enabled⁽⁴⁾ 0 = Fault 0 is disabled OCFLT2: Output Compare x PWM Fault 2 (Comparator 1/2/3) Condition Status bit^(2,3) bit 6 1 = PWM Fault 2 has occurred 0 = No PWM Fault 2 has occurred bit 5 OCFLT1: Output Compare x PWM Fault 1 (OCFB pin) Condition Status bit^(2,4) 1 = PWM Fault 1 has occurred 0 = No PWM Fault 1 has occurred Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)". 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110. 3: The Comparator 1 output controls the OC1-OC2 channels; Comparator 2 output controls the OC3-OC4 channels; Comparator 3 output controls the OC5-OC6 channels.

OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 4 OCFLT0: Output Compare x PWM Fault 0 (OCFA pin) Condition Status bit^(2,4)
 - 1 = PWM Fault 0 has occurred
 - 0 = No PWM Fault 0 has occurred
- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on $OCx^{(2)}$
 - 110 = Edge-Aligned PWM mode on $OCx^{(2)}$
 - 101 = Double Compare Continuous Pulse mode: Initializes the OCx pin low; toggles the OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes the OCx pin low; toggles the OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low; compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - **3:** The Comparator 1 output controls the OC1-OC2 channels; Comparator 2 output controls the OC3-OC4 channels; Comparator 3 output controls the OC5-OC6 channels.
 - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
FLTMD	FLTOUT	FLTTRIEN	OCINV		DCB1 ⁽³⁾	DCB0 ⁽³⁾	OC32		
bit 15							bit		
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0		
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL		
bit 7							bit		
Legend:		HS = Hardwa	re Settable bit						
R = Reada	hle hit	W = Writable		II = I Inimplen	nented bit, read	1 as 'N'			
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	NOWD		
					areu		IOWIT		
bit 15	FLTMD: Fault	t Mode Select I	oit						
	cleared in	n software				corresponding			
			a until the Fau	it source is rem	loved and a ne	w PWM period	starts		
bit 14	FLTOUT: Fau		ab an a Fault						
		put is driven hig put is driven lo	•						
bit 13		-							
	1 = Pin is force	FLTTRIEN: Fault Output State Select bit 1 = Pin is forced to an output on a Fault condition 0 = Pin I/O condition is unaffected by a Fault							
bit 12	OCINV: Outp	ut Compare x I	nvert bit						
	1 = OCx outp 0 = OCx outp	ut is inverted ut is not inverte	ed						
bit 11	Unimplemen	ted: Read as '	0'						
bit 10-9	DCB<1:0>: P	WM Duty Cycl	e Least Signific	ant bits ⁽³⁾					
	10 = Delays (01 = Delays (OCx falling edg	e by ¾ of the in le by ½ of the in le by ¼ of the in 's at the start of	nstruction cycle	9				
bit 8	OC32: Casca	de Two Output	Compare Mod	lules Enable bi	t (32-bit operat	ion)			
		module operat module operat							
bit 7	OCTRIG: Out	tput Compare >	Trigger/Sync S	Select bit					
			ource designat the source desi			S			
bit 6	TRIGSTAT: ⊤	imer Trigger St	atus bit						
			riggered and is en triggered ar		l clear				
bit 5	OCTRIS: Out	put Compare x	Output Pin Dir	ection Select b	bit				
	1 = OCx pin is 0 = Output Co		eral x is connec	cted to an OCx	pin				
	Never use an OC SYNCSELx settir		s own trigger so	ource, either by	selecting this	mode or anothe	er equivalent		
	Use these inputs	-	ces only and ne	ever as sync so	ources.				
	The DCB<1 \cdot 0> bit					2001/200 = 1	11 110)		

3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = OCTRIG1 external input
 - 11101 = OCTRIG2 external input
 - 11100 = CTMU⁽²⁾
 - 11011 = A/D⁽²⁾
 - $11010 = \text{Comparator } 3^{(2)}$
 - $11001 = \text{Comparator } 2^{(2)}$
 - 11000 = Comparator 1⁽²⁾
 - 10111 = Reserved 10110 = Reserved
 - $10101 = \text{Input Capture 6}^{(2)}$
 - $10100 = \text{Input Capture 5}^{(2)}$
 - 10011 =Input Capture 4⁽²⁾
 - $10010 = \text{Input Capture 3}^{(2)}$
 - 10001 =Input Capture 2⁽²⁾
 - 10000 = Input Capture 1⁽²⁾
 - 01111 = Timer5
 - 01110 = Timer4
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = Reserved
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Output Compare 6⁽¹⁾
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare $3^{(1)}_{(1)}$
 - 00010 = Output Compare 2⁽¹⁾
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- **Note 1:** Never use an OCx module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

NOTES:

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC24FJ128GA204 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136) which is available from the Microchip web site (www.microchip.com).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. All devices in the PIC24FJ128GA204 family include three SPI modules.

The module supports operation in two buffer modes. In Standard Buffer mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Variable length data can be transmitted and received, from 2 to 32-bits.

Note:	Do not perform Read-Modify-Write opera-
	tions (such as bit-oriented instructions) on
	the SPIxBUF register in either Standard or
	Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- · Left Justified
- Right Justified
- PCM/DSP

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the master and the other is the slave. However, audio data can be transferred between two slaves. Because the audio protocols require free-running clocks, the master can be a third party controller. In either case, the master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC). The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

The SPI module has the ability to generate three interrupts, reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - **SPIRBE =** 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxIF. This event occurs when
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

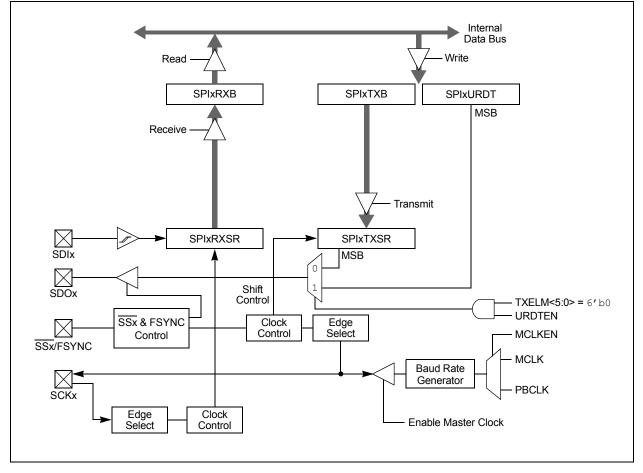
provided the respective mask bits are enabled in SPIxIMSKL/H.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 16-1 and Figure 16-2.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1L and SPIxCON1H refer to the control registers for any of the three SPI modules.

16.1 Standard Master Mode

To set up the SPIx module for the Standard Master mode of operation:


- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP<2:0> bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L and SPIxCON1H registers with the MSTEN bit (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 5. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

16.2 Standard Slave Mode

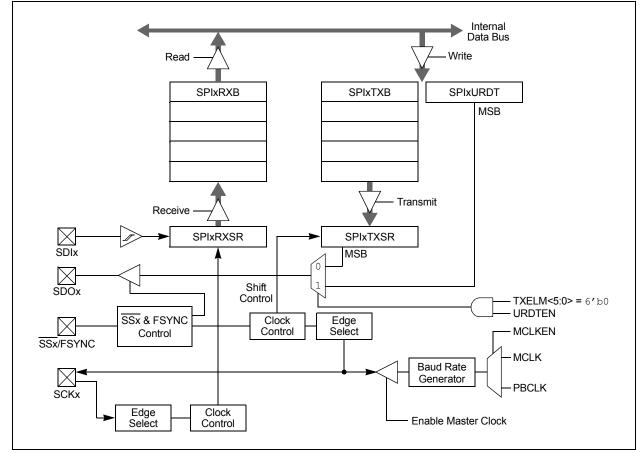
To set up the SPIx module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF registers.
- 2. If using interrupts:
 - a) Clear the SPIxBUFL and SPIxBUFH registers.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP<2:0> bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1L<8>) is set, then the SSEN bit (SPIxCON1L<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

FIGURE 16-1: SPIX MODULE BLOCK DIAGRAM (STANDARD MODE)

16.3 Enhanced Master Mode

To set up the SPIx module for the Enhanced Buffer Master mode of operation:


- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP<2:0> bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with MSTEN (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

16.4 Enhanced Slave Mode

To set up the SPIx module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP<2:0> bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- 7. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- 8. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

© 2013-2015 Microchip Technology Inc.

16.5 Audio Mode

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - a) Write the SPIxIP<2:0> bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

16.6 Registers

The SPI module consists of the following Special Function Registers (SFRs):

- SPIxCON1L, SPIxCON1H and SPIxCON2L: SPIx Control Registers (Register 16-1, Register 16-2 and Register 16-3)
- SPIxSTATL and SPIxSTATH: SPIx Status Registers (Register 16-4 and Register 16-5)
- SPIxBUFL and SPIxBUFH: SPIx Buffer Registers
- SPIxBRGL and SPIxBRGH: SPIx Baud Rate Registers
- SPIxIMSKL and SPIxIMSKH: SPIx Interrupt Mask Registers (Register 16-6 and Register 16-7)
- SPIxURDTL and SPIxURDTH: SPIx Underrun Data Registers

REGISTER 16-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPIEN	—	SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
(0)					(0)		

SSEN ⁽²⁾	CKP	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	SPIEN: SPIx On bit
	1 = Enables module
	0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR
	modifications

- bit 14 Unimplemented: Read as '0'
- bit 13 SPISIDL: SPIx Stop in Idle Mode bit
 - 1 = Halts in CPU Idle mode
 - 0 = Continues to operate in CPU Idle mode
- bit 12 DISSDO: Disable SDOx Output Port bit
 - $\ensuremath{\mathtt{1}}$ = SDOx pin is not used by the module; pin is controlled by the port function
 - 0 = SDOx pin is controlled by the module
- **Note 1:** When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
 - 2: When FRMEN = 1, SSEN is not used.
 - **3:** MCLKEN can only be written when the SPIEN bit = 0.
 - 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTE	R 16-1: SPIxCON	1L: SPIx CON	FROL REGISTER 1 LOW (CONTINUED)
bit 11-10	MODE<32,16>: Se	erial Word Length	1 bits ^(1,4)
	<u>AUDEN = 0:</u>		
	MODE32	MODE16	COMMUNICATION 32-Bit
	1 0	x 1	16-Bit
	0	0	8-Bit
	AUDEN = 1:		
	MODE32	MODE16	COMMUNICATION
	1	1	24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
	1 0	0 1	32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame 16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame
	0	0	16-Bit Data, 16-Bit FIFO, 16-Bit Channel/32-Bit Frame
bit 9	SMP: SPIx Data In	put Sample Pha	se bit
	Master Mode:		
			d of data output time
		ampled at the mi	ddle of data output time
	<u>Slave Mode:</u> Input data is alway	s sampled at the	middle of data output time, regardless of the SMP bit setting.
bit 8	CKE: SPIx Clock E	Edge Select bit ⁽¹⁾	
			from active clock state to Idle clock state from Idle clock state to active clock state
bit 7	SSEN: Slave Sele		
	$1 = \overline{SSx}$ pin is used	d by the macro ir	n Slave mode; SSx pin is used as the slave select input ro (SSx pin will be controlled by the port I/O)
bit 6	CKP: Clock Polarit	-	
		-	el; active state is a low level
	0 = Idle state for cl	ock is a low leve	l; active state is a high level
bit 5	MSTEN: Master M	ode Enable bit	
	1 = Master mode		
b :• 4	0 = Slave mode		
bit 4	DISSDI: Disable S	•	ر dule; pin is controlled by the port function
	0 = SDIx pin is rot		
bit 3	DISSCK: Disable S		
	1 = SCKx pin is no 0 = SCKx pin is co		odule; pin is controlled by the port function odule
bit 2	MCLKEN: Master	Clock Enable bit	(3)
	1 = MCLK is used 0 = PBCLK is used	•	
bit 1	SPIFE: Frame Syn	ic Pulse Edge Se	elect bit
			e edge) coincides with the first bit clock e edge) precedes the first bit clock
bit 0	ENHBUF: Enhance	ed Buffer Mode I	Enable bit
	1 = Enhanced Buff 0 = Enhanced Buff		
Note 1:	When AUDEN = 1 this	s module function	ns as if CKE = 0, regardless of its actual value.
2:	When FRMEN = 1 , SS		
3:	MCLKEN can only be		SPIEN bit = 0.
4:	-		/PCM mode as LRC follows FRMSYPW.

4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AUDEN ⁽) SPISGNEXT	IGNROV	IGNTUR	AUDMONO ⁽²⁾	URDTEN ⁽³⁾	AUDMOD1 ⁽⁴⁾	AUDMOD0(4)
bit 15			•				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
bit 15	this modul	ocol is enable le functions as of their actua	d; MSTEN con if FRMEN = 1 al values	1) trols the direction , FRMSYNC = M			
bit 14	SPISGNEXT: S 1 = Data from 0 = Data from	RX FIFO is si	gn-extended	Read Data Enab ed	le bit		
bit 13	IGNROV: Igno	re Receive Ov	verflow bit				
	 1 = A Receive by the rec 0 = A ROV is 	eive data		critical error; duri operation	ng ROV, data	in the FIFO is r	not overwritten
bit 12	IGNTUR: Igno	re Transmit U	nderrun bit				
		PIxTXB is not	empty	critical error and operation	d data indicate	ed by URDTEN	is transmitted
bit 11	AUDMONO: A		-	-			
		is mono (i.e.,		rd is transmitted	on both left ar	nd right channel	ls)
bit 10	URDTEN: Trai	nsmit Underru	n Data Enable	bit ⁽³⁾			
			•	ter during Transr	,	,	S
bit 9-8	AUDMOD<1:0	>: Audio Prot	ocol Mode Sel	ection bits ⁽⁴⁾			
	01 = Left Justi	tified mode: T fied Mode: Th	is module fund	nctions as if SPIF tions as if SPIFE SPIFE = 0, rega	E = 1, regardle	ss of its actual	
bit 7	FRMEN: Fram	ed SPIx Supp	ort bit				
	1 = Framed SF 0 = Framed SF			pin is used as th	e FSYNC inpu	it/output)	
2: 3:	AUDEN can only AUDMONO can o URDTEN is only	nly be written valid when IGN	when the SPII NTUR = 1.	EN bit = 0 and is	-		
4:	AUDMOD<1:0> b When NOT in PC						

REGISTER 16-2: SPIXCON1H: SPIX CONTROL REGISTER 1 HIGH

REGISTER 16-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit 6	FRMSYNC: Frame Sync Pulse Direction Control bit
	1 = Frame Sync pulse input (slave)
	0 = Frame Sync pulse output (master)
bit 5	FRMPOL: Frame Sync/Slave Select Polarity bit
	1 = Frame Sync pulse/slave select is active-high0 = Frame Sync pulse/slave select is active-low
bit 4	MSSEN: Master Mode Slave Select Enable bit
	1 = SPIx slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically driven during transmission in Master mode)
	0 = Slave select SPIx support is disabled (\overline{SSx} pin will be controlled by port I/O)
bit 3	FRMSYPW: Frame Sync Pulse-Width bit
	 1 = Frame Sync pulse is one serial word length wide (as defined by MODE<32,16>/WLENGTH<4:0>) 0 = Frame Sync pulse is one clock (SCK) wide
bit 2-0	FRMCNT<2:0>: Frame Sync Pulse Counter bits
	Controls the number of serial words transmitted per Sync pulse. 111 = Reserved
	110 = Reserved
	101 = Generates a Frame Sync pulse on every 32 serial words 100 = Generates a Frame Sync pulse on every 16 serial words
	011 = Generates a Frame Sync pulse on every 8 serial words
	010 = Generates a Frame Sync pulse on every 4 serial words
	001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)

000 = Generates a Frame Sync pulse on each serial word

Note 1: AUDEN can only be written when the SPIEN bit = 0.

- **2:** AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
- **3:** URDTEN is only valid when IGNTUR = 1.
- **4:** AUDMOD<1:0> bits can only be written when the SPIEN bit = 0 and are only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

REGISTER 16-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_			_	_	_	_	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—		W	_ENGTH<4:0>	(1 , 2)	
bit 7	•	WLEINGTINA.					
Legend:							
R = Readal	ole bit	t W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	WLENGTH<	4:0>: Variable \	Nord Length b	its ^(1,2)			
	11111 = 32- ł	oit data					
	11110 = 31-	oit data					
	11101 = 30-k						
	11100 = 29-						
	11011 = 28-1						
	11010 = 27 - k						
	11001 = 26-k 11000 = 25-k						
	10111 = 24-k						
	10110 = 23-k						
	10101 = 22-1						
	10100 = 21-						
	10011 = 20-k	oit data					
	10010 = 19-k	oit data					
	10001 = 18-k						
	10000 = 17- k						
	01111 = 16- k						
	01110 = 15-k 01101 = 14-k						
	01100 = 13-bit data 01011 = 12-bit data						
	01010 = 11 -k						
	01001 = 10- k						
	01000 = 9-bi	t data					
	00111 = 8-bi						
	00110 = 7-bi						
	00101 = 6-bi						
	00100 = 5-bi						
	00011 = 4-bi						
	00010 = 3-bi 00001 = 2-bi						
			16> bits in SI	PIxCON1L<11:1	0>		
			.,		-		

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

REGISTER 16-4: SPIxSTATL: SPIx STATUS REGISTER LOW

U-0	U-0	U-0	R/C-0, HS	R-0, HSC	U-0	U-0	R-0, HSC
—	—	-	FRMERR	SPIBUSY	—	_	SPITUR ⁽¹⁾
bit 15							bit 8

R-0, HSC	R/C-0, HS	R-1, HSC	U-0	R-1, HSC	U-0	R-0, HSC	R-0, HSC
SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF
bit 7							bit 0

Legend:	C = Clearable bit	HSC = Hardware Settable/0	Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	HS = Hardware Settable bit

bit 15-13	Unimplemented: Read as '0'
bit 12	FRMERR: SPIx Frame Error Status bit
	1 = Frame error is detected
	0 = No frame error is detected
bit 11	SPIBUSY: SPIx Activity Status bit
	1 = Module is currently busy with some transactions0 = No ongoing transactions (at time of read)
bit 10-9	Unimplemented: Read as '0'
bit 8	SPITUR: SPIx Transmit Underrun Status bit ⁽¹⁾
	 1 = Transmit buffer has encountered a Transmit Underrun (TUR) condition 0 = Transmit buffer does not have a Transmit Underrun condition
bit 7	SRMT: SPIx Shift Register Empty Status bit
	1 = No current or pending transactions (i.e., neither SPIxTXB or SPIxTXSR contains data to transmit)0 = Current or pending transactions
bit 6	SPIROV: SPIx Receive Overflow Status bit
	1 = A new byte/half-word/word has been completely received when the SPIxRXB was full0 = No overflow
bit 5	SPIRBE: SPIx RX Buffer Empty Status bit
	1 = RX buffer is empty
	0 = RX buffer is not empty
	<u>Standard Buffer Mode:</u> Automatically set in hardware when SPIxBUF is read from, reading SPIxRXB. Automatically cleared in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB.
	Enhanced Buffer Mode: Indicates RXELM<5:0> = 6' b000000.
bit 4	Unimplemented: Read as '0'
bit 3	SPITBE: SPIx Transmit Buffer Empty Status bit
	1 = SPIxTXB is empty
	0 = SPIxTXB is not empty
	Standard Buffer Mode:
	Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically cleared in hardware when SPIxBUF is written, loading SPIxTXB.
	Enhanced Buffer Mode:
	Indicates TXELM<5:0> = 6' b000000.

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 16-4: SPIx STATL: SPIx STATUS REGISTER LOW (CONTINUED)

bit 2	Unimplemented: Read as '0'
bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	1 = SPIxTXB is full 0 = SPIxTXB not full
	Standard Buffer Mode: Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR.
	Enhanced Buffer Mode: Indicates TXELM<5:0> = 6' b111111.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit 1 = SPIxRXB is full 0 = SPIxRXB is not full
	Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.
	Enhanced Buffer Mode: Indicates RXELM<5:0> = 6'b111111.

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—		RXELM5 ⁽³⁾	RXELM4 ⁽²⁾	RXELM3 ⁽¹⁾	RXELM2	RXELM1	RXELM0
bit 15							bit 8

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	—	TXELM5 ⁽³⁾	TXELM4 ⁽²⁾	TXELM3 ⁽¹⁾	TXELM2	TXELM1	TXELM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RXELM<5:0>:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **TXELM<5:0>:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

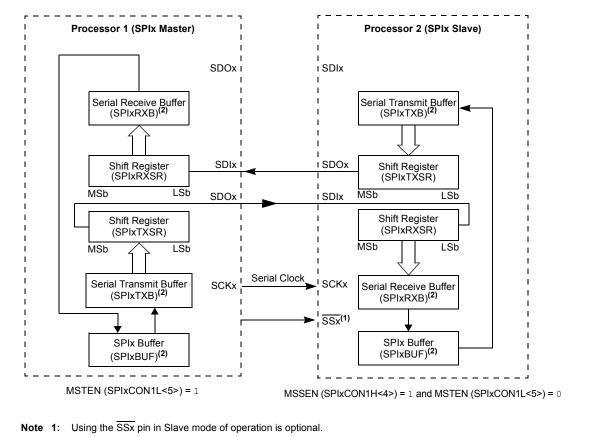
3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

U-0 U-0 U-0 R/W-0 R/W-0 U-0 U-0 R/W-0 FRMERREN BUSYEN SPITUREN bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 SPIROVEN SPIRBEN SPITBEN SPITBFEN SPIRBFEN SRMTEN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown -n = Value at POR '1' = Bit is set bit 15-13 Unimplemented: Read as '0' bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit 1 = Frame error generates an interrupt event 0 = Frame error does not generate an interrupt event bit 11 BUSYEN: Enable Interrupt Events via SPIBUSY bit 1 = SPIBUSY generates an interrupt event 0 = SPIBUSY does not generate an interrupt event bit 10-9 Unimplemented: Read as '0' bit 8 SPITUREN: Enable Interrupt Events via SPITUR bit 1 = Transmit Underrun (TUR) generates an interrupt event 0 = Transmit Underrun does not generate an interrupt event bit 7 SRMTEN: Enable Interrupt Events via SRMT bit 1 = Shift Register Empty (SRMT) generates an interrupt events 0 = Shift Register Empty does not generate an interrupt events bit 6 SPIROVEN: Enable Interrupt Events via SPIROV bit 1 = SPIx Receive Overflow generates an interrupt event 0 = SPIx Receive Overflow does not generate an interrupt event bit 5 SPIRBEN: Enable Interrupt Events via SPIRBE bit 1 = SPIx RX buffer empty generates an interrupt event 0 = SPIx RX buffer empty does not generate an interrupt event bit 4 Unimplemented: Read as '0' bit 3 SPITBEN: Enable Interrupt Events via SPITBE bit 1 = SPIx transmit buffer empty generates an interrupt event 0 = SPIx transmit buffer empty does not generate an interrupt event bit 2 Unimplemented: Read as '0' bit 1 SPITBFEN: Enable Interrupt Events via SPITBF bit 1 = SPIx transmit buffer full generates an interrupt event 0 = SPIx transmit buffer full does not generate an interrupt event SPIRBFEN: Enable Interrupt Events via SPIRBF bit bit 0 1 = SPIx receive buffer full generates an interrupt event 0 = SPIx receive buffer full does not generate an interrupt event

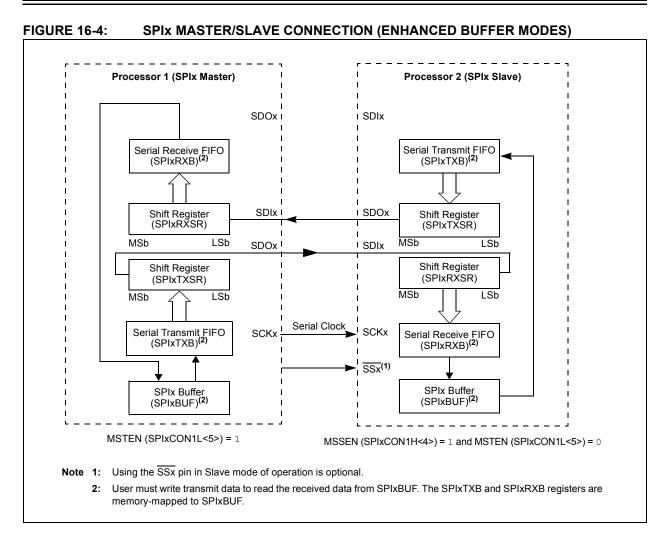
REGISTER 16-7: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RXWIEN	_	RXMSK5 ⁽¹⁾	RXMSK4 ^(1,4)	RXMSK3 ^(1,3)	RXMSK2 ^(1,2)	RXMSK1 ⁽¹⁾	RXMSK0 ⁽¹⁾
bit 15							bit 8

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXWIEN	—	TXMSK5 ⁽¹⁾	TXMSK4 ^(1,4)	TXMSK3 ^(1,3)	TXMSK2 ^(1,2)	TXMSK1 ⁽¹⁾	TXMSK0 ⁽¹⁾
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

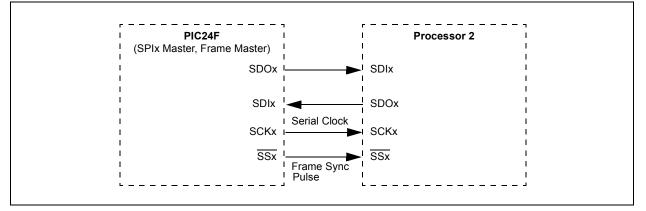
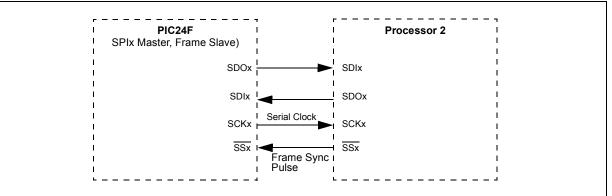
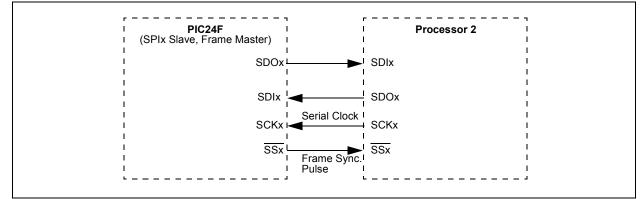
bit 15	RXWIEN: Receive Watermark Interrupt Enable bit
	1 = Triggers receive buffer element watermark interrupt when RXMSK<5:0> \leq RXELM<5:0> 0 = Disables receive buffer element watermark interrupt
bit 14	Unimplemented: Read as '0'
bit 13-8	RXMSK<5:0>: RX Buffer Mask bits ^(1,2,3,4)
	RX mask bits; used in conjunction with the RXWIEN bit.
bit 7	TXWIEN: Transmit Watermark Interrupt Enable bit
	 1 = Triggers transmit buffer element watermark interrupt when TXMSK<5:0> = TXELM<5:0> 0 = Disables transmit buffer element watermark interrupt
bit 6	Unimplemented: Read as '0'
bit 5-0	TXMSK<5:0>: TX Buffer Mask bits ^(1,2,3,4)
	TX mask bits; used in conjunction with the TXWIEN bit.
Note 1:	Mask values higher than FIFODEPTH are not valid. The module will not trigger a match for any value this case.


- 2: RXMSK2 and TXMSK2 bits are only present when FIFODEPTH = 8 or higher.
- 3: RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher.
- 4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.

in

2: User must write transmit data to read the received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory-mapped to SPIxBUF.

FIGURE 16-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM

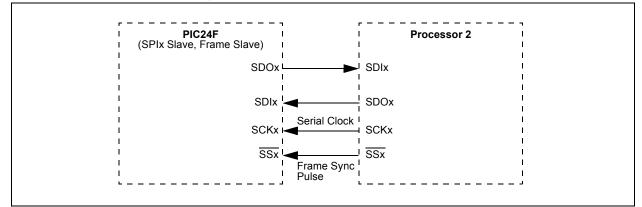

FIGURE 16-6: SPIx MASTER, FRAME SLAVE CONNECTION DIAGRAM

FIGURE 16-7: SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM

FIGURE 16-8: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM

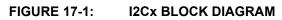
EQUATION 16-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

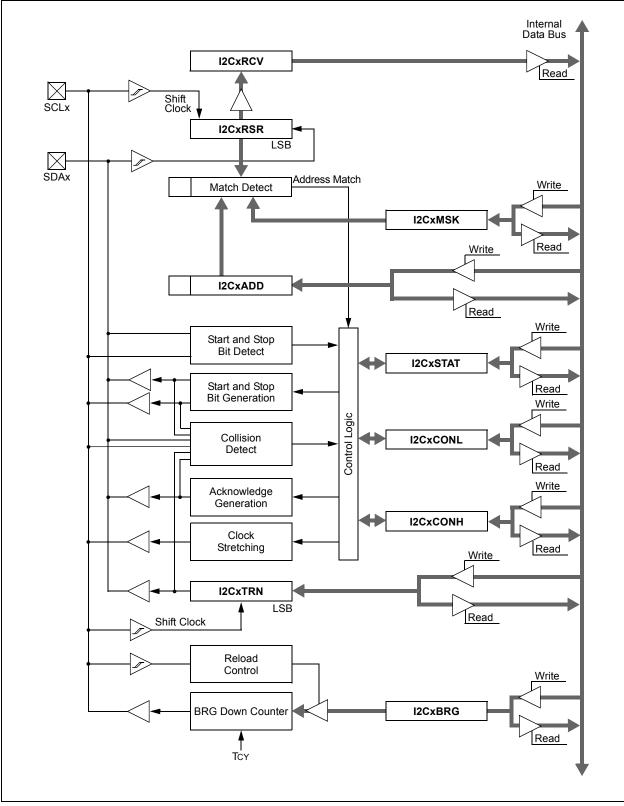
$$Baud Rate = \frac{FPB}{(2 * (SPIxBRG + 1))}$$
Where:
FPB is the Peripheral Bus Clock Frequency.

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Inter-Integrated Circuit™ (I²C™)" (DS70000195). The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated CircuitTM (I^2C^{TM}) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.


The I²C module supports these features:


- Independent master and slave logic
- · 7-bit and 10-bit device addresses
- General call address as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications
- · Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL
- A block diagram of the module is shown in Figure 17-1.

17.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communication protocols for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

17.2 Setting Baud Rate when Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

$$I2CxBRG = \left(\left(\frac{1}{FSCL} - PGDx \right) \times \frac{FCY}{2} \right) - 2$$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

17.3 Slave Address Masking

The I2CxMSK register (Register 17-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I²C[™] protocol, the addresses in Table 17-1 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Slave Address	R/W Bit	Description
000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	х	Cbus Address
0000 01x	х	Reserved
0000 1xx	Х	HS Mode Master Code
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	Х	Reserved

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

R/W-0	U-0	R/W-0, HC	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
I2CEN		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN	
bit 15	-	-			•		bit 8	
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7							bit 0	
Legend:		HC = Hardwa	e Clearable bit					
R = Readab		W = Writable I	pit	-	nented bit, read			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15	1 = Enables f 0 = Disables	Enable bit (writa he I2Cx module the I2Cx module	e, and configure e; all l ² C™ pins	s the SDAx ar			6	
bit 14	Unimplemen	ted: Read as '0	3					
bit 13		x Stop in Idle M						
		ues module ope			e mode			
bit 12		s module operat Lx Release Cor			.(1)			
	If STREN = 0 1 = Releases 0 = Forces cl If STREN = 1 1 = Releases	clock ock low (clock s <u>:</u>	tretch)		bit to '0'; clock s	stretch is at the	next SCLx low	
bit 11	STRICT: 12C	x Strict Reserve	d Address Rule	Enable bit				
	(In Slave that cate (In Maste 0 = Reserve (In Slave When the	erved addressir Mode) – The d gory are NACKe er Mode) – The d addressing wo e Mode) – The ere is a match w er Mode) – Rese	evice doesn't re ed. device is allowe ould be Acknow device will resp vith any of the re	espond to rese ed to generate ledged. rond to an add	rved address s addresses with dress falling in	pace and addre reserved addr the reserved a	ess space. ddress space.	
bit 10	A10M: 10-Bit	10M: 10-Bit Slave Address Flag bit						
		is a 10-bit slave is a 7-bit slave a						
bit 9	DISSLW: Sle	w Rate Control	Disable bit					
		control is disab				disabled for 1	MHz mode)	
bit 8	SMEN: SMB	us Input Levels	Enable bit					
		nput logic so thr SMBus-specific		mpliant with th	e SMBus speci	fication		
	utomatically cle ave reception.	eared to '0' at the	e beginning of s			ally cleared to '0	' at the end of	

REGISTER 17-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

2: Automatically cleared to '0' at the beginning of slave transmission.

REGISTER 17-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)	
	 1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception 0 = General call address is disabled 	
bit 6	STREN: SCLx Clock Stretch Enable bit	
	In I ² C Slave mode only; used in conjunction with the SCLREL bit. 1 = Enables clock stretching 0 = Disables clock stretching	
bit 5	ACKDT: Acknowledge Data bit	
	In I ² C Master mode during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive. In I ² C Slave mode when AHEN = 1 or DHEN = 1. The value that the slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception. 1 = A NACK is sent 0 = ACK is sent	
bit 4	ACKEN: Acknowledge Sequence Enable bit	
	In I ² C Master mode only; applicable during Master Receive mode. 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit 0 = Acknowledge sequence is Idle	
bit 3	RCEN: Receive Enable bit (I ² C Master mode only)	
	1 = Enables Receive mode for l^2C ; automatically cleared by hardware at the end of an 8-bit receive data byte 0 = Receive sequence is not in progress	
bit 2	PEN: Stop Condition Enable bit (I ² C Master mode only)	
	 1 = Initiates Stop condition on SDAx and SCLx pins 0 = Stop condition is Idle 	
bit 1	RSEN: Restart Condition Enable bit (I ² C Master mode only)	
	 1 = Initiates Restart condition on the SDAx and SCLx pins 0 = Restart condition is Idle 	
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)	
	 1 = Initiates Start condition on the SDAx and SCLx pins 0 = Start condition is Idle 	
Note '	1: Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.	

2: Automatically cleared to '0' at the beginning of slave transmission.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—	—	—		—	—				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN				
bit 7							bit C				
Legend: R = Readat	hit	W = Writable	hit	II = I Inimplen	nented bit, read	1 as '0'					
-n = Value a		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkr	NOW/D				
			L		areu						
bit 15-7	Unimpleme	nted: Read as	ʻ0'								
bit 6	-			(I ² C [™] Slave mo	ode only).						
	1 = Enables interrupt on detection of Stop condition										
	•	0 = Stop detection interrupts are disabled									
bit 5	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)										
	 Enables interrupt on detection of Start or Restart conditions Start detection interrupts are disabled 										
bit 4		BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only)									
	1 = I2CxRCV is updated and an ACK is generated for a received address/data byte, ignoring the state										
	of the I2COV bit only if the RBF bit = 0										
bit 3		I2CxRCV is only updated when I2COV is clear DAHT: SDAx Hold Time Selection bit									
DIE 3	1 = Minimum of 300 ns hold time on SDAx after the falling edge of SCLx										
	0 = Minimum of 100 ns hold time on SDAx after the falling edge of SCLx										
bit 2				Enable bit (I ² C	-						
	If, on the rising edge of SCLx, SDAx is sampled low when the module is outputting a high state, the										
	BCL bit is set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit										
	sequences. 1 = Enables slave bus collision interrupts										
		0 = Slave bus collision interrupts are disabled									
bit 1	AHEN: Addr	AHEN: Address Hold Enable bit (I ² C Slave mode only)									
	(I2CxCC	1 = Following the 8th falling edge of SCLx for a matching received address byte; SCLREL bit (I2CxCONL<12>) will be cleared and the SCLx will be held low									
		holding is disa	-								
bit 0		Hold Enable b	-	• •	ata huta alar:-	hordwore els					
			-		ala byle; slave	naroware clear	s the SULKEL				
	 1 = Following the 8th falling edge of SCLx for a received data byte; slave hardware clears the SCLREL bit (I2CxCONL<12>) and SCLx is held low 0 = Data holding is disabled 										

REGISTER 17-3: I20	xSTAT: I2Cx STATUS REGISTER
--------------------	-----------------------------

R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC				
ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10				
bit 15	I	•			•		bit 8				
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF				
bit 7							bit 0				
Legend:		C = Clearab			Settable/Cleara						
R = Readab		W = Writabl		•	ented bit, read as						
-n = Value a	t POR	'1' = Bit is s	et	'0' = Bit is clear	ed	HS = Hardware	e Settable bit				
bit 15	ACKSTAT:	Acknowledge	e Status bit (up	odated in all Mas	ter and Slave m	odes)					
			ot received fro ceived from s								
bit 14	TRSTAT: Tr	ansmit Status	s bit (when op	erating as I ² C™	master; applical	ble to master tra	nsmit operation)				
		= Master transmit is in progress (8 bits + ACK)									
		transmit is no									
bit 13		•		it (valid in I ² C Sla	• ·		le el:				
				edge sequence, eared on 9th risi			CIOCK				
bit 12-11		ented: Read	-								
bit 10	-			Slave mode; cle	ared when I ² C m	nodule is disable	d, I2CEN = 0)				
	1 = A bus co	ollision has b		during a master			,				
bit 9	GCSTAT: G	eneral Call S	tatus bit (clea	red after Stop de	etection)						
			was received was not rece								
bit 8	ADD10: 10-	Bit Address	Status bit (clea	ared after Stop d	etection)						
		ddress was n	-								
	0 = 10-bit ad	ddress was n	ot matched								
bit 7			sion Detect bi								
	in softw	/are	o the I2CxTRI	N register failed I	because the I ² C	module is busy;	must be cleared				
	0 = No colli										
bit 6		OV: I2Cx Receive Overflow Flag bit A byte was received while the I2CxRCV register is still holding the previous byte; I2COV is a									
		are" in Trans		ist be cleared in			yle, izcov is a				
bit 5	_		hen operating	g as I ² C slave)							
bit 5	1 = Indicate	s that the las	t byte receive	-	was an address						
bit 4	P: I2Cx Stop		i byte receive								
	Indated wh	en Start Res	et or Ston is a	detected; cleared	1 when the 1^2 C m	nodule is disable	d I2CEN = ∩				

REGISTER 17-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: I2Cx Start bit
	Updated when Start, Reset or Stop is detected; cleared when the I ² C module is disabled, I2CEN = 0. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 1 = Read: Indicates the data transfer is output from the slave 0 = Write: Indicates the data transfer is input to the slave
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit is in progress, I2CxTRN is full (8 bits of data) 0 = Transmit is complete, I2CxTRN is empty

REGISTER 17-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	—	_	—	—	MSK	<9:8>
bit 15				·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MS	K<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = W		W = Writable I	W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0 MSK<9:0>: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position 0 = Disables masking for bit x; bit match is required in this position

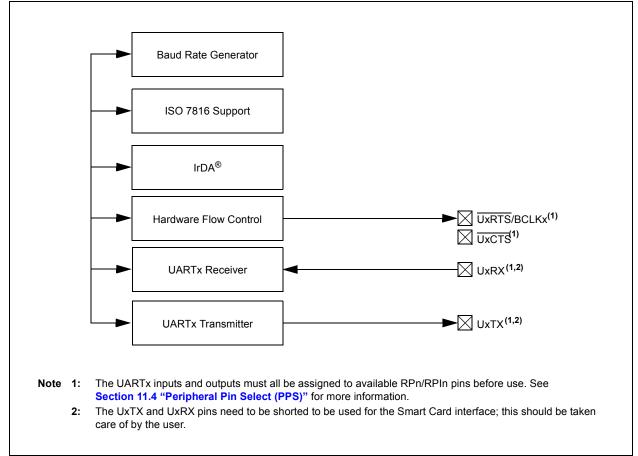
18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582). The information in this data sheet supersedes the information in the FRM.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins. The UART module includes the ISO 7816 compliant Smart Card support and the IrDA[®] encoder/decoder unit.

The PIC24FJ128GA204 family devices are equipped with four UART modules, referred to as UART1, UART2, UART3 and UART4.

The primary features of the UARTx modules are:


- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with the UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Range from 61 bps to 4 Mbps at 16 MIPS in 4x mode

- Baud Rates Range from 15 bps to 1 Mbps at 16 MIPS in 16x mode
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Separate Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- · Polarity Control for Transmit and Receive Lines
- · Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- Includes DMA Support
- 16x Baud Clock Output for IrDA Support
- Smart Card ISO 7816 Support (UART1 and UART2 only):
 - T = 0 protocol with automatic error handling
 - T = 1 protocol
 - Dedicated Guard Time Counter (GTC)
 - Dedicated Waiting Time Counter (WTC)

A simplified block diagram of the UARTx module is shown in Figure 18-1. The UARTx module consists of these key important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver
 - **Note:** Throughout this section, references to register and bit names that may be associated with a specific UART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTA" might refer to the Status register for either UART1, UART2, UART3 or UART4.

FIGURE 18-1: UARTX SIMPLIFIED BLOCK DIAGRAM

18.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated, 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 18-1 shows the formula for computation of the baud rate when BRGH = 0.

EQUATION 18-1: UARTx BAUD RATE WITH BRGH = $0^{(1,2)}$

$$Baud Rate = \frac{FCY}{16 \cdot (UxBRG + 1)}$$
$$UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$$
Note 1: FCY denotes the instruction cycle clock frequency (FOSC/2).
2: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 18-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 18-2 shows the formula for computation of the baud rate when BRGH = 1.

EQUATION 18-2: UARTX BAUD RATE WITH BRGH = $1^{(1,2)}$

$$Baud Rate = \frac{FCY}{4 \cdot (UxBRG + 1)}$$
$$UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$$

- **Note 1:** FCY denotes the instruction cycle clock frequency.
 - **2:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 18-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate = FCY/(16 (UxBRG + 1))Solving for UxBRG Value: **UxBRG** = ((FCY/Desired Baud Rate)/16) - 1**UxBRG** = ((400000/9600)/16) - 1UxBRG = 25 Calculated Baud Rate = 4000000/(16(25+1))= 9615 Error = (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate = (9615 - 9600)/9600 = 0.16% Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

18.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write a data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternatively, the data byte may be transferred while UTXEN = 0 and then, the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bits, UTXISEL<1:0>.

18.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 18.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bits, UTXISELx.

18.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

18.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 18.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. Set the URXEN bit (UxSTA<12>).
- 4. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL<1:0>.
- 5. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 6. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

18.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

18.7 Infrared Support

The UARTx module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

18.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

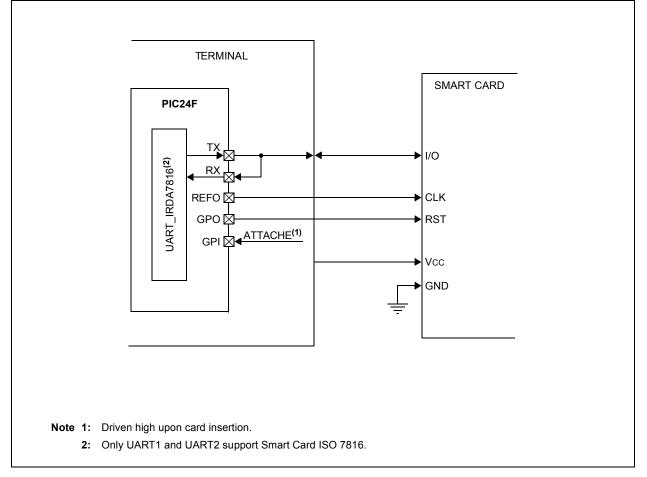
To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. With UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UARTx module is enabled. It can be used to support the IrDA codec chip.

18.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

18.8 Smart Card ISO 7816 Support

Figure 18-2 shows a Smart Card subsystem using a PIC24F microcontroller with a UARTx module for Smart Card data communication. Vcc to power the Smart Card can be supplied through a terminal or an


external power supply. The terminal is also responsible for clocking and resetting the Smart Card. The TX and RX line of the PIC24F device has to be shorted externally and then connected to the I/O line of the Smart Card.

There are two protocols which are widely used for Smart Card communication between terminal and Smart Card:

- T = 0 (asynchronous, half-duplex, byte-oriented protocol)
- T = 1 (asynchronous, half-duplex, block-oriented protocol)

The selection of T = 0 or T = 1 protocol is done using the PTRCL bit in UxSCCON register.

18.9 Registers

The UART module consists of the following Special Function Registers (SFRs):

- UxMODE: UARTx Mode Register (Register 18-1)
- UxSTA: UARTx Status and Control Register (Register 18-2)
- UxRXREG: UARTx Receive Register
- UxTXREG: UARTx Transmit Register (Write-Only) (Register 18-3)

- UxADMD: UARTx Address Mask Detect Register (Register 18-4)
- UxBRG: UARTx Baud Rate Register
- UxSCCON: UARTx Smart Card Control Register (Register 18-5)
- UxSCINT: UARTx Smart Card Interrupt Register (Register 18-6)
- UxGTC: UARTx Guard Time Counter Register
- UxWTCL and UxWTCH: UARTx Waiting Time Counter Registers

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	—	UEN1	UEN0
bit 15							bit 8

R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit 0

Legend:	HC = Hardware Clearable bi	t	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	UARTEN: UARTx Enable bit ⁽¹⁾
	 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption is minimal
bit 14	Unimplemented: Read as '0'
bit 13	USIDL: UARTx Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾
	 1 = IrDA encoder and decoder are enabled 0 = IrDA encoder and decoder are disabled
bit 11	RTSMD: Mode Selection for UxRTS Pin bit
	1 = UxRTS pin is in Simplex mode 0 = UxRTS pin is in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Enable bits
	 11 = UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin is controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches
	00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by port latches
bit 7	WAKE: Wake-up on Start Bit Detect During Sleep Mode Enable bit
	1 = UARTx continues to sample the UxRX pin; interrupt is generated on the falling edge, bit is cleared in hardware on the following rising edge
	0 = No wake-up is enabled
	If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
2:	This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 6	I DRACK: UADTy Loophack Made Select hit
DILO	LPBACK: UARTx Loopback Mode Select bit
	1 = Enables Loopback mode
	0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h); cleared in hardware upon completion
	0 = Baud rate measurement is disabled or completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0'
	0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	1 = High-Speed mode (4 BRG clock cycles per bit)
	0 = Standard Speed mode (16 BRG clock cycles per bit)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	11 = 9-bit data, no parity
	10 = 8-bit data, odd parity
	01 = 8-bit data, even parity
	00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits
	0 = One Stop bit
Note 1:	If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	URXEN	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT
bit 15			bit 8				
R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7			•			•	bit 0

Legend:	C = Clearable bit	HSC = Hardware Settable/C	learable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
HS = Hardware Settable bit	HC = Hardware Clearable b	it	

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14	UTXINV: UARTx IrDA [®] Encoder Transmit Polarity Inversion bit ⁽¹⁾
--------	--

IR	EN	1	=	0
			ł	

	IREN = 0:
	1 = UxTX Idle state is '0'
	0 = UxTX Idle state is '1'
	IREN = 1:
	1 = UxTX Idle state is '1'
	0 = UxTX Idle state is '0'
bit 12	URXEN: UARTx Receive Enable bit
	1 = Receive is enabled, UxRX pin is controlled by UARTx
	0 = Receive is disabled, UxRX pin is controlled by the port
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit ⁽²⁾
	1 = Transmit is enabled, UxTX pin is controlled by UARTx
	0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by the port
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty, a transmission is in progress or queued

- **Note 1:** The value of this bit only affects the transmit properties of the module when the IrDA[®] encoder is enabled (IREN = 1).
 - 2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect) 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (the character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (the character at the top of the receive FIFO) 2 = Framing error has not been detected
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 → 0 transition); will reset the receive buffer and the RSR to the empty state)
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1	: The value of this bit only affects the transmit properties of the module when the IrDA [®] encoder is enabled (IREN = 1).

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 18-3: UxTXREG: UARTx TRANSMIT REGISTER (NORMALLY WRITE-ONLY)

W-x	U-0	U-0	U-0	U-0	U-0	U-0	W-x
LAST ⁽¹⁾	—	—	—	—	_	—	UxTXREG8
bit 15							bit 8

W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
UxTXREG7	UxTXREG6	UxTXREG5	UxTXREG4	UxTXREG3	UxTXREG2	UxTXREG1	UxTXREG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	_AST: Last Byte Indicator for Smart Card Support bits ⁽¹)

bit 14-9 Unimplemented: Read as '0'

Γ.

bit 8 UxTXREG8: Data of the Transmitted Character bit (in 9-bit mode)

bit 7-0 UxTXREG<7:0>: Data of the Transmitted Character bits

Note 1: This bit is only available for UART1 and UART2.

REGISTER 18-4: UxADMD: UARTx ADDRESS MATCH DETECT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADMMASK7	ADMMASK6	ADMMASK5	ADMMASK4	ADMMASK3	ADMMASK2	ADMMASK1	ADMMASK0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADMADDR7	ADMADDR6	ADMADDR5	ADMADDR4	ADMADDR3	ADMADDR2	ADMADDR1	ADMADDR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 ADMMASK<7:0>: UARTx ADMADDR<7:0> (UxADMD<7:0>) Masking bits

 For ADMMASK<x>:
 1 = ADMADDR<x> is used to detect the address match

 0 = ADMADDR<x> is not used to detect the address match

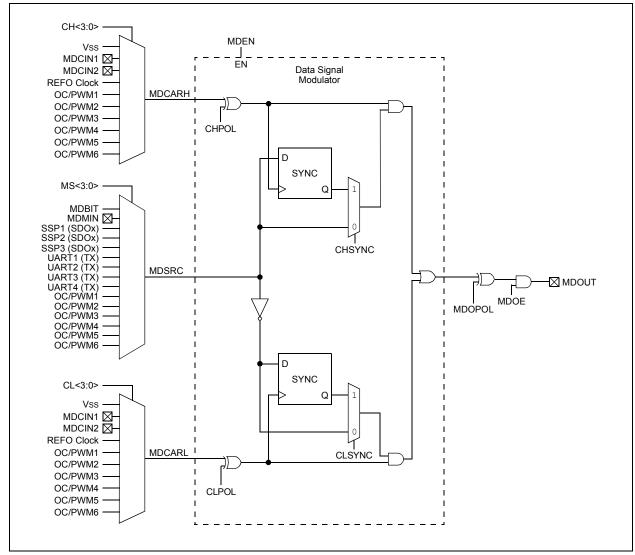
bit 7-0 **ADMADDR<7:0>:** UARTx Address Detect Task Off-Load bits Used with the ADMMASK<7:0> bits (UxADMD<15:8>) to off-load the task of detecting the address character from the processor during Address Detect mode.

REGISTER 18-5: UxSCCON: UARTx SMART CARD CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	_	_	_	_	_	_			
bit 15							bit 8			
		D 444 A	D 444 0	D 444 0	D (14) 0	D 444 0	D 444 0			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0 T0PD ⁽²⁾	R/W-0	R/W-0			
	—	TXRPT1 ⁽²⁾	TXRPT0 ⁽²⁾	CONV	TOPD-	PTRCL	SCEN			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	oit	U = Unimplem	nented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-6	Unimplemen	ted: Read as ')'							
bit 5-4	TXRPT<1:0>:	Transmit Repo	eat Selection bi	its ⁽²⁾						
	11 = Retransmits the error byte four times									
	10 = Retransmits the error byte three times									
	01 = Retransmits the error byte twice 00 = Retransmits the error byte once									
bit 3	•	Convention Se	lection bit							
	 1 = Inverse io 0 = Direct logi 	gic convention								
bit 2	-	own Duration for	or T = ○ Error H	landling hit(2)						
5112	1 = 2 ETU	own Duration it								
	0 = 1 ETU									
bit 1	PTRCL: Sma	rt Card Protoco	I Selection bit							
	1 = T = 1									
	0 = T = 0									
bit 0	SCEN: Smart	Card Mode Er	able bit							
		rd mode is ena		V (UxMODE<1	5>) = 1					
	0 = Smart Ca	rd mode is disa	bled							
Note 1: Th	his register is on	ly available for	UART1 and U	ART2.						
2: TI	hese bits are ap									

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	—	RXRPTIF ⁽²⁾	TXRPTIF ⁽²⁾	—	_	WTCIF	GTCIF
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
0-0	PARIE ⁽²⁾	RXRPTIE ⁽²⁾	TXRPTIE ⁽²⁾	0-0	0-0	WTCIE	GTCIE
bit 7	FARILY		TARFIL			WICIE	bit 0
Legend: R = Readable	o hit	W = Writable I	ait		contod bit roa	d aa '0'	
			JIL	U = Unimplem			
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplemen	nted: Read as '0)'				
bit 13	RXRPTIF: Re	eceive Repeat li	nterrupt Flag b	it ⁽²⁾			
	1 = Parity err 0 = Flag is cl		after the same	e character has	s been receive	ed five times (fou	ur retransmits)
bit 12	-	ansmit Repeat I	nterrunt Elag b	(2)			
on 12		r has been dete			er TXRPT<1:	0> (see Registe	r 18-5)
bit 11-10	-	nted: Read as '0)'				
bit 9	-	ing Time Counte		a bit			
	1 = Waiting T	ime Counter ha	s reached 0	•			
bit 8	GTCIF: Guar	d Time Counter	Interrupt Flag	bit			
		me Counter has me Counter has					
bit 7	Unimplemen	ted: Read as '0)'				
bit 6	PARIE: Parity	y Interrupt Enab	le bit ⁽²⁾				
		<3>) in Register			ed with a pa	rity error; see	the PERR bi
bit 5	•	eceive Repeat I	nterrupt Enable	e bit(2)			
					sisted after th	he same charad	cter has beer
		five times (four		·			
bit 4	TXRPTIE: Tr	ansmit Repeat I	nterrupt Enable	e bit ⁽²⁾			
		been completed			fter the last re	transmit per the	TXRPT<1:0>
bit 3-2	-	nted: Read as '0)'				
bit 1	-	ing Time Counter		able bit			
	1 = Waiting T	ime Counter int	errupt is enable	ed			
bit 0	•	rd Time Counter	•				
		me Counter inte	-				
		me Counter inte					

REGISTER 18-6: UxSCINT: UARTx SMART CARD INTERRUPT REGISTER⁽¹⁾


19.0 DATA SIGNAL MODULATOR (DSM)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Data Signal Modulator (DSM)"** (DS39744). The information in this data sheet supersedes the information in the FRM.

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the "modulator signal") with a carrier signal to produce a modulated output. Both the carrier and the modulator signals are supplied to the DSM module, either internally from the output of a peripheral, or externally through an input pin. The modulated output signal is generated by performing a logical AND operation of both the carrier and modulator signals, and then it is provided to the MDOUT pin. Using this method, the DSM can generate the following types of key modulation schemes:

- Frequency Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Figure 19-1 shows a simplified block diagram of the Data Signal Modulator peripheral.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
MDEN		MDSIDL			_	_	_
bit 15							bit 8
U-0	R/W-0	R/W-1	R/W-0	U-0	U-0	U-0	R/W-0
_	MDOE	MDSLR	MDOPOL	_	_	_	MDBIT ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unk	nown
bit 14 bit 13	Unimplemen MDSIDL: DS 1 = Discontin	ted: Read as ' M Stop in Idle I ues module op	Vode bit eration when d	evice enters Id	lle mode		
bit 12-7		s module opera i ted: Read as '	ation in Idle mo	ae			
bit 6	MDOE: DSM 1 = Modulato		utput Enable bit enabled	t			
bit 5	1 = MDOUT p	oin slew rate lir	Rate Limiting b niting is enable niting is disable	d			
bit 4	1 = Modulato	SM Output Pola r output signal r output signal	is inverted				
bit 3-1	Unimplemen	ted: Read as '	0'				
bit 0	1 = Carrier is	al Modulation modulated not modulated					

Note 1: The MDBIT must be selected as the modulation source (MDSRC<3:0> = 0000).

REGISTER 19-2: MDSRC: DATA SIGNAL MODULATOR SOURCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	_	_	_	_	_		—			
bit 15	÷			·	-		bit 8			
R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x			
SODIS ⁽¹		_	_	MS3 ⁽²⁾	MS2 ⁽²⁾	MS1 ⁽²⁾	MS0 ⁽²⁾			
bit 7							bit (
Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 6-4	•	Unimplemented: Read as '0'								
bit 15-8 bit 7	Unimplemented: Read as '0' SODIS: DSM Source Output Disable bit ⁽¹⁾									
		ignal driving the ignal driving the								
bit 6-4	Unimpleme	nted: Read as '	0'							
bit 3-0	MS<3:0> DS	SM Source Sele	ction bits ⁽²⁾							
	1111 = Unimplemented									
	1110 = SPI3 module output (SDO3)									
	1101 = Output Compare/PWM Module 6 output 1100 = Output Compare/PWM Module 5 output									
	1001 = Output Compare/PWM Module 5 output 1011 = Output Compare/PWM Module 4 output									
		1010 = Output Compare/PWM Module 3 output								
	1001 = Output Compare/PWM Module 2 output									
	1000 = Output Compare/PWM Module 1 output									
	0111 = UART4 TX output									
	0110 = UART3 TX output									
	0101 = UART2 TX output									
	0100 = UART1 TX output 0011 = SPI2 module output (SDO2)									
	0010 = SPI1 module output (SDO2)									
	0001 = Input on MDMIN pin									
	0000 = Manual modulation using MDBIT (MDCON<0>)									
	0000 = Man	ual modulation u	using MDBIT (MDCON<0>)						
Note 1:	0000 = Man This bit is only a		•	MDCON<0>)						

2: These bits are not affected by a POR.

REGISTER 19-3: MDCAR: DATA SIGNAL MODULATOR CARRIER CONTROL

	REG	ISTER					
R/W-x	R/W-x	R/W-x	U-0	R/W-x	R/W-x	R/W-x	R/W-x
CHODIS	CHPOL	CHSYNC		CH3 ⁽¹⁾	CH2 ⁽¹⁾	CH1 ⁽¹⁾	CH0 ⁽¹⁾
bit 15				·	·	·	bit 8
R/W-0	R/W-x	R/W-x	U-0	R/W-x	R/W-x	R/W-x	R/W-x
CLODIS	CLPOL	CLSYNC	_	CL3 ⁽¹⁾	CL2 ⁽¹⁾	CL1 ⁽¹⁾	CL0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable b	it	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	CHODIS: DS	M High Carrier (Dutput Disabl	e bit			
		ignal driving the	-		ed by CH<3:0>) is disabled	
	0 = Output si	gnal driving the	peripheral out	tput pin is enab	led		
bit 14		M High Carrier P		bit			
		high carrier sign high carrier sign		ted			
bit 13	CHSYNC: D	SM High Carrier	Synchronizat	ion Enable bit			
		or waits for a fallin					low carrier
		or output is not sy		o the high time	carrier signal)	
bit 12	•	nted: Read as '0					
bit 11-8		M Data High Ca	rier Selection	n bits(")			
	1111 •						
	• = Reserve	d					
	•						
	1010	ut Compore/D\//		utout			
		ut Compare/PW					
		ut Compare/PW					
		ut Compare/PW					
	•	ut Compare/PW		•			
		ut Compare/PW		ulpul			
		on MDCIN2 pin					
		on MDCIN1 pin					
L:1 7	0000 = Vss						
bit 7		dulator Low Car	•		ad by CL <3.05) is disabled	
	0 = Output si	gnal driving the	peripheral out	tput pin is enab			
bit 6		dulator Low Carri	•	elect bit			
		low carrier signation low carrier signation		ed			

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

REGISTER 19-3: MDCAR: DATA SIGNAL MODULATOR CARRIER CONTROL REGISTER (CONTINUED)

- bit 5 **CLSYNC:** DSM Low Carrier Synchronization Enable bit
 - 1 = Modulator waits for a falling edge on the low carrier before allowing a switch to the high carrier
 0 = Modulator output is not synchronized to the low time carrier signal⁽¹⁾
- bit 4 Unimplemented: Read as '0'
- bit 3-0 **CL<3:0>:** DSM Data Low Carrier Selection bits⁽¹⁾ Bit settings are identical to those for CH<3:0>.
- Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

NOTES:

20.0 ENHANCED PARALLEL MASTER PORT (EPMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Enhanced Parallel Master Port (EPMP)" (DS39730). The information in this data sheet supersedes the information in the FRM.

The Enhanced Parallel Master Port (EPMP) module provides a parallel, 4-bit (Master mode only) and 8-bit (Master and Slave modes) data bus interface to communicate with off-chip modules, such as memories, FIFOs, LCD controllers, and other microcontrollers. This module can serve as either the master or the slave on the communication bus.

For EPMP Master modes, all external addresses are mapped into the internal Extended Data Space (EDS). This is done by allocating a region of the EDS for each chip select and then assigning each chip select to a particular external resource, such as a memory or external controller. This region should not be assigned to another device resource, such as RAM or SFRs. To perform a write or read on an external resource, the CPU simply performs a write or read within the address range assigned for the EPMP. Key features of the EPMP module are:

- Extended Data Space (EDS) Interface allows Direct Access from the CPU
- Up to 10 Programmable Address Lines
- · Up to 2 Chip Select Lines
- Up to 1 Acknowledgment Line (one per chip select)
- · 4-Bit and 8-Bit Wide Data Bus
- Programmable Strobe Options (per chip select)
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Programmable Address/Data Multiplexing
- Programmable Address Wait States
- Programmable Data Wait States (per chip select)
- Programmable Polarity on Control Signals (per chip select)
- Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Port Support
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer

20.1 Memory Addressable in Different Modes

The memory space addressable by the device depends on the address/data multiplexing selection; it varies from 1K to 2 Mbytes. Refer to Table 20-1 for different memory-addressable modes.

Data Port Size	PMA<9:8>	PMA<7:0>	PMD<7:4>	PMD<3:0>	Accessible memory	
	Demultiplexed	Address (Al	DRMUX<1:0>	= 00)		
8-Bit (PTSZ<1:0> = 00)	Addr<9:8>	Addr<7:0>	Da	ata	1K	
4-Bit (PTSZ<1:0> = 01)	Addr<9:8>	Addr<7:0>	_	Data	1K	
	1 Address	Phase (ADRM	/IUX<1:0> = 0	1)		
8-Bit (PTSZ<1:0> = 00)	_	PMALL	Addr<7:	0> Data	1K	
4-Bit (PTSZ<1:0> = 01)	Addr<9:8>	PMALL	Addr<7:4>	Addr<3:0>	1K	
4-Dil (P132<1.02 - 01)	Auui < 9.62	FIVIALL	—	Data (1)	IK	
	2 Address I	Phases (ADR	MUX<1:0> = 1	.0)		
		PMALL	Addr<7:0>			
8-Bit (PTSZ<1:0> = 00)	—	PMALH	Addr<	:15:8>	64K	
		—	Da	ata		
		PMALL	Addr	<3:0>		
4-Bit (PTSZ<1:0> = 01)	Addr<9:8>	PMALH	Addr	<7:4>	1K	
		—	Data			
	3 Address I	Phases (ADR	MUX<1:0> = 1	1)		
		PMALL	Addr	<7:0>		
8-Bit (PTSZ<1:0> = 00)		PMALH	Addr<	:15:8>	2 Mbytes	
6-Bit (F132 > 1.0 - 0.0)	_	PMALU	Addr<	22:16>	2 Mbytes	
		—	Da	ata		
		PMALL	Addr	<3:0>		
4-Bit (PTSZ<1:0> = 01)	Addr<13:12>	PMALH	Addr	<7:4>	16K	
		PMALU		<11:8>		
		—	Da	ata		

TABLE 20-1: MEMORY ADDRESSABLE IN DIFFERENT MODES

Pin Name (Alternate Function)	Туре	Description
	0	Address Bus bit 14
PMA<14> (PMCS1)	I/O	Data Bus bit 14 (16-bit port with multiplexed addressing)
(1 1001)	0	Chip Select 1 (alternate location)
PMA<9:3>	0	Address Bus bits<9:3>
PMA<2>	0	Address Bus bit 2
(PMALU)	0	Address Latch Upper Strobe for Multiplexed Address
PMA<1>	I/O	Address Bus bit 1
(PMALH)	0	Address Latch High Strobe for Multiplexed Address
PMA<0>	I/O	Address Bus bit 0
(PMALL)	0	Address Latch Low Strobe for Multiplexed Address
PMD<7:0>	I/O	Data Bus bits<7:0>, Data bits<15-8>
PIVID<7.0>	0	Address Bus bits<7:0>
PMCS1	I/O	Chip Select 1
PMCS2	I/O	Chip Select 2
PMWR	I/O	Write Strobe
PMRD	I/O	Read Strobe
PMBE1	0	Byte Indicator
PMBE0	0	Nibble or Byte Indicator
PMACK1		Acknowledgment Signal 1

TABLE 20-2: ENHANCED PARALLEL MASTER PORT PIN DESCRIPTIONS

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
PMPEN		PSIDL	ADRMUX1	ADRMUX0		MODE1	MODE0
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CSF1	CSF0	ALP	ALMODE		BUSKEEP	IRQM1	IRQM0
bit 7	0010	7 LI	ALWODE		DOOREEL	III (QIVII)	bit
Legend:	la hit		L.14		a a material la bita una a s		
R = Readab -n = Value a		W = Writable '1' = Bit is set		0 = Unimplen	nented bit, read	x = Bit is unkr	
					areu		
bit 15	PMPEN: EPM	VIP Enable bit					
	1 = EPMP is						
	0 = EPMP is						
bit 14	-	ted: Read as '					
bit 13		P Stop in Idle N					
			eration when d		le mode		
L: 10 11		-	ation in Idle mo				
bit 12-11			ata Multiplexing multiplexed wi			haaaa	
			multiplexed wi				
			multiplexed wi				
			ear on separate		0		
bit 10	Unimplemen	ted: Read as '	0'				
bit 9-8	MODE<1:0>:	Parallel Port N	/lode Select bits	S			
	11 = Master	mode					
			sed are PMRD				
			ed are PMRD, I				
bit 7-6			Port: Pins used	are PIVIRD, PI	VIVR, PIVICS a		
DIL 7-0	11 = Reserve	hip Select Fun	CLION DILS				
		u 4> is used for (Chin Select 1				
	01 = Reserve						
		is used for Ch	p Select 1				
bit 5	ALP: Addres	s Latch Polarity	/ bit				
			IALH and PMA				
bit 4		ddress Latch S		,			
			s strobes (each	n address phas	e is only prese	nt if the current	access would
			ss in the latch t		• •		
		"smart" addres					
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	BUSKEEP: E	Bus Keeper bit					
	1 = Data bus	keeps its last v	alue when not	actively being	driven		
			pedance state v	when not active	ly being driven		
bit 1-0		Interrupt Requ					
	or on a	read or write o	vhen Read Buff peration when I				
	10 = Reserve						
			at the end of a l	read/write cycle	e		
		rupt is generat	eu				

REGISTER 20-1: PMCON1: EPMP CONTROL REGISTER 1

REGISTER 20-2: PMCON2: EPMP CONTROL REGISTER 2

R-0, HSC	U-0	R/C-0, HS	R/C-0, HS	U-0	U-0	U-0	U-0
PMPBUSY	_	ERROR	TIMEOUT	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RADDR23 ⁽¹⁾	RADDR22 ⁽¹⁾	RADDR21 ⁽¹⁾	RADDR20 ⁽¹⁾	RADDR19 ⁽¹⁾	RADDR18 ⁽¹⁾	RADDR17 ⁽¹⁾	RADDR16 ⁽¹⁾
bit 7							bit 0

Legend:	HS = Hardware Settable bit	HSC = Hardware Settable/C	Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented, read as	ʻ0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

bit 15 **PMPBUSY:** EPMP Busy bit (Master mode only)

- 1 = Port is busy
 - 0 = Port is not busy
- bit 14 Unimplemented: Read as '0'
- bit 13 ERROR: EPMP Error bit
 - 1 = Transaction error (illegal transaction was requested)
 - 0 = Transaction completed successfully
- bit 12 **TIMEOUT:** EPMP Time-out bit
 - 1 = Transaction timed out
 - 0 = Transaction completed successfully
- bit 11-8 Unimplemented: Read as '0'
- bit 7-0 RADDR<23:16>: EPMP Reserved Address Space bits⁽¹⁾
- **Note 1:** If RADDR<23:16> = 00000000, then the last EDS address for Chip Select 2 will be FFFFFh.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTWREN	PTRDEN	PTBE1EN	PTBE0EN	—	AWAITM1	AWAITM0	AWAITE
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_	_	_	_
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 14 bit 13 bit 12	1 = PMRD/PM 0 = PMRD/PM PTBE1EN: El 1 = PMBE1 p 0 = PMBE1 p PTBE0EN: El 1 = PMBE0 p	ort is disabled MP Read/Write <u>MWR</u> port is en MWR port is dis PMP High Nibb ort is enabled ort is disabled PMP Low Nibb	abled abled le/Byte Enable	e Port Enable b			
bit 11		ted: Read as ')'				
bit 10-9	•	>: Address Lat 3½ Tcy 2½ Tcy 1½ Tcy		States bits			
bit 8	AWAITE: Add 1 = Wait of 11	dress Hold Afte	r Address Latc	h Strobe Wait	States bits		
	$0 = $ Wait of $\frac{1}{4}$						

REGISTER 20-3: PMCON3: EPMP CONTROL REGISTER 3

REGISTER 20-4: PMCON4: EPMP CONTROL REGISTER 4

U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	PTEN14		—	—	—	PTEN	<9:8>
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PTEN<7:3>				PTEN<2:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	PTEN14: PMA14 Port Enable bit
	 1 = PMA14 functions as either Address Line 14 or Chip Select 1 0 = PMA14 functions as port I/O
bit 13-10	Unimplemented: Read as '0'
bit 9-3	PTEN<9:3>: EPMP Address Port Enable bits
	1 = PMA<9:3> function as EPMP address lines 0 = PMA<9:3> function as port I/Os
bit 2-0	PTEN<2:0>: PMALU/PMALH/PMALL Strobe Enable bits
	1 = PMA<2:0> function as either address lines or address latch strobes

0 = PMA<2:0> function as port I/Os

REGISTER 20-5: PMCSxCF: EPMP CHIP SELECT x CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CSDIS	CSP	CSPTEN	BEP		WRSP	RDSP	SM
bit 15	·	·	•	•			bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
ACKP	PTSZ1	PTSZ0	—	—	_	_	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit		nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	•	Select x Disabl					
		the Chip Select	•				
hit 11		the Chip Select	-				
bit 14	1 = Active-hig	elect x Polarity	UIL				
	0 = Active-hig						
bit 13		ACSx Port Enab	ole bit				
	1 = PMCSx p	ort is enabled					
		ort is disabled					
bit 12	BEP: Chip Se	elect x Nibble/B	yte Enable Po	larity bit			
		te enable is act					
	-	te enable is act	-	E0, PMBE1)			
bit 11	-	ted: Read as '					
bit 10		Select x Write	•				
		odes and Maste		<u>SM = 0:</u>			
		be is active-ling					
		ode when SM =	. ,				
	1 = Enable st	trobe is active-h	igh				
	0 = Enable st	trobe is active-lo	wc				
bit 9	•	Select x Read S	,				
		des and Maste		SM = 0:			
		bbe is active-hig bbe is active-lov					
		ode when SM =					
		te strobe is activ		D/PMWR)			
	0 = Read/Wri	ite strobe is acti	ve-low (PMRD	/PMWR)			
bit 8	SM: Chip Sel	lect x Strobe Mo	ode bit				
		te and enable s	· ·	,			
L:1 7		d write strobes (-			
bit 7		Select x Acknow	-	y DIT			
		ctive-high <u>(PMA</u> ctive-low (PMA					
bit 6-5		Chip Select x P					
2	11 = Reserve						
	10 = Reserve						
		rt size (PMD<3					
	-	rt size (PMD<7:	-				
bit 4-0	Unimplemen	ted: Read as '	Ŋ,				

REGISTER 20-6: PMCSxBS: EPMP CHIP SELECT x BASE ADDRESS REGISTER⁽²⁾

R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾
		BASE	<23:16>			
						bit 8
U-0	U-0	U-0	R/W ⁽¹⁾	U-0	U-0	U-0
—	—	—	BASE11	—	—	—
						bit 0
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkno		nown	
	U-0 —	U-0 U-0 — —	BASE U-0 U-0 U-0 — — — bit W = Writable bit	U-0 U-0 R/W ⁽¹⁾ — — BASE bit W = Writable bit U = Unimplem	BASE<23:16> U-0 U-0 R/W ⁽¹⁾ U-0 — — BASE11 — bit W = Writable bit U = Unimplemented bit, read	BASE<23:16> U-0 U-0 R/W ⁽¹⁾ U-0 U-0 — — — BASE11 — — bit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-7 BASE<23:15>: Chip Select x Base Address bits⁽¹⁾

bit 6-4 Unimplemented: Read as '0'

bit 3 **BASE11:** Chip Select x Base Address bit⁽¹⁾

bit 2-0 Unimplemented: Read as '0'

Note 1: The value at POR is 0080h for PMCS1BS and 0880h for PMCS2BS.

2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for Chip Select 1 will be FFFFFFh. In this case, Chip Select 2 should not be used. PMCS1BS has no such feature.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0						
ACKM1	ACKM0	AMWAIT2	AMWAIT1	AMWAIT0	—	—	_						
bit 15							bit						
DAMO	DAMA	DAALO	DAMA	DANO	DAMA	DAMA	DAALO						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
DWAITB1	DWAITB0	DWAITM3	DWAITM2	DWAITM1	DWAITM0	DWAITE1	DWAITE0						
bit 7							bit						
Legend:													
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown						
bit 15-14	ACKM21.05	Chin Soloot y	Noknowlodzo N	lada hita									
JIL 10-14	11 = Reserve	Chip Select x /		Node bits									
		x is used to det	ermine when a	a read/write ope	eration is comp	lete							
							out						
	(If DWA	01 = PMACKx is used to determine when a read/write operation is complete with time-out (If DWAITM<3:0> = 0000, the maximum time-out is 255 TCY or else it is DWAITM<3:0> cycles.)											
	00 = PMACK												
bit 13-11		>: Chip Select		ster Wait State	s bits								
	111 = Wait of 10 alternate master cycles												
	•												
	•												
		f 4 alternate ma	-										
	000 = Wait of	f 3 alternate ma	ister cycles										
bit 10-8	-	ted: Read as '0											
bit 7-6		>: Chip Select	x Data Setup E	Before Read/Wr	rite Strobe Wai	t States bits							
		$11 = \text{Wait of } 3\frac{1}{4} \text{Tcy}$											
	10 = Wait of 2¼ Tcy 01 = Wait of 1¼ Tcy												
	$01 = \text{Walt of } \frac{1}{4} \text{ TCY}$ $00 = \text{Walt of } \frac{1}{4} \text{ TCY}$												
bit 5-2	DWAITM<3:0	>: Chip Select	x Data Read/V	Vrite Strobe Wa	it States bits								
	For Write Ope	•											
	1111 = Wait of 151/2 TCY												
	•												
	• 0001 = Wait of 1½ Tcy												
	$0001 = \text{Wait of } \frac{1}{2} \text{ TCY}$												
	For Read Operations:												
	For Read Ope	erations:			1111 = Wait of 15¾ TCY								
		of 15¾ Tcy											

REGISTER 20-7: PMCSxMD: EPMP CHIP SELECT x MODE REGISTER (CONTINUED)

- bit 1-0 **DWAITE<1:0>:** Chip Select x Data Hold After Read/Write Strobe Wait States bits
 - For Write Operations: 11 = Wait of 3¹/₄ TcY 10 = Wait of 2¹/₄ TcY 01 = Wait of 1¹/₄ TcY 00 = Wait of 1¹/₄ TcY For Read Operations: 11 = Wait of 3 TcY 10 = Wait of 2 TcY 01 = Wait of 1 TcY 00 = Wait of 0 TcY

REGISTER 20-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

R-0, HSC	R/W-0, HS	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IBF	IBOV	—	—	IB3F ⁽¹⁾	IB2F ⁽¹⁾	IB1F ⁽¹⁾	IB0F ⁽¹⁾
bit 15							bit 8

R-1, HSC	R/W-0, HS	U-0	U-0	R-1, HSC	R-1, HSC	R-1, HSC	R-1, HSC
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E
bit 7							bit 0

Legend:	HS = Hardware Settable bit	HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	IBF: Input Buffer Full Status bit
	 1 = All writable Input Buffer registers are full 0 = Some or all of the writable Input Buffer registers are empty
bit 14	IBOV: Input Buffer Overflow Status bit
	 1 = A write attempt to a full Input Buffer register occurred (must be cleared in software) 0 = No overflow occurred
bit 13-12	Unimplemented: Read as '0'
bit 11-8	IB3F:IB0F: Input Buffer x Status Full bits ⁽¹⁾
	 1 = Input Buffer x contains unread data (reading the buffer will clear this bit) 0 = Input Buffer x does not contain unread data
bit 7	OBE: Output Buffer Empty Status bit
	 1 = All readable Output Buffer registers are empty 0 = Some or all of the readable Output Buffer registers are full
bit 6	OBUF: Output Buffer Underflow Status bit
	 1 = A read occurred from an empty Output Buffer register (must be cleared in software) 0 = No underflow occurred
bit 5-4	Unimplemented: Read as '0'
bit 3-0	OB3E:OB0E: Output Buffer x Status Empty bit
	 1 = Output Buffer x is empty (writing data to the buffer will clear this bit) 0 = Output Buffer x contains untransmitted data
Note 1:	Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1, or Byte 2 and 3) get cleared, even on byte reading.

REGISTER 20-9: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	PMPTTL
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplem	ented bit, read	as '0'		

'0' = Bit is cleared

bit 15-1 Unimplemented: Read as '0'

-n = Value at POR

bit 0

PMPTTL: EPMP Module TTL Input Buffer Select bit

'1' = Bit is set

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

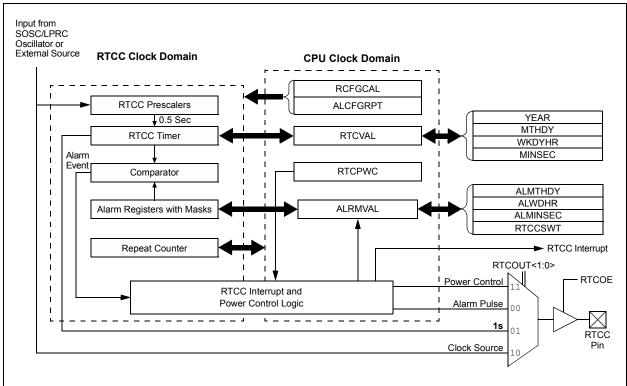
0 = EPMP module inputs use Schmitt Trigger input buffers

x = Bit is unknown

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "dsPIC33/PIC24 Family Reference Manual", "RTCC with External Power Control" (DS39745).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.


Key features of the RTCC module are:

- Operates in Deep Sleep mode
- Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat chime
- · Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- · Optimized for long-term battery operation
- User calibration of the 32.768 kHz clock crystal/ 32K INTRC frequency with periodic auto-adjust
- Optimized for long-term battery operation
- · Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake-up external devices
 without CPU intervention (external power control)
- Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- Runs from any one of the following:
 - External Real-Time Clock (RTC) of 32.768 kHz
 - Internal 31.25 kHz LPRC clock
 - 50 Hz or 60 Hz external input

21.1 RTCC Source Clock

The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/ 60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.

FIGURE 21-1: RTCC BLOCK DIAGRAM

21.2 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- · Alarm Value Registers

21.2.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding Register Pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR<1:0> bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 21-1).

By writing the RTCVALH byte, the RTCC Pointer value, the RTCPTR<1:0> bits decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 21-1: RTCVAL REGISTER MAPPING

RTCPTR<1:0>	RTCC Value Register Window				
RIGPIRSI.02	RTCVAL<15:8>	RTCVAL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11	—	YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR<1:0> bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 21-2).

By writing the ALRMVALH byte, the ALRMPTR<1:0> bits (the Alarm Pointer value) decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 21-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
00	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	_	_			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes, the ALRMPTR<1:0> value will be decremented. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

21.2.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (see Example 21-1).

Note:	To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code
	therefore, it is recommended that code follow the procedure in Example 21-1.

21.2.3 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected using the RTCLK<1:0> bits in the RTCPWC register. When the bits are set to '00', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are '01', LPRC is used as the reference clock. When RTCLK<1:0> = 10 and 11, the external power line (50 Hz and 60 Hz) is used as the clock source.

EXAMPLE 21-1: SETTING THE RTCWREN BIT

```
volatile("push w7");
asm
asm
       volatile("push w8");
       volatile("disi #5");
asm
       volatile("mov #0x55, w7");
asm
       volatile("mov w7, _NVMKEY");
asm
       volatile("mov #0xAA, w8");
asm
       volatile("mov w8, NVMKEY");
asm
       volatile("bset RCFGCAL, #13"); //set the RTCWREN bit
asm
       volatile("pop w8");
asm
       volatile("pop w7");
asm
```

21.3 Registers

21.3.1 RTCC CONTROL REGISTERS

REGISTER 21-1: RCFGCAL: RTCC CALIBRATION/CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾	—	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	RTCEN: RTCC Enable bit ⁽²⁾
	1 = RTCC module is enabled
	0 = RTCC module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	RTCWREN: RTCC Value Registers Write Enable bit
	 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user
bit 12	RTCSYNC: RTCC Value Registers Read Synchronization bit
	 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple
bit 11	HALFSEC: Half Second Status bit ⁽³⁾
	1 = Second half period of a second
	0 = First half period of a second
bit 10	RTCOE: RTCC Output Enable bit
	1 = RTCC output is enabled
	0 = RTCC output is disabled
bit 9-8	RTCPTR<1:0>: RTCC Value Register Window Pointer bits
	Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers. The RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'.
	RTCVAL<15:8>:
	11 = Reserved
	10 = MONTH
	01 = WEEKDAY 00 = MINUTES
	RTCVAL<7:0>:
	$\frac{1}{11} = YEAR$
	10 = DAY
	01 = HOURS
	00 = SECONDS
Note 1:	The RCFGCAL register is only affected by a POR.

- **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
- **3:** This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 21-1: RCFGCAL: RTCC CALIBRATION/CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

```
bit 7-0
CAL<7:0>: RTC Drift Calibration bits
0111111 = Maximum positive adjustment; adds 127 RTC clock pulses every 15 seconds
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.<
```

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 21-2: RTCPWC: RTCC POWER CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PWCEN	PWCPOL	PWCPRE	PWSPRE	RTCLK1 ⁽²⁾	RTCLK0 ⁽²⁾	RTCOUT1	RTCOUT0		
bit 15				•			bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_	_		—	—		_		
bit 7							bit C		
Logondi									
Legend: R = Readabl	lo hit	W = Writable	oit		nented bit, read	L ac 'O'			
-n = Value at		'1' = Bit is set	JI	$0^{\circ} = \text{Bit is clear}$		x = Bit is unkr			
	FOR				areu		IOWII		
bit 15	PWCFN: Pov	ver Control Ena	ble bit						
		ntrol is enabled							
	0 = Power co	ntrol is disabled	1						
bit 14	PWCPOL: Power Control Polarity bit								
	1 = Power control output is active-high								
		0 = Power control output is active-low							
bit 13		ower Control/St	•						
		pility window clo pility window clo							
bit 12	PWSPRE: Power Control Sample Prescaler bit								
		nple window clo							
		nple window clo	-		e RTCC clock				
bit 11-10		: RTCC Clock		bits ⁽²⁾					
		l power line (60 I power line sou							
	10 = External power line source (50 Hz) 01 = Internal LPRC Oscillator								
		I Secondary Os)					
bit 9-8	RTCOUT<1:0	>: RTCC Outp	ut Source Sele	ect bits					
	11 = Power c								
	10 = RTCC c 01 = RTCC s								
	01 = RTCC s 00 = RTCC a								
bit 7-0		ted: Read as ')'						
	-			_					
Note 1: T	he RTCPWC re	gister is only af	rected by a PO	R.					

2: When a new value is written to these register bits, the lower half of the MINSEC register should also be written to properly reset the clock prescalers in the RTCC.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0			
bit 15		•					bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0			
bit 7							bit C			
Legend:										
R = Reada	able bit	W = Writable b	it	U = Unimplem	ented bit, read	as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
bit 15		arm Enable bit enabled (cleared a	automatically af	er an alarm eve	nt whenever AF	PT<7·0> = 00h :	and CHIME = 0°			
	0 = Alarm is c		automatically an							
bit 14	CHIME: Chim	e Enable bit								
		enabled; ARPT< disabled; ARPT<				FFh				
bit 13-10		: Alarm Mask C	•	-						
	0000 = Every		5							
	0001 = Every									
	0010 = Every 10 seconds 0011 = Every minute									
	0100 = Every 10 minutes									
	0101 = Every hour									
	0110 = Once 0111 = Once									
	1000 = Once									
	1001 = Once	a year (except v		d for February	29 th , once ever	y 4 years)				
		rved – do not us								
bit 9-8		rved – do not us : 0>: Alarm Value		low Pointer hits	2					
bit 5-0		corresponding Al	-			ALH and ALRM	VALL registers			
		R<1:0> value de								
	ALRMVAL<15									
	00 = ALRMM 01 = ALRMW									
	10 = ALRMM									
	11 = PWCST	٩B								
	11 11000									
	ALRMVAL<7:									
	ALRMVAL<7: 00 = ALRMSE	EC								
	ALRMVAL<7:	EC R								
	ALRMVAL<7: 00 = ALRMSE 01 = ALRMHE	EC R AY								
bit 7-0	ALRMVAL<7:: 00 = ALRMSE 01 = ALRMHF 10 = ALRMD/ 11 = PWCSA ARPT<7:0>:	EC R AY MP Alarm Repeat C								
bit 7-0	ALRMVAL<7:: 00 = ALRMSE 01 = ALRMHF 10 = ALRMD/ 11 = PWCSA ARPT<7:0>:	EC R AY MP								
bit 7-0	ALRMVAL<7:: 00 = ALRMSE 01 = ALRMHF 10 = ALRMD/ 11 = PWCSA ARPT<7:0>:	EC R AY MP Alarm Repeat C								
bit 7-0	ALRMVAL<7:: 00 = ALRMSE 01 = ALRMHF 10 = ALRMD/ 11 = PWCSA ARPT<7:0>:	EC R AY MP Alarm Repeat C								
bit 7-0	ALRMVAL<7: 00 = ALRMSE 01 = ALRMHE 10 = ALRMDA 11 = PWCSA ARPT<7:0>: A 11111111 = A 00000000 = A	EC R AY MP Alarm Repeat C	255 more time	es						

REGISTER 21-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

21.3.2 RTCVAL REGISTER MAPPINGS

REGISTER 21-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
YRTEN3	YRTEN2	YRTEN2	YRTEN1	YRONE3	YRONE2	YRONE1	YRONE0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.

bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x		
_	—	_	_	_	WDAY2	WDAY1	WDAY0		
bit 15							bit 8		
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
_	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-11	Unimplemen	ted: Read as '	0'						
bit 10-8	WDAY<2:0>:	Binary Coded	Decimal Value	of Weekday Di	igit bits				
	Contains a va	alue from 0 to 6							

- bit 7-6Unimplemented: Read as '0'bit 5-4HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
Contains a value from 0 to 2.
- bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8
U-0	R/W-x						
_	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

21.3.3 ALRMVAL REGISTER MAPPINGS

REGISTER 21-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
_			MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0		
bit 15	•		•	•	•	•	bit 8		
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared		x = Bit is unknown				
bit 15-13	Unimplement	ted: Read as '0'	,						
bit 12	•								
	Contains a value of '0' or '1'.								
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits								
	Contains a value from 0 to 9.								
bit 7-6	Unimplemented: Read as '0'								
bit 5-4	DAYTEN<1.0>. Binary Coded Decimal Value of Day's Tens Digit hits								

DIL 3-4	DATIENTION: Binary Coded Decimal value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0

Legend:			
R = Readable bit W = Writable bit		U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

bit 7

bit 0

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0	
bit 15		•					bit 8	
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15	Unimplement	ed: Read as '0'						
bit 14-12	MINTEN<2:0	Binary Code	d Decimal Valu	ue of Minute's T	ens Digit bits			
	Contains a va	lue from 0 to 5						
bit 11-8	MINONE<3:0	>: Binary Code	d Decimal Val	ue of Minute's (Ones Digit bits			
	Contains a va	lue from 0 to 9						
bit 7	Unimplemented: Read as '0'							
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits							
	Contains a value from 0 to 5.							
bit 3-0	SECONE<3:0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits						
	Contains a value from 0 to 9.							

REGISTER 21-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

REGISTER 21-11: RTCCSWT: RTCC POWER CONTROL AND SAMPLE WINDOW TIMER REGISTER⁽¹⁾

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
PWCSTAB7	PWCSTAB6	PWCSTAB5	PWCSTAB4	PWCSTAB3	PWCSTAB2	PWCSTAB1	PWCSTAB0
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
PWCSAMP7 ⁽²⁾	PWCSAMP6 ⁽²⁾	PWCSAMP5 ⁽²⁾	PWCSAMP4 ⁽²⁾	PWCSAMP3 ⁽²⁾	PWCSAMP2 ⁽²⁾	PWCSAMP1 ⁽²⁾	PWCSAMP0 ⁽²⁾
bit 7							bit 0

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-8 PWCSTAB<7:0>: Power Control Stability Window Timer bits							

01C 15-8	PWCSTAB<7:0>: Power Control Stability Window Timer bits
	11111111 = Stability window is 255 TPWCCLK clock periods
	11111110 = Stability window is 254 TPWCCLK clock periods
	•
	•
	•
	00000001 = Stability window is 1 TPWCCLK clock period
	00000000 = No stability window; sample window starts when the alarm event triggers
bit 7-0	PWCSAMP<7:0>: Power Control Sample Window Timer bits ⁽²⁾
	11111111 = Sample window is always enabled, even when PWCEN = 0
	11111110 = Sample window is 254 TPWCCLK clock periods
	•
	•
	•
	00000001 = Sample window is 1 TPWCCLK clock period 00000000 = No sample window

- **Note 1:** A write to this register is only allowed when RTCWREN = 1.
 - 2: The sample window always starts when the stability window timer expires, except when its initial value is 00h.

21.4 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- 3. a) If the oscillator is faster than ideal (negative result from Step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from Step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

EQUATION 21-1:

(Ideal Frequency ⁺ – Measured Frequency) * 60 =
Clocks per Minute
+ Ideal Frequency = 32,768 Hz

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse, except when SECONDS = 00, 15, 30 or 45. This is due to the auto-adjust of the RTCC at 15-second intervals.

Note: It is up to the user to include, in the error value, the initial error of the crystal: drift due to temperature and drift due to crystal aging.

21.5 Alarm

- · Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options available

21.5.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 21-2, the interval selection of the alarm is configured through the AMASK<3:0> bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPTx bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled, and only a single alarm will occur. The alarm can be repeated, up to 255 times, by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

21.5.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month	Day	Hours	Minutes	Seconds
0000 - Every half second 0001 - Every second						:
0010 - Every 10 seconds						s
0011 - Every minute						s s
0100 - Every 10 minutes					m	s s
0101 - Every hour					mm	s s
0110 - Every day				h h	mm	ss
0111 - Every week	d			h h	mm	ss
1000 - Every month			d d	h h	mm	ss
1001 - Every year ⁽¹⁾		m m /	d d	h h	mm	ss
Note 1: Annually, except wh	en configured fo	r February 29.				

21.6 Power Control

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake from the current lower power mode (Sleep, Deep Sleep, etc.).

To use this feature:

- 1. Enable the RTCC (RTCEN = 1).
- 2. Set the PWCEN bit (RTCPWC<15>).
- 3. Configure the RTCC pin to drive the PWC control signal (RTCOE = 1 and RTCOUT<1:0> = 11).

The polarity of the PWC control signal may be chosen using the PWCPOL bit (RTCPWC<14>). An active-low or active-high signal may be used with the appropriate

external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin, in order to drive the ground pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

21.7 RTCC VBAT Operation

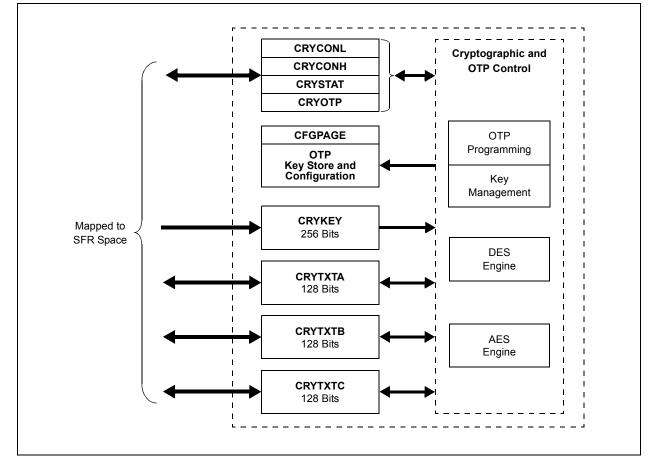
The RTCC can operate in VBAT mode when there is a power loss on the VDD pin. The RTCC will continue to operate if the VBAT pin is powered on (it is usually connected to the battery).

Note: It is recommended to connect the VBAT pin to VDD if the VBAT mode is not used (not connected to the battery).

NOTES:

22.0 CRYPTOGRAPHIC ENGINE

Note: This data sheet summarizes the features of the PIC24FJ128GA204 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Cryptographic Engine" (DS70005133) which is available from the Microchip web site (www.microchip.com).


The Cryptographic Engine provides a new set of data security options. Using its own free-standing state machines, the engine can independently perform NIS standard encryption and decryption of data independently of the CPU. This eliminates the concerns of excessive CPU or program memory overhead that encryption and decryption would otherwise require, while enhancing the application's security.

The primary features of the Cryptographic Engine are:

- Memory-mapped 128-bit and 256-bit memory spaces for encryption/decryption data
- Multiple options for key storage, selection and management

- · Support for internal context saving
- · Session key encryption and loading
- · Half-duplex operation
- DES and Triple DES (3DES) encryption and decryption (64-bit block size):
 - Supports 64-bit keys and 2-key or 3-key Triple DES
- AES encryption and decryption (128-bit block size):
 - Supports key sizes of 128, 192 or 256 bits
- Supports ECB, CBC, CFB, OFB and CTR modes for both DES and AES standards
- · Programmatically secure key storage:
 - 512-bit OTP array for key storage, not readable from other memory spaces
 - 32-bit Configuration Page
 - Simple in-module programming interface
 - Supports Key Encryption Key (KEK)
- Support for True and Pseudorandom Number Generation (PRNG) (NIST SP800-90 compliant)

A simplified block diagram of the Cryptographic Engine is shown in Figure 22-1.

FIGURE 22-1: CRYPTOGRAPHIC ENGINE BLOCK DIAGRAM

22.1 Data Register Spaces

There are four register spaces used for cryptographic data and key storage:

- CRYTXTA
- CRYTXTB
- CRYTXTC
- CRYKEY

Although mapped into the SFR space, all of these Data Spaces are actually implemented as 128-bit or 256-bit wide arrays, rather than groups of 16-bit wide Data registers. Reads and writes to and from these arrays are automatically handled as if they were any other register in the SFR space.

CRYTXTA through CRYTXTC are 128-bit wide spaces; they are used for writing data to and reading from the Cryptographic Engine. Additionally, they are also used for storing intermediate results of the encryption/ decryption operation. None of these registers may be written to when the module is performing an operation (CRYGO = 1).

CRYTXTA and CRYTXTB normally serve as inputs to the encryption/decryption process.

CRYTXTA usually contains the initial plaintext or ciphertext to be encrypted or decrypted. Depending on the mode of operation, CRYTXTB may contain the ciphertext output or intermediate cipher data. It may also function as a programmable length counter in certain operations.

CRYTXTC is primarily used to store the final output of an encryption/decryption operation. It is also used as the input register for data to be programmed to the secure OTP array.

CRYKEY is a 256-bit wide space, used to store cryptographic keys for the selected operation; it is writable from both the SFR space and the secure OTP array. Although mapped into the SFR space, it is a write-only memory area; any data placed here, regardless of its source, cannot be read back by any run-time operations. This feature helps to ensure the security of any key data.

22.2 Modes of Operation

The Cryptographic Engine supports the following modes of operation, determined by the OPMOD<3:0> bits:

- Block Encryption
- Block Decryption
- · AES Decryption Key Expansion
- Random Number Generation
- Session Key Generation
- Session Key Encryption
- · Session Key Loading

The OPMOD<3:0> bits may be changed while CRYON is set. They should only be changed when a cryptographic operation is not being done (CRYGO = 0).

Once the encryption operation, and the appropriate and valid key configuration is selected, the operation is performed by setting the CRYGO bit. This bit is automatically cleared by hardware when the operation is complete. The CRYGO bit can also be manually cleared by software; this causes any operation in progress to terminate immediately. Clearing this bit in software also sets the CRYABRT bit (CRYSTAT<5>).

For most operations, CRYGO can only be set when an OTP operation is not being performed and there are no other error conditions. CRYREAD, CRYWR, CRYABRT, ROLLOVR, MODFAIL and KEYFAIL must all be '0'.

Setting CRYWR and CRYGO simultaneously will not initiate an OTP programming operation or any other operation. Setting CRYGO when the module is disabled (CRYON = 0) also has no effect.

22.3 Enabling the Engine

The Cryptographic Engine is enabled by setting the CRYON bit. Clearing this bit disables both the DES and AES engines, as well as causing the following register bits to be held in Reset:

- CRYGO (CRYCONL<8>)
- TXTABSY (CRYSTAT<6>)
- CRYWR (CRYOTP<0>)

All other register bits and registers may be read and written while CRYON = 0.

22.4 Operation During Sleep and Idle Modes

22.4.1 OPERATION DURING SLEEP MODES

Whenever the device enters any Sleep or Deep Sleep mode, all operation engine state machines are reset. This feature helps to preserve the integrity, or any data being encrypted or decrypted, by discarding any intermediate text that might be used to break the key.

Any OTP programming operations under way when a Sleep mode is entered are also halted. Depending on what is being programmed, this may result in permanent loss of a memory location or potentially the use of the entire secure OTP array. Users are advised to perform OTP programming only when entry into power-saving modes is disabled.

Note: OTP programming errors, regardless of the source, are not recoverable errors. Users should ensure that all foreseeable interruptions to the programming operation, including device interrupts and entry into power-saving modes, are disabled.

22.4.2 OPERATION DURING IDLE MODE

When the CRYSIDL bit (CRYCONL<13>) is '0', the engine will continue any ongoing operations without interruption when the device enters Idle mode.

When CRYSIDL is '1', the module behaves as in Sleep modes.

22.5 Specific Cryptographic Operations

This section provides the step-wise details for each operation type that is available with the Cryptographic Engine.

22.6 Encrypting Data

- 1. If not already set, set the CRYON bit.
- Configure the CPHRSEL, CPHRMODx, KEYMODx and KEYSRCx bits as desired to select the proper mode and key length.
- 3. Set OPMOD<3:0> to '0000'.
- If a software key is being used, write it to the CRYKEY register. It is only necessary to write the lowest *n* bits of CRYKEY for a key length of *n*, as all unused CRYKEY bits are ignored.
- 5. Read the KEYFAIL bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will NOT be performed.
- 6. Write the data to be encrypted to the appropriate CRYTXT register. For a single DES encrypt operation, it is only necessary to write the lowest 64 bits. However, for data less than the block size (64 bits for DES, 128 bits for AES), it is the responsibility of the software to properly pad the upper bits within the block.
- 7. Set the CRYGO bit.
- In ECB and CBC modes, set the FREEIE bit (CRYCONL<10>) to enable the optional CRYTXTA interrupt to indicate when the next plaintext block can be loaded.
- Poll the CRYGO bit until it is cleared or wait for the CRYDNIF module interrupt (DONEIE must be set). If other Cryptographic Engine interrupts are enabled, it will be necessary to poll the CRYGO bit to verify the interrupt source.
- 10. Read the encrypted block from the appropriate CRYTXT register.
- 11. Repeat Steps 5 through 8 to encrypt further blocks in the message with the same key.

22.7 Decrypting Data

- 1. If not already set, set the CRYON bit.
- Configure the CPHRSEL, CPHRMODx, KEYMODx and KEYSRCx bits as desired to select the proper mode and key length.
- 3. Set OPMOD<3:0> to '0001'.
- If a software key is being used, write the CRYKEY register. It is only necessary to write the lowest *n* bits of CRYKEY for a key length of *n*, as all unused CRYKEY bits are ignored.
- 5. If an AES-ECB or AES-CBC mode decryption is being performed, you must first perform an AES decryption key expansion operation.
- 6. Read the KEYFAIL status bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will not be performed.
- Write the data to be decrypted into the appropriate text/data register. For a DES decrypt operation, it is only necessary to write the lowest 64 bits of CRYTXTB.
- 8. Set the CRYGO bit.
- 9. If this is the first decrypt operation after a Reset, or if a key storage program operation was performed after the last decrypt operation, or if the KEYMODx or KEYSRCx fields are changed, the engine will perform a new key expansion operation. This will result in extra clock cycles for the decrypt operation, but will otherwise be transparent to the application (i.e., the CRYGO bit will be cleared only after the key expansion and the decrypt operation have completed).
- In ECB and CBC modes, set the FREEIE bit (CRYCONL<10>) to enable the optional CRYTXTA interrupt to indicate when the next plaintext block can be loaded.
- 11. Poll the CRYGO bit until it is cleared or wait for the CRYDNIF module interrupt (DONEIE must be set). If other Cryptographic Engine interrupts are enabled, it will be necessary to poll the CRYGO bit to verify the interrupt source.
- 12. Read the decrypted block out of the appropriate text/data register.
- 13. Repeat Steps 6 through 10 to encrypt further blocks in the message with the same key.

22.8 Encrypting a Session Key

Note:	ECB and CBC modes are restricted to
	128-bit session keys only.

- 1. If not already set, set the CRYON bit.
- 2. If not already programmed, program the SKEYEN bit to '1'.

Note:	Setting	SKEYEN	permanently	makes
	Key #1 a	available as	a Key Encrypt	ion Key
	only. It c	annot be us	ed for other en	cryption
	or decry	ption operat	tions after that.	

- 3. Set OPMOD<3:0> to '1110'.
- Configure the CPHRSEL, CPHRMOD<2:0> and KEYMOD<1:0> register bit fields as desired, set SKEYSEL to '0'.
- 5. Read the KEYFAIL status bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will not be performed.
- Write the software generated session key into the CRYKEY register or generate a random key into the CRYKEY register. It is only necessary to write the lowest *n* bits of CRYKEY for a key length of *n*, as all unused key bits are ignored.
- Set the CRYGO bit. Poll the bit until it is cleared by hardware; alternatively, set the DONEIE bit (CRYCONL<11>) to generate an interrupt when the encryption is done.
- 8. Read the encrypted session key out of the appropriate CRYTXT register.
- 9. For total key lengths of more than 128 bits, set SKEYSEL to '1' and repeat Steps 6 and 7.
- 10. Set KEYSRC<3:0> to '0000' to use the session key to encrypt data.

22.9 Receiving a Session Key

- Note: ECB and CBC modes are restricted to 128-bit session keys only.
- 1. If not already set, set the CRYON bit.
- 2. If not already programmed, program the SKEYEN bit to '1'.
- Note: Setting SKEYEN permanently makes Key #1 available as a Key Encryption Key only. It cannot be used for other encryption or decryption operations after that. It also permanently disables the ability of software to decrypt the session key into the CRYTXTA register, thereby breaking programmatic security (i.e., software can read the unencrypted key).
- 3. Set OPMOD<3:0> to '1111'.
- Configure the CPHRSEL, CPHRMOD<2:0> and KEYMOD<1:0> register bit fields as desired, set SKEYSEL to '0'.
- 5. Read the KEYFAIL status bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will NOT be performed.
- 6. Write the encrypted session key received into the appropriate CRYTXT register.
- Set the CRYGO bit. Poll the bit until it is cleared by hardware; alternatively, set the DONEIE bit (CRYCONL<11>) to generate an interrupt when the process is done.
- 8. For total key lengths of more than 128 bits, set SKEYSEL to '1' and repeat Steps 6 and 7.
- Set KEYSRC<3:0> to '0000' to use the newly generated session key to encrypt and decrypt data.

22.10 Generating a Pseudorandom Number (PRN)

For operations that require a Pseudorandom Number (PRN), the method outlined in NIST SP800-90 can be adapted for efficient use with the Cryptographic Engine. This method uses the AES algorithm in CTR mode to create PRNs with minimal CPU overhead. PRNs generated in this manner can be used for cryptographic purposes or any other purpose that the host application may require.

The random numbers used as initial seeds can be taken from any source convenient to the user's application. If possible, a non-deterministic random number source should be used.

Note:	PRN generation is not available when
	software keys are disabled (SWKYDIS = 1).

To perform the initial reseeding operation, and subsequent reseedings after the reseeding interval has expired:

- 1. Store a random number (128 bits) in CRYTXTA.
- 2. For the initial generation ONLY, use a key value of 0h (128 bits) and a counter value of 0h.
- Configure the engine for AES encryption, CTR mode (OPMOD<3:0> = 0000, CPHRSEL = 1, CPHMOD<2:0> = 100).
- 4. Perform an encrypt operation by setting CRYGO.
- 5. Move the results in CRYTXTC to RAM. This is the new key value (NEW_KEY).
- 6. Store another random number (128 bits) in CRYTXTA.
- 7. Configure the module for encryption as in Step 3.
- 8. Perform an encrypt operation by setting CRYGO.
- 9. Store this value in RAM. This is the new counter value (NEW_CTR).
- 10. For subsequent reseeding operations, use NEW_KEY and NEW_CTR for the starting key and counter values.

To generate the pseudorandom number:

- 1. Load NEW KEY value from RAM into CRYKEY.
- 2. Load NEW_CTR value from RAM into CRYTXTB.
- 3. Load CRYTXTA with 0h (128 bits).
- Configure the engine for AES encryption, CTR mode (OPMOD<3:0> = 0000, CPHRSEL = 1, CPHMOD<2:0> = 100).
- 5. Perform an encrypt operation by setting CRYGO.
- 6. Copy the generated PRN in CRYTXTC (PRNG_VALUE) to RAM.
- 7. Repeat the encrypt operation.
- 8. Store the value of CRYTXTC from this round as the new value of NEW_KEY.
- 9. Repeat the encrypt operation.
- 10. Store the value of CRYTXTC from this round as the new value of NEW_CTR.

Subsequent PRNs can be generated by repeating this procedure until the reseeding interval has expired. At that point, the reseeding operation is performed using the stored values of NEW_KEY and NEW_CTR.

22.11 Generating a Random Number

- 1. Enable the Cryptographic mode (CRYON (CRYCONL<0>) = 1).
- 2. Set the OPMOD<3:0> bits to '1010'.
- Start the request by setting the CRYGO bit (CRYCONL<8>) to '1'.
- 4. Wait for the CRYGO bit to be cleared to '0' by the hardware.
- 5. Read the random number from the CRYTXTA registers.

22.12 Testing the Key Source Configuration

The validity of the key source configuration can always be tested by writing the appropriate register bits and then reading the KEYFAIL register bit. No operation needs to be started to perform this check; the module does not even need to be enabled.

22.13 Programming CFGPAGE (Page 0) Configuration Bits

- 1. If not already set, set the CRYON bit. Set KEYPG<3:0> to '0000'.
- 2. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- Write the data to be programmed into the Configuration Page into CRYTXTC<31:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- 4. Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 5. Once all programming has completed, set the CRYREAD bit to reload the values from the onchip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status with performing a read operation on the array.
- **Note:** If the device enters Sleep mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

22.14 Programming Keys

- 1. If not already set, set the CRYON bit.
- 2. Configure KEYPG<3:0> to the page you want to program.
- 3. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- 4. Write the data to be programmed into the Configuration Page into CRYTXTC<63:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- 5. Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 6. Repeat Steps 2 through 5 for each OTP array page to be programmed.
- 7. Once all programming has completed, set the CRYREAD bit to reload the values from the onchip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- 8. Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status with performing a read operation on the array.
- **Note:** If the device enters Sleep mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

22.15 Verifying Programmed Keys

To maintain key security, the secure OTP array has no provision to read back its data to any user-accessible memory space in any operating mode. Therefore, there is no way to directly verify programmed data. The only method for verifying that they have been programmed correctly is to perform an encryption operation with a known plaintext/ciphertext pair for each programmed key.

REGISTER 22-1: CRYCONL: CRYPTOGRAPHIC CONTROL LOW REGISTER

R/W-0	U-0	R/W-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	R/W-0, HC ⁽¹⁾
CRYON		CRYSIDL ⁽³⁾	ROLLIE	DONEIE	FREEIE	—	CRYGO
bit 15		·					bit 8

R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
OPMOD3 ⁽²⁾	OPMOD2 ⁽²⁾	OPMOD1 ⁽²⁾	OPMOD0 ⁽²⁾	CPHRSEL ⁽²⁾	CPHRMOD2 ⁽²⁾	CPHRMOD1 ⁽²⁾	CPHRMOD0 ⁽²⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable	bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CRYON: Cryptographic Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	CRYSIDL: Cryptographic Stop in Idle Control bit ⁽³⁾
	1 = Stops module operation in Idle mode
	0 = Continues module operation in Idle mode
bit 12	ROLLIE: CRYTXTB Rollover Interrupt Enable bit ⁽¹⁾
	1 = Generates an interrupt event when the counter portion of CRYTXTB rolls over to '0'
	0 = Does not generate an interrupt event when the counter portion of CRYTXTB rolls over to '0'
bit 11	DONEIE: Operation Done Interrupt Enable bit ⁽¹⁾
	1 = Generates an interrupt event when the current cryptographic operation completes
	 Does not generate an interrupt event when the current cryptographic operation completes; software must poll the CRYGO or CRYBSY bit to determine when current cryptographic operation is complete
bit 10	FREEIE: Input Text Interrupt Enable bit ⁽¹⁾
	1 = Generates an interrupt event when the input text (plaintext or ciphertext) is consumed during the current cryptographic operation
	0 = Does not generate an interrupt event when the input text is consumed
bit 9	Unimplemented: Read as '0'
bit 8	CRYGO: Cryptographic Engine Start bit ⁽¹⁾
	1 = Starts the operation specified by OPMOD<3:0> (cleared automatically when operation is done)
	0 = Stops the current operation (when cleared by software); also indicates the current operation has
	completed (when cleared by hardware)

- Note 1: These bits are reset on system Resets or whenever the CRYMD bit is set.
 - 2: Writes to these bit fields are locked out whenever an operation is in progress (CRYGO bit is set).
 - **3:** If the device enters Idle mode when CRYSIDL = 1, the module will stop its current operation. Entering into Idle mode while an OTP write operation is in process can result in irreversible corruption of the OTP.

REGISTER 22-1: CRYCONL: CRYPTOGRAPHIC CONTROL LOW REGISTER (CONTINUED)

bit 7-4	OPMOD<3:0>: Operating Mode Selection bits ^(1,2)
	1111 = Loads session key (decrypt session key in CRYTXTA/CRYTXTB using the Key Encryption Key and write to CRYKEY)
	1110 = Encrypts session key (encrypt session key in CRYKEY using the Key Encryption Key and write to CRYTXTA/CRYTXTB)
	1011 = Reserved
	1010 = Generate a random number
	1001
	•
	• = Reserved
	•
	0011
	0010 = AES decryption key expansion
	0001 = Decryption
	0000 = Encryption
bit 3	CPHRSEL: Cipher Engine Select bit ^(1,2)
	1 = AES engine
	0 = DES engine
bit 2-0	CPHRMOD<2:0>: Cipher Mode bits ^(1,2)
	11x = Reserved
	101 = Reserved
	100 = Counter (CTR) mode
	011 = Output Feedback (OFB) mode
	010 = Cipher Feedback (CFB) mode
	001 = Cipher Block Chaining (CBC) mode
	000 = Electronic Codebook (ECB) mode
Note 1	These hits are reset an evistem Depote or whenever the CDVMD hit is get

- **Note 1:** These bits are reset on system Resets or whenever the CRYMD bit is set.
 - 2: Writes to these bit fields are locked out whenever an operation is in progress (CRYGO bit is set).
 - **3:** If the device enters Idle mode when CRYSIDL = 1, the module will stop its current operation. Entering into Idle mode while an OTP write operation is in process can result in irreversible corruption of the OTP.

REGISTER 22-2: CRYCONH: CRYPTOGRAPHIC CONTROL HIGH REGISTER

U-0	R/W-0 ⁽¹⁾						
	CTRSIZE6 ^(2,3)	CTRSIZE5 ^(2,3)	CTRSIZE4 ^(2,3)	CTRSIZE3 ^(2,3)	CTRSIZE2 ^(2,3)	CTRSIZE1 ^(2,3)	CTRSIZE0 ^(2,3)
bit 15							bit 8

R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
SKEYSEL	KEYMOD1 ⁽²⁾	KEYMOD0 ⁽²⁾	—	KEYSRC3 ⁽²⁾	KEYSRC2 ⁽²⁾	KEYSRC1 ⁽²⁾	KEYSRC0 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

	Unimplemented. Read as 0
bit 14-8	CTRSIZE<6:0>: Counter Size Select bits ^(1,2,3)
	Counter is defined as CRYTXTB <n:0>, where n = CTRSIZEx. The counter increments after each operation</n:0>
	and generates a rollover event when the counter rolls over from $(2^{n-1} - 1)$ to 0.
	1111111 = 128 bits (CRYTXTB<127:0>)
	1111110 = 127 bits (CRYTXTB<126:0>)
	•
	•
	0000010 = 3 bits (CRYTXTB<2:0>)
	0000001 = 2 bits (CRYTXTB<1:0>) 0000000 = 1 bit (CRYTXTB<0>); rollover event occurs when CRYTXTB<0> toggles from '1' to '0'
bit 7	SKEYSEL: Session Key Select bit ⁽¹⁾
	1 = Key generation/encryption/loading performed with CRYKEY<255:128>
	0 = Key generation/encryption/loading performed with CRYKEY<127:0>
bit 6-5	KEYMOD<1:0>: AES/DES Encrypt/Decrypt Key Mode/Key Length Select bits ^(1,2)
	For DES Encrypt/Decrypt Operations (CPHRSEL = 0):
	11 = 64-bit, 3-key 3DES
	10 = Reserved
	01 = 64-bit, standard 2-key 3DES
	00 = 64 -bit DES
	For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved
	10 = 256-bit AES
	01 = 192-bit AES
	00 = 128-bit AES
bit 4	Unimplemented: Read as '0'
	•
bit 3-0	KEYSRC<3:0>: Cipher Key Source bits ^(1,2)
	Refer to Table 22-1 and Table 22-2 for KEYSRC<3:0> values.
Note 1:	These bits are reset on system Resets or whenever the CRYMD bit is set.

- 2: Writes to these bit fields are locked out whenever an operation is in progress (CRYGO bit is set).
 - 3: Used only in CTR operations when CRYTXTB is being used as a counter; otherwise, these bits have no effect.

REGISTER 22-3: CRYSTAT: CRYPTOGRAPHIC STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	_	—	—	—
bit 15							bit 8
R/HSC-x ⁽¹⁾	R/HSC-0 ⁽¹⁾	R/C-0, HS ⁽²⁾	R/C-0, HS ⁽²⁾	U-0	R/HSC-0 ⁽¹⁾	R/HSC-x ⁽¹⁾	R/HSC-x ⁽¹⁾
CRYBSY ⁽⁴⁾	TXTABSY	CRYABRT ⁽⁵⁾	ROLLOVR	—	MODFAIL ⁽³⁾	KEYFAIL ^(3,4)	PGMFAIL ^(3,4)
bit 7		•					bit 0
Legend:							
R = Readable I	oit	W = Writable bi	it	U = Unimplem	nented bit, read	as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
HS = Hardware Settable bit	C = Clearable bit	HSC = Hardware Settable/C	learable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Reset State Conditional bit	

bit 15	-8	Unimplemented: Read as '0'
bit 7		CRYBSY: Cryptographic OTP Array Busy Status bit ^(1, 4)
		 1 = The cryptography module is performing a cryptographic operation or OTP operation 0 = The module is not currently performing any operation
bit 6		TXTABSY: CRYTXTA Busy Status bit ⁽¹⁾
		 1 = The CRYTXTA register is busy and may not be written to 0 = The CRYTXTA is free and may be written to
bit 5		CRYABRT: Cryptographic Operation Aborted Status bit ^(2,5)
		 1 = Last operation was aborted by clearing the CRYGO bit in software 0 = Last operation completed normally (CRYGO cleared in hardware)
bit 4		ROLLOVR: Counter Rollover Status bit ⁽²⁾
		 1 = The CRYTXTB counter rolled over on the last CTR mode operation; once set, this bit must be cleared by software before the CRYGO bit can be set again 0 = No rollover event has occurred
bit 3		Unimplemented: Read as '0'
bit 2		MODFAIL: Mode Configuration Fail Flag bit ^(1,3)
		 1 = Currently selected operating and Cipher mode configuration is invalid; the CRYWR bit cannot be set until a valid mode is selected (automatically cleared by hardware with any valid configuration) 0 = Currently selected operating and Cipher mode configurations are valid
bit 1		KEYFAIL: Key Configuration Fail Status bit ^(1,3,4)
		See Table 22-1 and Table 22-2 for invalid key configurations.
		 1 = Currently selected key and mode configurations are invalid; the CRYWR bit cannot be set until a valid mode is selected (automatically cleared by hardware with any valid configuration) 0 = Currently selected configurations are valid
bit 0		PGMFAIL: Key Storage/Configuration Program Fail Flag bit ^(1,3,4)
		 1 = The page indicated by KEYPG<3:0> is reserved or locked; the CRYWR bit cannot be set and no programming operation can be started 0 = The page indicated by KEYPG<3:0> is available for programming
		0 - The page indicated by NETT 0 (0.02 is available for programming
Note		These bits are reset on system Resets or whenever the CRYMD bit is set.
	2:	These bits are reset on system Resets when the CRYMD bit is set or when CRYGO is cleared.
	3:	These bits are functional even when the module is disabled (CRYON = 0); this allows mode configurations to be validated for compatibility before enabling the module.
	4:	These bits are automatically set during all OTP read operations, including the initial read at POR. Once

the read is completed, the bit assumes the proper state that reflects the current configuration.

5: If this bit is set, a cryptographic operation cannot be performed.

	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_		_		—				
it 15							bit		
R/HSC-x ⁽¹⁾	R/W-0 ⁽¹⁾	R/S/HC-1	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/S/HC-0 ⁽²		
PGMTST	OTPIE	CRYREAD ^(3,4)	KEYPG3	KEYPG2	KEYPG1	KEYPG0	CRYWR ^{(3,}		
it 7							bit		
egend:									
R = Readabl	le bit	W = Writable bit		U = Unimplem	ented bit, read	as '0'			
s = Settable	bit	HC = Hardware C	Clearable bit	HSC = Hardwa	are Settable/Cle	earable bit			
n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unk	nown		
oit 15-8	Unimplemer	nted: Read as '0'							
it 7		ey Storage/Configu	-						
		rs the state of the T	STPGM bit a	nd is used to tes	st the programr	ning of the sec	cure OTP arra		
	after program 1 = TSTPGN	nming. 1 (CFGPAGE<30>)	is programm	ned ('1')					
		l is not programme							
it 6	OTPIE: Key Storage/Configuration Program Interrupt Enable bit ⁽¹⁾								
	1 = Generates an interrupt when the current programming or read operation completes								
	 Does not generate an interrupt when the current programming or read operation completes; software must poll the CRYWR, CRYREAD or CRYBSY bit to determine when the current programming operation is complete 								
oit 5	-	Cryptographic Key	Storage/Con	figuration Read	bit ^(3,4)				
	1 = This bit is	set to start a read of eration has comple	operation; rea			this bit is set a	nd CRYGO =		
	•	•			lect hite(1)				
oit 4-1	KEYPG<3:0>: Key Storage/Configuration Program Page Select bits ⁽¹⁾								
oit 4-1	1111	-,		ogram Page Se					
bit 4-1	1111 •			ogram Page Se					
bit 4-1				ogram Page Se					
bit 4-1	1111 • = Rese • 1001	erved		ogram Page Se					
bit 4-1	11111 • = Rese • 1001 1000 = OTP	erved Page 8		ogram Page Se					
oit 4-1	11111 • = Rese • 1001 1000 = OTP 0111 = OTP	erved Page 8 Page 7		ogram Page Se					
vit 4-1	11111 • = Rese • 1001 1000 = OTP	erved Page 8 Page 7 Page 6		ogram Page Se					
it 4-1	11111 • = Rese • 1001 1000 = OTP 0111 = OTP 0110 = OTP 0101 = OTP 0100 = OTP	Page 8 Page 7 Page 6 Page 5 Page 4		ogram Page Se					
it 4-1	11111 • = Rese • 1001 1000 = OTP 0111 = OTP 0101 = OTP 0100 = OTP 0101 = OTP	Page 8 Page 7 Page 6 Page 5 Page 4 Page 3		ogram Page Se					
it 4-1	11111 • = Rese • 1001 1000 = OTP 0111 = OTP 0101 = OTP 0100 = OTP 0011 = OTP 0011 = OTP 0010 = OTP	Page 8 Page 7 Page 6 Page 5 Page 4 Page 3 Page 2		ogram Page Se					
it 4-1	11111 • = Rese • 1001 1000 = OTP 0111 = OTP 0101 = OTP 0100 = OTP 0011 = OTP 0010 = OTP 0010 = OTP 0001 = OTP	Page 8 Page 7 Page 6 Page 5 Page 4 Page 3 Page 2							
oit 4-1	11111 • = Rese • 1001 1000 = OTP 0111 = OTP 0101 = OTP 0100 = OTP 0011 = OTP 0010 = OTP 0001 = OTP 0001 = OTP	Page 8 Page 7 Page 6 Page 5 Page 4 Page 3 Page 2 Page 1	GPAGE, OTI	P Page 0)					

- 2: These bits are reset on systems Resets, when the CRYMD bit is set or when CRYGO is cleared.
- 3: Set this bit only when CRYON = 1 and CRYGO = 0. Do not set CRYREAD or CRYWR both, at any given time.
- 4: Do not clear CRYON or these bits while they are set; always allow the hardware operation to complete and clear the bit automatically.

REGISTER 22-5: CFGPAGE: SECURE ARRAY CONFIGURATION BITS (OTP PAGE 0) REGISTER

r-x	R/PO-x	U-x	U-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x
—	TSTPGM ⁽¹⁾	—	—	KEY4TYPE1	KEY4TYPE0	KEY3TYPE1	KEY3TYPE0
bit 31							bit 24

R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	
KEY2TYPE1	KEY2TYPE0	KEY1TYPE1	KEY1TYPE0	SKEYEN	LKYSRC7	LKYSRC6	LKYSRC5	
bit 23 bit 10								

R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x
LKYSRC4	LKYSRC3	LKYSRC2	LKYSRC1	LKYSRC0	SRCLCK	WRLOCK8	WRLOCK7
bit 15				•			bit 8

R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x
WRLOCK6	WRLOCK5	WRLOCK74	WRLOCK3	WRLOCK2	WRLOCK1	WRLOCK0	SWKYDIS
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	Reserved: Do not modify
bit 30	TSTPGM: Customer Program Test bit ⁽¹⁾
	1 = CFGPAGE has been programmed0 = CFGPAGE has not been programmed
bit 29-28	Unimplemented: Read as '0'
bit 27-26	KEY4TYPE<1:0>: Key Type for OTP Pages 7 and 8 bits
	 00 = Keys in these pages are for DES/2DES operations only 01 = Keys in these pages are for 3DES operations only 10 = Keys in these pages are for 128-bit AES operations only 11 = Keys in these pages are for 192-bit/256-bit AES operations only
bit 25-24	KEY3TYPE<1:0>: Key Type for OTP Pages 5 and 6 bits
	 00 = Keys in these pages are for DES/2DES operations only 01 = Keys in these pages are for 3DES operations only 10 = Keys in these pages are for 128-bit AES operations only 11 = Keys in these pages are for 192-bit/256-bit AES operations only
bit 23-22	KEY2TYPE<1:0>: Key Type for OTP Pages 3 and 4 bits
	 00 = Keys in these pages are for DES/2DES operations only 01 = Keys in these pages are for 3DES operations only 10 = Keys in these pages are for 128-bit AES operations only 11 = Keys in these pages are for 192-bit/256-bit AES operations only
bit 21-20	KEY1TYPE<1:0>: Key Type for OTP Pages 1 and 2 bits
	 00 = Keys in these pages are for DES/2DES operations only 01 = Keys in these pages are for 3DES operations only 10 = Keys in these pages are for 128-bit AES operations only 11 = Keys in these pages are for 192-bit/256-bit AES operations only
Note 1:	This bit's state is mirrored by the PGMTST bit (CRYOTP<7>).

REGISTER 22-5: CFGPAGE: SECURE ARRAY CONFIGURATION BITS (OTP PAGE 0) REGISTER (CONTINUED)

bit 19	SKEYEN: Session Key Enable bit
	 1 = Stored Key #1 may be used only as a Key Encryption Key 0 = Stored Key #1 may be used for any operation
bit 18-11	LKYSRC<7:0>: Locked Key Source Configuration bits
	If SRCLCK = 1:
	1xxxxxxx = Key Source is as if KEYSRC<3:0> = 1111
	01xxxxxx = Key Source is as if KEYSRC<3:0> = 0111
	001xxxxx = Key Source is as if KEYSRC<3:0> = 0110
	0001xxxx = Key Source is as if KEYSRC<3:0> = 0101
	00001xxx = Key Source is as if KEYSRC<3:0> = 0100
	000001xx = Key Source is as if KEYSRC<3:0> = 0011
	0000001x = Key Source is as if KEYSRC<3:0> = 0010
	00000001 = Key Source is as if KEYSRC<3:0> = 0001
	0000000 = Key Source is as if KEYSRC<3:0> = 0000
	If SRCLCK = 0:
	These bits are ignored.
bit 10	SRCLCK: Key Source Lock bit
	1 = The key source is determined by the KEYSRC<3:0> (CRYCONH<3:0>) bits (software key selection is disabled)
	 The key source is determined by the KEYSRC<3:0> (CRYCONH<3:0>) bits (locked key selection is disabled)
bit 9-1	WRLOCK<8:0>: Write Lock Page Enable bits
	For OTP Pages 0 (CFGPAGE) through 8:
	1 = OTP Page is permanently locked and may not be programmed
	0 = OTP Page is unlocked and may be programmed
bit 0	SWKYDIS: Software Key Disable bit
	 1 = Software key (CRYKEY register) is disabled; when KEYSRC<3:0> = 0000, the KEYFAIL status bit will be set and no encryption/decryption/session key operations can be started until KEYSRC<3:0> bits are changed to a value other than '0000'
	0 = Software key (CRYKEY register) can be used as a key source when KEYSRC<3:0> = 0000

Note 1: This bit's state is mirrored by the PGMTST bit (CRYOTP<7>).

Mode of			Session Key So	OTP Array	
Operation	KEYMOD<1:0>	KEYSRC<3:0>	0	1	Address
		0000 (1)	CRYKE	Y<63:0>	_
		0001	DES Key #1	Key Config Error ⁽²⁾	<63:0>
		0010	DES I	Key #2	<127:64>
		0011	DES I	Key #3	<191:128>
	0.0	0100	DES ł	Key #4	<255:192>
64-Bit DES	00	0101	DES I	Key #5	<319:256>
		0110	DES I	Key #6	<383:320>
		0111	DES I	Key #7	<447:384>
		1111	Reser	ved ⁽²⁾	_
		All Others	Key Conf	ig Error ⁽²⁾	_
		0000 (1)		CRYKEY<63:0> (1st/3rd) CRYKEY<127:64> (2nd)	
64-Bit, 2-Key 3DES	01	0001	DES Key #1 (1st/3rd) DES Key #2 (2nd)	Key Config Error ⁽²⁾	<63:0> <127:64>
		0010	DES Key #3 (1st/3rd) DES Key #4 (2nd)		<191:128> <255:192>
(Standard 2-Key E-D-E/D-E-D)		0011	DES Key #5 (1st/3rd) DES Key #6 (2nd)		<319:256> <383:320>
		0100	DES Key #7 (1st/3rd) DES Key #8 (2nd)		<447:384> <511:448>
		1111	Reser	ved ⁽²⁾	
		All Others	Key Config Error ⁽²⁾		_
(Reserved)	10	XXXX	Key Conf	ïg Error ⁽²⁾	
		0000(1)	CRYKEY<127:64	> (1st Iteration) 4> (2nd Iteration) 28> (3rd Iteration)	
64-Bit, 3-Key	11	0001	DES Key #1 (1st) DES Key #2 (2nd) DES Key #3 (3rd)	Key Config Error ⁽²⁾	<63:0> <127:64> <191:128>
3DES		0010	DES Key	/ #4 (1st) / #5 (2nd) / #6 (3rd)	<255:192> <319:256> <383:320>
		1111	Reser	-ved ⁽²⁾	
		All Others	Key Conf	ig Error ⁽²⁾	

TABLE 22-1: DES/3DES KEY SOURCE SELECTION

Note 1: This configuration is considered a Key Configuration Error (KEYFAIL bit is set) if SWKYDIS is also set.

2: The KEYFAIL bit (CRYSTAT<1>) is set when these configurations are selected and remains set until a valid configuration is selected.

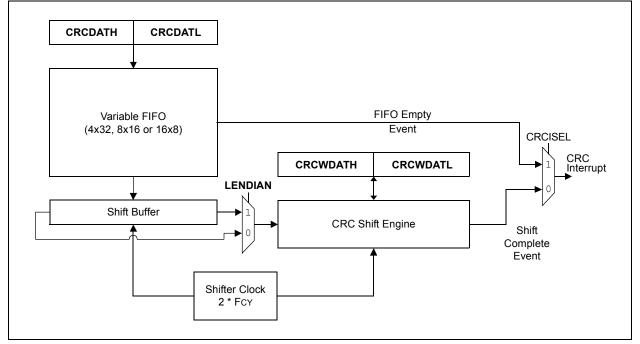
IADLE 22-2:			_		
Mode of	KEYMOD<1:0>	KEYSRC<3:0>	Key	Source	OTP Address
Operation			SKEYEN = 0	SKEYEN = 1	
		0000 (1)	CRYKE	Y<127:0>	_
		0001	AES Key #1	Key Config Error ⁽²⁾	<127:0>
		0010	AES	Key #2	<255:128>
128-Bit AES	0.0	0011	AES	Key #3	<383:256>
		0100	AES	Key #4	<511:384>
		1111	Reserved ⁽²⁾		
		All Others	Key Config Error ⁽²⁾		
		0000 (1)	CRYKE	:Y<191:0>	_
		0001	AES Key #1	Key Config Error ⁽²⁾	<191:0>
192-Bit AES	01	0010	AES Key #2		<383:192>
		1111	Reserved ⁽²⁾		
		All Others	Key Cor	nfig Error ⁽²⁾	—
		0000 (1)	CRYKE	Y<255:0>	—
		0001	AES Key #1	Key Config Error ⁽²⁾	<255:0>
256-Bit AES	10	0010	AES	Key #2	<511:256>
		1111	Rese	erved ⁽²⁾	
		All Others	Key Cor	nfig Error ⁽²⁾	
(Reserved)	11	XXXX	Key Cor	nfig Error ⁽²⁾	_

TABLE 22-2: AES KEY MODE/SOURCE SELECTION

Note 1: This configuration is considered a Key Configuration Error (KEYFAIL bit is set) if SWKYDIS is also set.

2: The KEYFAIL bit (CRYSTAT<1>) is set when these configurations are selected and remains set until a valid configuration is selected.

NOTES:


23.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729). The information in this data sheet supersedes the information in the FRM. The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

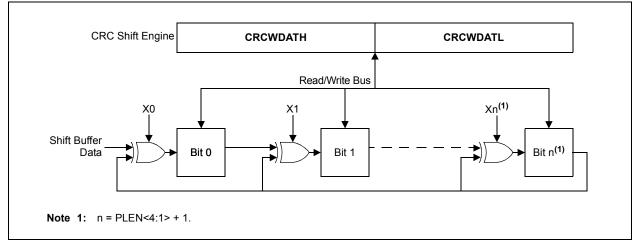

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable interrupt output
- Data FIFO

Figure 23-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 23-2.

FIGURE 23-1: CRC MODULE BLOCK DIAGRAM

FIGURE 23-2: CRC SHIFT ENGINE DETAIL

23.1 User Interface

23.1.1 POLYNOMIAL INTERFACE

The CRC module can be programmed for CRC polynomials of up to the 32^{nd} order, using up to 32 bits.

Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation. Functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one is a 16-bit and the other is a 32-bit equation.

EQUATION 23-1: 16-BIT, 32-BIT CRC POLYNOMIALS

X16 + X12 + X5 + 1

and

 $\begin{array}{c} X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + \\ X8 + X7 + X5 + X4 + X2 + X + 1 \end{array}$

To program these polynomials into the CRC generator, set the register bits, as shown in Table 23-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The '0' bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length 32, it is assumed that the 32^{nd} bit will be used. Therefore, the X<31:1> bits do not have the 32^{nd} bit.

23.1.2 DATA INTERFACE

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value between 1 and 32 bits using the DWIDTH<4:0> bits (CRCCON2<12:8>). When the data width is greater than 15, the FIFO is 4 words deep. When the DWIDTHx bits are between 15 and 8, the FIFO is 8 words deep. When the DWIDTHx bits are less than 8, the FIFO is 16 words deep.

The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than 8, the smallest data element that can be written into the FIFO is 1 byte. For example, if the DWIDTHx bits are 5, then the size of the data is DWIDTH<4:0> + 1 or 6. The data is written as a whole byte; the two unused upper bits are ignored by the module.

Once data is written into the MSb of the CRCDAT registers (that is, the MSb as defined by the data width), the value of the VWORD<4:0> bits (CRCCON1<12:8>) increments by one. For example, if the DWIDTHx bits are 24, the VWORDx bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written to before CRCDATH.

The CRC engine starts shifting data when the CRCGO bit is set and the value of the VWORDx bits is greater than zero.

Each word is copied out of the FIFO into a buffer register, which decrements the VWORDx bits. The data is then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle, until the VWORDx bits reach zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

When the VWORDx bits reach the maximum value for the configured value of the DWIDTHx bits (4, 8 or 16), the CRCFUL bit becomes set. When the VWORDx bits reach zero, the CRCMPT bit becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to '00000' whenever CRCEN is '0'.

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORDx bits is done.

TABLE 23-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIALS

CRC Control Bits	Bit	Values
CRC Control Bits	16-Bit Polynomial	32-Bit Polynomial
PLEN<4:0>	01111	11111
X<31:16>	0000 0000 0000 0001	0000 0100 1100 0001
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x

23.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction the data is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

23.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt. Note that when an interrupt occurs, the CRC calculation would not yet be complete. The module will still need (PLEN + 1)/2 clock cycles, after the interrupt is generated, until the CRC calculation is finished.

23.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- Configure the module for desired operation:

 a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.

b) Configure the data width and shift direction using the DWIDTH<4:0> and LENDIAN bits.c) Select the desired Interrupt mode using the CRCISEL bit.

3. Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.

- 4. Clear old results by writing 00h to CRCWDATL and CRCWDATH. The CRCWDAT registers can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write the remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

There are eight registers used to control programmable CRC operation:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 23-1 and Register 23-2) control the operation of the module and configure the various settings.

The CRCXOR registers (Register 23-3 and Register 23-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word input data and CRC processed output, respectively.

REGISTER 2	23-1: CR0	CCON1: CRC	CONTROL RE	GISTER 1	
		-			

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
CRCEN	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15			•	- -			bit 8
R-0, HSC	R-1, HSC	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN		<u> </u>	—
bit 7							bit 0
Legend:		HC = Hardware			are Settable/C		
R = Readab		W = Writable b	it	•	nented bit, read		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	1 = Enable 0 = Disable	RC Enable bit s module s module; all sta ire NOT reset	te machines, po	inters and CRC	CWDAT/CRCD	ATH registers a	re reset; other
bit 14	Unimpleme	ented: Read as '	0'				
bit 13	CSIDL: CR	C Stop in Idle Mo	ode bit				
		inues module op es module opera			e mode		
bit 12-8	VWORD<4:	0>: Pointer Valu	e bits				
	Indicates the when PLEN	e number of valid $<4:0> \le 7.$	I words in the FI	FO. Has a max	imum value of	8 when PLEN<	:4:0> ≥ 7 or 16
bit 7	CRCFUL: F	IFO Full bit					
	1 = FIFO is						
	0 = FIFO is						
bit 6		CRC FIFO Empty	bit				
	1 = FIFO is 0 = FIFO is						
bit 5		CRC Interrupt Se	election bit				
		t on FIFO is emp		d of data is still	shifting throug	h the CRC	
	0 = Interrup	t on shift is comp	lete and results	are ready			
bit 4	CRCGO: St						
		RC serial shifter	od off				
bit 3		Data Shift Directi					
		ord is shifted into		na with the LSh	(little-endian)		
		ord is shifted into		•	, ,		
bit 2-0	Unimpleme	ented: Read as '	0'				

REGISTER 23-2:	CRCCON2: CRC CONTROL REGISTER 2
----------------	--

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-13	Unimplemen	ted: Read as '	C'				
bit 12-8	DWIDTH<4:0	>: Data Word \	Nidth Configura	ation bits			
	Configures th	e width of the c	lata word (Data	a Word Width –	1).		
bit 7-5	Unimplemen	ted: Read as '	ר י				

bit 7-5 Unimplemented: Read as '0'

bit 4-0**PLEN<4:0>:** Polynomial Length Configuration bitsConfigures the length of the polynomial (Polynomial Length – 1).

REGISTER 23-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Χ<	:15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplem	nented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-1 X<15:1>: XOR of Polynomial Term xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

REGISTER 23-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Χ<	23:16>			
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 X<31:16>: XOR of Polynomial Term xⁿ Enable bits

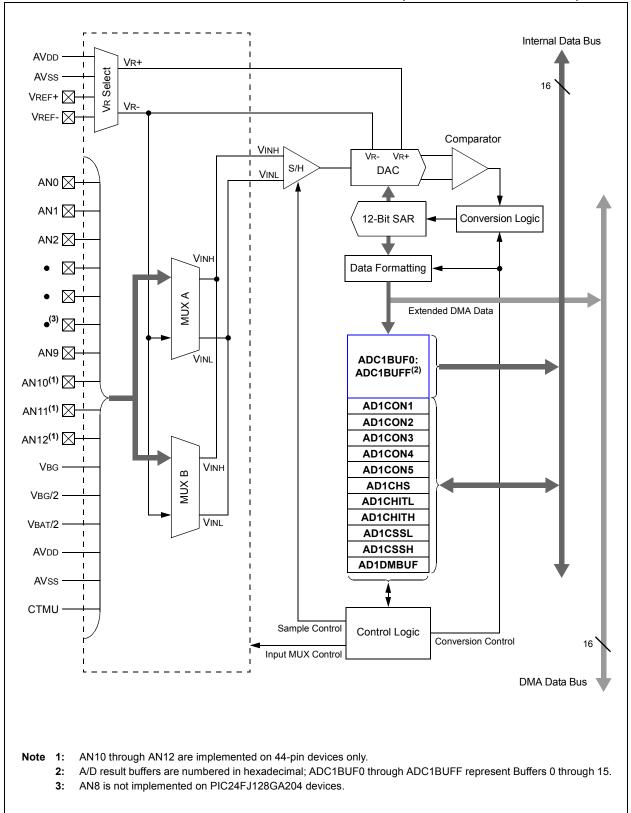
24.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter, refer to the "dsPIC33/PIC24 Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739).

The 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR) Conversion
- Conversion Speeds of up to 200 ksps
- Up to 20 Analog Input Channels (internal and external)
- Selectable 10-Bit or 12-Bit (default) Conversion Resolution
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H) Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Enhanced DMA Operations with Indirect Address Generation
- · Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in earlier PIC24 devices. It is a Successive Approximation Register (SAR) Converter, enhanced with 12-bit resolution, a wide range of automatic sampling options, tighter integration with other analog modules and a configurable results buffer.


It also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results, and enhanced operation with the DMA Controller through Peripheral Indirect Addressing (PIA).

A simplified block diagram for the module is shown in Figure 24-1.

24.1 Basic Operation

To perform a standard A/D conversion:

- 1. Configure the module:
 - a) Configure port pins as analog inputs by setting the appropriate bits in the ANSx registers (see Section 11.2 "Configuring Analog Port Pins (ANSx)" for more information).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the positive and negative multiplexer inputs for each channel (AD1CHS<15:0>).
 - Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - For Channel A scanning operations, select the positive channels to be included (AD1CSSH and AD1CSSL registers).
 - g) Select how conversion results are presented in the buffer (AD1CON1<9:8> and AD1CON5 register).
 - h) Select the interrupt rate (AD1CON2<5:2>).
 - i) Turn on A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit (IFS0<13>).
 - b) Enable the AD1IE interrupt (IEC0<13>).
 - c) Select the A/D interrupt priority (IPC3<6:4>).
- If the module is configured for manual sampling, set the SAMP bit (AD1CON1<1>) to begin sampling.

FIGURE 24-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM (PIC24FJ128GA204 FAMILY)

24.2 Extended DMA Operations

In addition to the standard features available on all 12-bit A/D Converters, PIC24FJ128GA204 family devices implement a limited extension of DMA functionality. This extension adds features that work with the device's DMA Controller to expand the A/D module's data storage abilities beyond the module's built-in buffer.

The Extended DMA functionality is controlled by the DMAEN bit (AD1CON1<11>); setting this bit enables the functionality. The DMABM bit (AD1CON1<12>) configures how the DMA feature operates.

24.2.1 EXTENDED BUFFER MODE

Extended Buffer mode (DMABM = 1) is useful for storing the results of channels. It can also be used to store the conversion results on any A/D channel in any implemented address in data RAM.

In Extended Buffer mode, all data from the A/D Buffer register, and channels above 26, is mapped into data RAM. Conversion data is written to a destination specified by the DMA Controller, specifically by the DMADSTn register. This allows users to read the conversion results of channels above 26, which do not have their own memory-mapped A/D buffer locations, from data memory.

When using Extended Buffer mode, always set the BUFREGEN bit to disable FIFO operation. In addition, disable the Split Buffer mode by clearing the BUFM bit.

24.2.2 PIA MODE

When DMABM = 0, the A/D module is configured to function with the DMA Controller for Peripheral Indirect Addressing (PIA) mode operations. In this mode, the A/D module generates an 11-bit Indirect Address (IA). This is ORed with the destination address in the DMA Controller to define where the A/D conversion data will be stored.

In PIA mode, the buffer space is created as a series of contiguous smaller buffers, one per analog channel. The size of the channel buffer determines how many analog channels can be accommodated. The size of the buffer is selected by the DMABL<2:0> bits (AD1CON4<2:0>). The size options range from a single word per buffer to 128 words. Each channel is allocated a buffer of this size, regardless of whether or not the channel will actually have conversion data.

The IA is created by combining the base address within a channel buffer with three to five bits (depending on the buffer size) to identify the channel. The base address ranges from zero to seven bits wide, depending on the buffer size. The address is right-padded with a '0' in order to maintain address alignment in the Data Space. The concatenated channel and base address bits are then left-padded with zeros, as necessary, to complete the 11-bit IA.

The IA is configured to auto-increment during write operations by using the SMPIx bits (AD1CON2<6:2>).

As with PIA operations for any DMA-enabled module, the base destination address in the DMADSTn register must be masked properly to accommodate the IA. Table 24-1 shows how complete addresses are formed. Note that the address masking varies for each buffer size option. Because of masking requirements, some address ranges may not be available for certain buffer sizes. Users should verify that the DMA base address is compatible with the buffer size selected.

Figure 24-2 shows how the parts of the address define the buffer locations in data memory. In this case, the module "allocates" 256 bytes of data RAM (1000h to 1100h) for 32 buffers of four words each. However, this is not a hard allocation and nothing prevents these locations from being used for other purposes. For example, in the current case, if Analog Channels 1, 3 and 8 are being sampled and converted, conversion data will only be written to the channel buffers, starting at 1008h, 1018h and 1040h. The holes in the PIA buffer space can be used for any other purpose. It is the user's responsibility to keep track of buffer locations and prevent data overwrites.

24.3 A/D Operation with VBAT

One of the A/D channels is connected to the VBAT pin to monitor the VBAT voltage. This allows monitoring the VBAT pin voltage (battery voltage) with no external connection. The voltage measured, using the A/D VBAT monitor, is VBAT/2. The voltage can be calculated by reading A/D = ((VBAT/2)/VDD) * 1024 for 10-bit A/D and ((VBAT/2)/VDD) * 4096 for 12 bit A/D.

When using the VBAT A/D monitor:

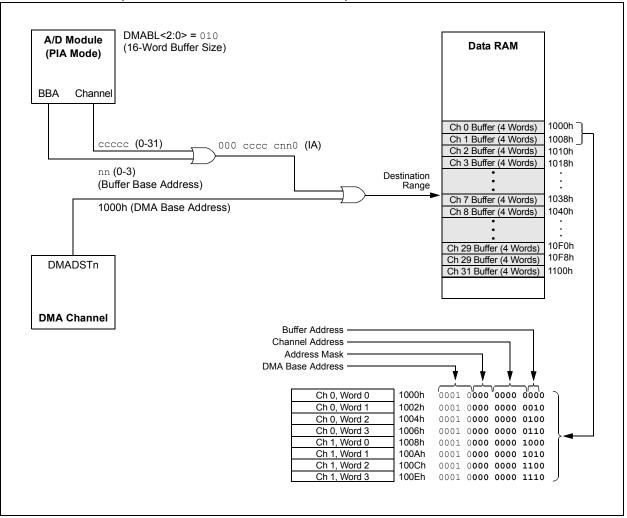
- Connect the A/D channel to ground to discharge the sample capacitor.
- Because of the high-impedance of VBAT, select higher sampling time to get an accurate reading.

Since the VBAT pin is connected to the A/D during sampling, to prolong the VBAT battery life, the recommendation is to only select the VBAT channel when needed.

24.4 Registers

The 12-bit A/D Converter is controlled through a total of 11 registers:

- AD1CON1 through AD1CON5 (Register 24-1 through Register 24-5)
- AD1CHS (Register 24-6)


- AD1CHITL (Register 24-8)
- AD1CSSH and AD1CSSL (Register 24-9 and Register 24-10)
- AD1CTMENL (Register 24-11)
- AD1DMBUF (not shown) The 16-bit conversion buffer for Extended Buffer mode

TARI E 24-1.	INDIRECT ADDRESS GENERATION IN PIA MODE
IADLE 24-1.	INDIRECT ADDRESS GENERATION IN PIA MODE

DMABL<2:0>	Buffer Size per Channel (words)	Generated Offset Address (lower 11 bits)	Available Input Channels	Allowable DMADSTn Addresses
000	1	000 00cc ccc0	32	xxxx xxxx xx00 0000
001	2	000 0ccc ccn0	32	xxxx xxxx x000 0000
010	4	000 cccc cnn0	32	xxxx xxxx 0000 0000
011	8	00c cccc nnn0	32	xxxx xxx0 0000 0000
100	16	Occ cccn nnnO	32	xxxx xx00 0000 0000
101	32	ccc ccnn nnn0	32	xxxx x000 0000 0000
110	64	ccc cnnn nnn0	16	xxxx x000 0000 0000
111	128	ccc nnnn nnn0	8	xxxx x000 0000 0000

Legend: ccc = Channel number (three to five bits), n = Base buffer address (zero to seven bits), x = User-definable range of DMADSTn for base address, 0 = Masked bits of DMADSTn for IA.

FIGURE 24-2: EXAMPLE OF BUFFER ADDRESS GENERATION IN PIA MODE (4-WORD BUFFERS PER CHANNEL)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADON	—	ADSIDL	DMABM ⁽¹⁾	DMAEN	MODE12	FORM1	FORM0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0					
SSRC3		1	1	0-0	ASAM	R/W-0, HSC SAMP	R/C-0, HSC DONE			
	SSRC2	SSRC1	SSRC0		ASAIVI	SAIVIP				
bit 7							bit (
Legend:		C = Clearabl	e bit	U = Unimpler	mented bit, rea	d as '0'				
R = Readab	ole bit	W = Writable	bit	HSC = Hardv	vare Settable/C	learable bit				
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15	ADON: A/D	Operating Mod	e bit							
	1 = A/D Con 0 = A/D Con	verter module i verter is off	s operating							
bit 14		nted: Read as	0'							
bit 13	-	D Stop in Idle M								
		-	eration when d	evice enters lo	lle mode					
	0 = Continue	s module operations	ation in Idle mo	de						
bit 12	DMABM: Ex	tended DMA B	uffer Mode Sele	ect bit ⁽¹⁾						
			Buffer address sses are define	•		•	>			
bit 11	DMAEN: Extended DMA/Buffer Enable bit									
		d DMA and buff d features are o	er features are lisabled	enabled						
bit 10	MODE12: 12	2-Bit Operation	Mode bit							
	1 = 12-bit A/I 0 = 10-bit A/I									
bit 9-8	FORM<1:0>	: Data Output F	ormat bits (see	formats follow	ving)					
		nal result, signe								
			ult, unsigned, le	eft justified						
		I result, signed e decimal resu	t, unsigned, rig	ht justified						
bit 7-4			Source Select	•						
		nplemented, do								
			s sampling and s	tarts conversio	n (auto-convert)	; do not use in Ai	uto-Scan mod			
	0110 = Unin 0101 = TMR									
	0101 - TWR									
	0011 = TMR									
	0010 = TMR									
	0001 = INTC		be cleared by	software to sta	rt conversion					
bit 3		nted: Read as	•	Soliwale to sta						
bit 2	-	Sample Auto-S								
		-	liately after last	conversion S	AMP hit is auto	-set				
			SAMP bit is mai			001				
Noto 1. T	This bit is only a	vailable when F	vtondod DMA/	Buffer features	are available (

REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).

REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1 (CONTINUED)

- bit 1 SAMP: A/D Sample Enable bit 1 = A/D Sample-and-Hold amplifiers are sampling 0 = A/D Sample-and-Hold amplifiers are holding
- bit 0 **DONE:** A/D Conversion Status bit 1 = A/D conversion cycle has completed
 - 0 = A/D conversion cycle has not started or is in progress
- Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).

PVCFG1							
	PVCFG0	NVCFG0	OFFCAL	BUFREGEN	CSCNA	_	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS ⁽¹⁾	SMPI4	SMPI3	SMPI2	SMPI1	SMPIO	BUFM ⁽¹⁾	ALTS
bit 7	-		_			_	bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkno	own
bit 13	1 = External \) Converter Ne	gative Voltage	Reference Conf	ïguration bit		
bit 12	1 = Inverting a		ng inputs of ch	bit nannel Sample-a nannel Sample-a			
bit 11	BUFREGEN: 1 = Conversio	A/D Buffer Reg	gister Enable I led into the bu				
bit 10	CSCNA: Scar 1 = Scans inp 0 = Does not	outs	ons for CH0+ [During Sample A	bit		
bit 9-8		ted: Read as ')'				
bit 7	BUFS: Buffer	Fill Status bit ⁽¹)				
				1BUFF, user sho 1BUF7, user sho			

REGISTER 24-2: AD1CON2: A/D CONTROL REGISTER 2

Note 1: These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.

REGISTER 24-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)

SMPI<4:0>: Interrupt Sample/DMA Increment Rate Select bits
When DMAEN = 1:
11111 = Increments the DMA address after completion of the 32nd sample/conversion operation
11110 = Increments the DMA address after completion of the 31st sample/conversion operation
•
•
•
00001 = Increments the DMA address after completion of the 2nd sample/conversion operation
00000 = Increments the DMA address after completion of each sample/conversion operation
When DMAEN = 0:
11111 = Interrupts at the completion of the conversion for each 32nd sample
11110 = Interrupts at the completion of the conversion for each 31st sample
•
•
00001 = Interrupts at the completion of the conversion for every other sample
00000 = Interrupts at the completion of the conversion for each sample
BUFM: Buffer Fill Mode Select bit ⁽¹⁾
1 = Starts buffer filling at ADC1BUF0 on first interrupt and ADC1BUF8 on next interrupt
0 = Always starts filling buffer at ADC1BUF0
ALTS: Alternate Input Sample Mode Select bit
1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
0 = Always uses channel input selects for Sample A
These bits are only applicable when the buffer is used in EIEO mode (BLIEREGEN = 0). In addition, BLIES

Note 1: These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	
bit 7				ł			bit (
Legend:								
R = Readabl	e bit	W = Writable	oit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 14 bit 13 bit 12-8	 1 = RC clock 0 = Clock derived from system clock EXTSAM: Extended Sampling Time bit 1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling PUMPEN: Charge Pump Enable bit 1 = Charge pump for switches is enabled 0 = Charge pump for switches is disabled 							
bit 7-0	11111 = 31 T	ND ND A/D Conversion 256 • Tcy = Tat	n Clock Select					

REGISTER 24-3: AD1CON3: A/D CONTROL REGISTER 3

REGISTER 24-4: AD1CON4: A/D CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15			•				bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—		DMABL<2:0> ⁽¹)
bit 7							bit 0
Legend:							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 DMABL<2:0>: DMA Buffer Size Select bits⁽¹⁾
 - 111 = Allocates 128 words of buffer to each analog input
 - 110 = Allocates 64 words of buffer to each analog input
 - 101 = Allocates 32 words of buffer to each analog input
 - 100 = Allocates 16 words of buffer to each analog input
 - 011 = Allocates 8 words of buffer to each analog input
 - 010 = Allocates 4 words of buffer to each analog input
 - 001 = Allocates 2 words of buffer to each analog input
 - 000 = Allocates 1 word of buffer to each analog input
- **Note 1:** The DMABL<2:0> bits are only used when AD1CON1<11> = 1 and AD1CON1<12> = 0; otherwise, their value is ignored.

LPEN								
	CTMREQ	BGREQ			ASINT1	ASINT0		
						bit		
			DAMA	DAMA	DANIO	DANO		
0-0	0-0	U-0			-	R/W-0		
	_	—	VVIVI1	VVIVIU	CM1	CM0		
						bit		
e bit	W = Writable I	oit	U = Unimplem	ented bit, read	1 as '0'			
POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own		
ASEN: Auto-9	Scan Enable bit							
LPEN: Low-P	ower Enable bi	t						
-								
-	•							
			oled and active					
	-							
Unimplement	ted: Read as 'd)'						
ASINT<1:0>:	Auto-Scan (Th	reshold Detect	i) Interrupt Mode	e bits				
11 = Interrupt after Threshold Detect sequence has completed and valid compare has occurred								
10 = Interrupt after valid compare has occurred								
	•)'						
-								
10 = Auto-compare only (conversion results are not saved, but interrupts are generated when a valid								
match occurs, as defined by the CMx and ASINTx bits)								
				tion determine	d by the buffer	register bits)		
11 = Outside Window mode (valid match occurs if the conversion result is outside of the window								
defined by the corresponding buffer pair)								
	•		curs in the conve	I SION RESULT IS	inside the wind	ow defined b		
			rs if the result is	greater than t	he value in the	correspondin		
buffer re	gister)			•		·		
		match occurs i	f the result is les	s than the valu	ue in the corres	ponding buffe		
	ASEN: Auto-S 1 = Auto-scan 0 = Auto-scan LPEN: Low-P 1 = Low power 0 = Full power CTMREQ: CT 1 = CTMU is e 0 = CTMU is e 0 = CTMU is e 0 = CTMU is e 0 = CTMU is e 1 = Band gap 0 = Band gap Unimplement ASINT<1:0>: 11 = Interrupt 10 = Interrupt 10 = Interrupt 00 = No interrupt 00 = No interrupt 00 = No interrupt 00 = No interrupt 00 = No interrupt 01 = Interrupt 01 = Interrupt 00 = No interrupt 00 = No interrupt 01 = Convert when a rupt 00 = Legacy of CM<1:0>: Co 11 = Outside defined II 10 = Inside W the correc 01 = Greater buffer re 00 = Less Tha	ASEN: Auto-Scan Enable bit 1' = Bit is set ASEN: Auto-Scan Enable bit 1 = Auto-scan is enabled 0 = Auto-scan is disabled LPEN: Low-Power Enable bit 1 = Low power is enabled after CTMREQ: CTMU Request b 1 = CTMU is enabled when t 0 = CTMU is not enabled by BGREQ: Band Gap Request 1 = Band gap is enabled when 0 = Band gap is not enabled Unimplemented: Read as 'C ASINT<1:0>: Auto-Scan (Th 11 = Interrupt after Threshole 10 = Interrupt after Threshole 10 = No interrupt Unimplemented: Read as 'C WM<1:0>: Write Mode bits 11 = Reserved 10 = Auto-compare only (cormatch occurs, as define 01 = Convert and save (conwhen a match occurs, as define 01 = Convert and save (conwhen a match occurs, as defined 01 = Outside Window mode defined by the correspond 11 = Outside Window mode (verthe corresponding buffer 01 = Greater Than mode (valuefing buffer 01 = Greater Than mode (valuefing buffer	- - e bit W = Writable bit POR '1' = Bit is set ASEN: Auto-Scan Enable bit 1 = Auto-scan is enabled 0 = Auto-scan is disabled LPEN: Low-Power Enable bit 1 = Low power is enabled after scan 0 = Full power is enabled after scan 0 = Full power is enabled when the A/D is enable 0 = CTMU is enabled when the A/D is enable 0 = CTMU is enabled when the A/D is enable 0 = CTMU is not enabled by the A/D BGREQ: Band Gap Request bit 1 = Band gap is enabled when the A/D is e 0 = Band gap is not enabled by the A/D Unimplemented: Read as '0' ASINT<1:0>: Auto-Scan (Threshold Detect seque 10 = Interrupt after Threshold Detect seque 10 = Interrupt after Threshold Detect seque 10 = Interrupt after Threshold Detect seque 00 = No interrupt Unimplemented: Read as '0' WM<1:0>: Write Mode bits 11 = Reserved 10 = Auto-compare only (conversion results match occurs, as defined by the CMx 01 = Convert and save (conversion results when a match occurs, as defined by the CMx 01 = Convert and save (conversion data is CM<<1:0>: Compare Mode bits 11 = Outside Window mode (valid match occurs when a match occurs, as defined by the corresponding buffer p 10 = Inside Window mode	— — WM1 e bit W = Writable bit U = Unimplem POR '1' = Bit is set '0' = Bit is clear ASEN: Auto-Scan Enable bit 1 = Auto-scan is enabled 0 = Auto-scan is enabled U = Unimplem 0 = Auto-scan is enabled U = Unimplem 0 = Auto-scan is disabled LPEN: Low-Power Enable bit 1 = Low power is enabled after scan 0 = Full power is enabled after scan 0 = Full power is enabled when the A/D is enabled and active 0 = CTMU is enabled when the A/D BGREQ: Band Gap Request bit 1 = Band gap is enabled when the A/D BGREQ: Band Gap Request bit 1 = Band gap is not enabled by the A/D Unimplemented: Read as '0' ASINT<1:0>: Auto-Scan (Threshold Detect) Interrupt Mode 11 = Interrupt after Threshold Detect sequence has comple 0 = Interrupt after Valid compare has occurred 01 = Interrupt after Threshold Detect sequence has comple 0 = No interrupt Unimplemented: Read as '0' WM<1:0>: Write Mode bits 11 = Reserved 10 = Auto-compare only (conversion results are not saved match occurs, as defined by the CMx and ASINTx bit 01 = Convert and save (conversion results are not saved to a locat CM<1:0>: Compare Mode bits 11 = Outside Window mode (valid match occu		ebit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn ASEN: Auto-Scan Enable bit 1 = Auto-scan is enabled x = Bit is unkn ASEN: Auto-Scan Enable bit 1 = Auto-scan is enabled x = Bit is unkn I = Auto-scan is enabled 0' = Bit is cleared x = Bit is unkn ASEN: Low-Power Enable bit 1 = Low power is enabled after scan 0 = Full power is enabled after scan OFTMEQ: CTMU Request bit 1 = Composer is enabled when the A/D is enabled and active 0 = CTMU is enabled by the A/D BGREQ: Band Gap Request bit 1 = Band gap is enabled when the A/D is enabled and active 0 = Band gap is not enabled by the A/D Unimplemented: Read as '0' ASINT<1:0>: Auto-Scan (Threshold Detect) Interrupt Mode bits 11 = Interrupt after Threshold Detect sequence has completed and valid compare has occurred 01 = Interrupt after Threshold Detect sequence has completed 00 = No interrupt Unimplemented: Read as '0' WM<1:0>: Write Mode bits 11 = Reserved 10 = Auto-compare only (conversion results are not saved, but interrupts are generated match occurs, as defined by the CMx and ASINTx bits) 01 = Convert and save (conversion results are saved to locations as determined by t		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NA2	CH0NA1	CHONAO	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	
bit 7							bit	
Legend:								
R = Readabl	le bit	W = Writable	oit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown	
bit 12-8		lemented AVss			h. 14-			
bit 7-5	$\begin{array}{l} \text{OO1 = Onlinptemented} \\ \text{OO0 = VREF-/AVSS} \\ \hline \\ \textbf{CHOSB<4:0>: Sample B Channel 0 Positive Input Select bits} \\ 11111 = VBAT/2^{(1)} \\ 11110 = AVDD^{(1)} \\ 11101 = AVSS^{(1)} \\ 11101 = VBG/2^{(1)} \\ 10110 = CTMU \\ 01101 = CTMU temperature sensor input (does not require AD1CTMENL<12> to be set) \\ 01100 = AN12^{(2)} \\ 01011 = AN11^{(2)} \\ 01010 = AN10^{(2)} \\ 01001 = AN9 \\ 01000 = AN8 \\ 00111 = AN7 \\ 00110 = AN5 \\ 00101 = AN5 \\ 00101 = AN3 \\ 00011 = AN3 \\ 00010 = AN4 \\ 00011 = AN3 \\ 00010 = AN4 \\ 00011 = AN1 \\ 00001 = AN1 \\ 00001 = AN1 \end{array}$							
UIL /-D	Same definiti	ons as for CHO	NB<2:0>.	ive Input Select /e Input Select I				
bit 4-0								

2: These channels are unimplemented in 28-pin devices.

REGISTER 24-7: ANCFG: A/D BAND GAP REFERENCE CONFIGURATION

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	—	—	—	—	VBG2EN	VBGEN
bit 7						•	bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' =		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-2 Unimplemented: Read as '0'

bit 1 VBG2EN: A/D Input VBG/2 Enable bit

1 = Band Gap Voltage, divided by two reference (VBG/2), is enabled

0 = Band Gap Voltage, divided by two reference (VBG/2), is disabled

bit 0 VBGEN: A/D Input VBG Enable bit

1 = Band Gap Voltage (VBG) reference is enabled

0 = Band Gap Voltage (VBG) reference is disabled

REGISTER 24-8:	AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)
----------------	--

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—		CHH<1	2:9> ⁽¹⁾		CHH8	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CHH	<7:0>				
bit 7							bit 0	
Legend: R = Readab								
-n = Value a		'1' = Bit is set		0° = Bit is cleared $x = Bit$ is unknown				
bit 15-13	Unimplemen	ted: Read as '0'						
bit 12-9	CHH<12:9>:	A/D Compare Hit	bits ⁽¹⁾					
	0 = A/D Resu For All Other 1 = A match h	11: It Buffer n has be It Buffer n has no Values of CM<1:(has occurred on A has occurred on	t been writte <u>)>:</u> \/D Result Cl	n with data	atch has occu	rred		
bit 8-0	CHH<8:0>: A	/D Compare Hit b	oits					
	0 = A/D Resu For All Other	<u>11:</u> It Buffer n has be It Buffer n has no Values of CM<1:(has occurred on A	t been writte <u>)>:</u>	n with data	atch has occu	rred		

Note 1: The CHH<12:10> bits are unimplemented in 28-pin devices, read as '0'.

REGISTER 24-9: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		CSS<31:27>			—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	-			_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at POR (1' = Bit is set				'0' = Bit is cleared x = Bit is u		x = Bit is unkr	nown

1 = Includes corresponding channel for input scan
 0 = Skips channel for input scan

bit 10-0 Unimplemented: Read as '0'

REGISTER 24-10: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				CSS<14:8> ⁽¹⁾			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CSS<7:0>								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-0 CSS<14:0>: A/D Input Scan Selection bits⁽¹⁾

1 = Includes corresponding channel for input scan

0 = Skips channel for input scan

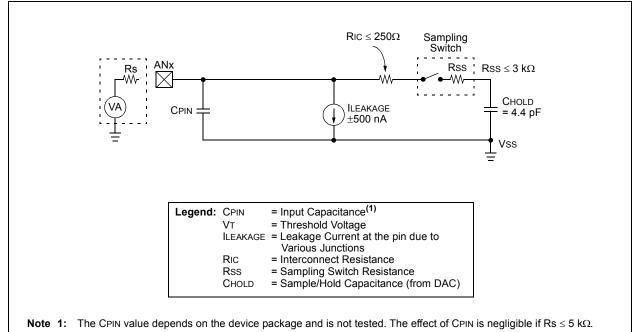
Note 1: The CSS<12:10> bits are unimplemented in 28-pin devices, read as '0'.

REGISTER 24-11: AD1CTMENL: CTMU ENABLE REGISTER (LOW WORD)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_	—	CTMEN<12:8> ⁽¹⁾					
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CTMEN<7:0>									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

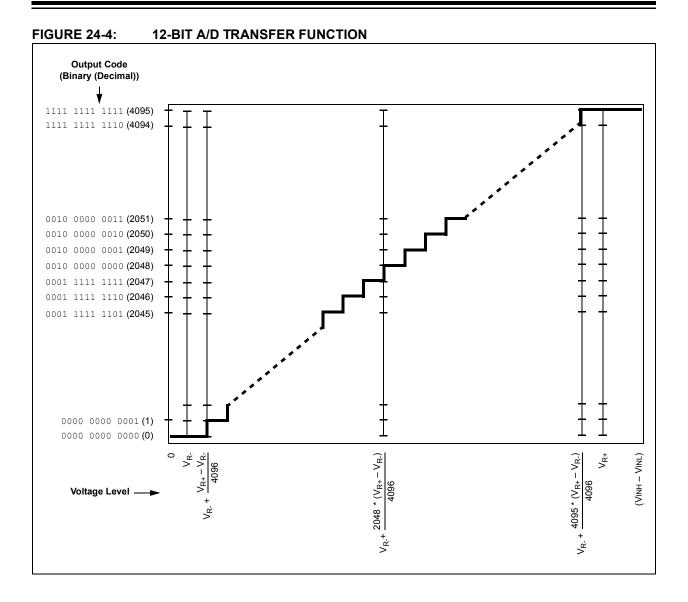

bit 15-13 Unimplemented: Read as '0'

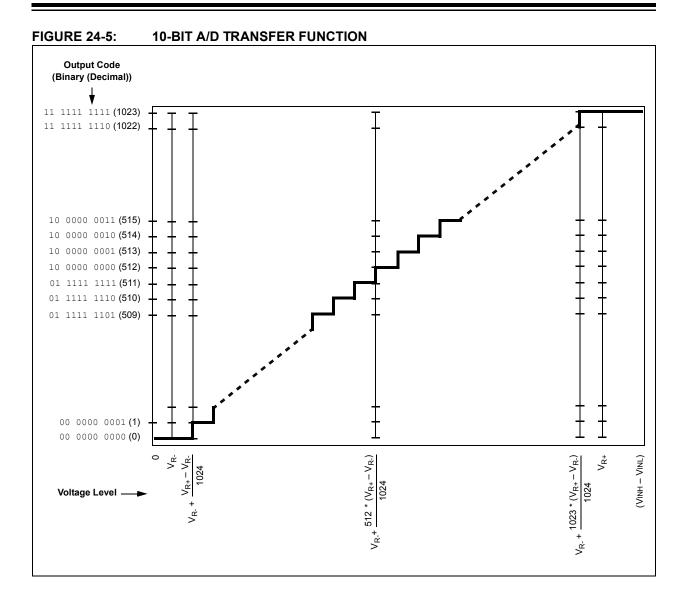
bit 12-0 CTMEN<12:0>: CTMU Enable During Conversion bits⁽¹⁾

1 = CTMU is enabled and connected to the selected channel during conversion
 0 = CTMU is not connected to this channel

Note 1: The CTMEN<12:10> bits are unimplemented in 28-pin devices, read as '0'.

FIGURE 24-3: 10-BIT A/D CONVERTER ANALOG INPUT MODEL




EQUATION 24-1: A/D CONVERSION CLOCK PERIOD

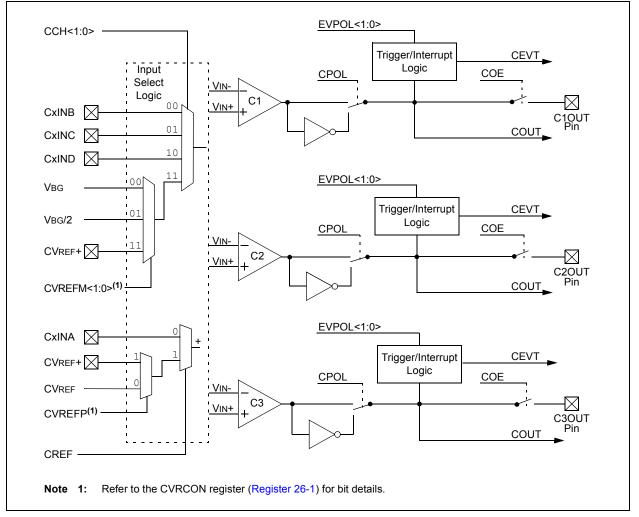
$$T_{AD} = T_{CY} \left(ADCS + 1 \right)$$

$$ADCS = \frac{TAD}{TCY} - 1$$

Note: Based on TCY = 2/FOSC; Doze mode and PLL are disabled.

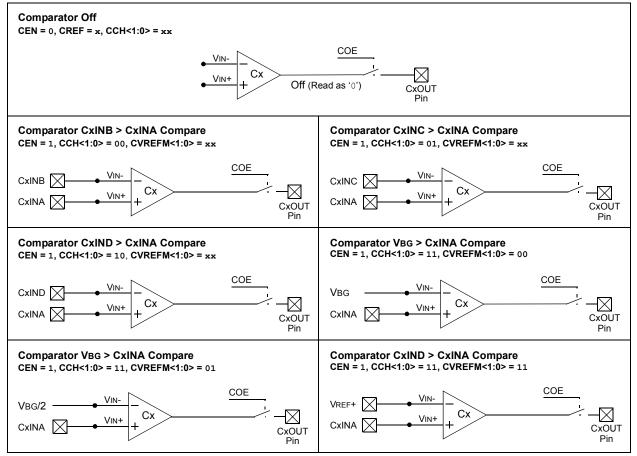
25.0 TRIPLE COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Scalable Comparator Module" (DS39734). The information in this data sheet supersedes the information in the FRM.


The triple comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and VREF+) and a

voltage reference input from one of the internal band gap references or the comparator voltage reference generator (VBG, VBG/2 and CVREF).

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.


A simplified block diagram of the module in shown in Figure 25-1. Diagrams of the possible individual comparator configurations are shown in Figure 25-2.

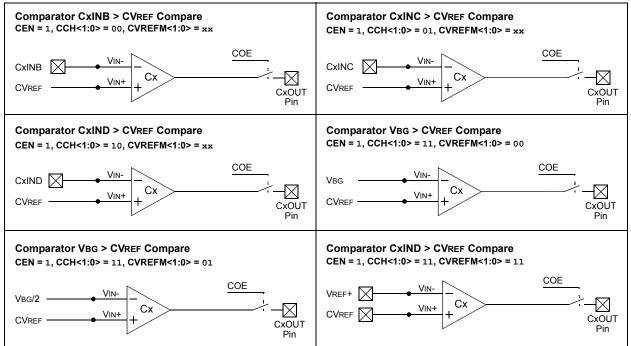

Each comparator has its own control register, CMxCON (Register 25-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 25-2).

FIGURE 25-1: TRIPLE COMPARATOR MODULE BLOCK DIAGRAM

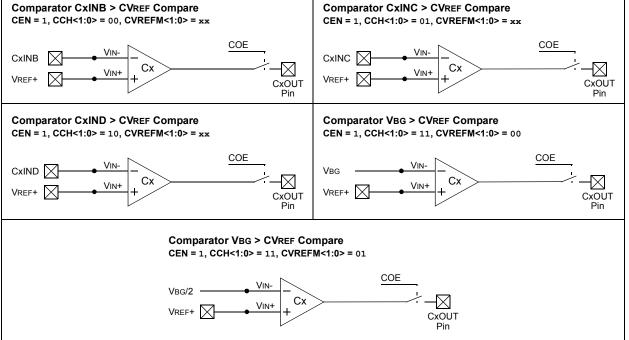


FIGURE 25-3: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 0

REGISTER 25-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0, HS	R-0, HSC			
CON	COE	CPOL	—	—	—	CEVT	COUT			
bit 15							bit 8			
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
EVPOL1 ⁽¹⁾	EVPOL0 ⁽¹⁾	<u> </u>	CREF		—	CCH1	CCH0			
bit 7							bit (
Legend:		HS = Hardware			vare Settable/0					
R = Readable		W = Writable b	it	•	mented bit, rea					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	-	rator Enable bit								
	1 = Comparat	tor is disabled								
bit 14	•	rator Output En	able bit							
		tor output is pres		OUT pin						
		tor output is inte								
bit 13	CPOL: Comparator Output Polarity Select bit									
	1 = Comparator output is inverted									
	0 = Comparat	tor output is not	inverted							
bit 12-10	Unimplemen	ted: Read as '0	3							
bit 9	CEVT: Compa	arator Event bit								
	•	tor event that is bled until the bit	•	OL<1:0> has c	occurred; subs	equent triggers	and interrupt			
	0 = Compara	ator event has no	ot occurred							
bit 8	COUT: Comp	arator Output bi	t							
	When CPOL									
	1 = VIN+ > VIN- $0 = VIN+ < VIN-$									
	$\frac{\text{When CPOL} = 1:}{1 = \text{VIN} + \text{VIN}}$									
	0 = VIN+ > VII	N-								
bit 7-6	EVPOL<1:0>	: Trigger/Event/	Interrupt Polarit	y Select bits ⁽¹⁾						
		event/interrupt is								
	10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output									
		event/interrupt is			i transition of t	ne comparator	ουιρυι			
bit 5		ted: Read as '0								
bit 4	-	arator Referenc		n-invertina inn	ut)					
~		rting input conne	-		-					
		rting input conne			<u> </u>					
bit 3-2	Unimplemen	ted: Read as '0	3							
Note de 161	-)> hits are set to		hen (00) the "						
MUTO 1' IT I	UB EVPUI <11		a value otner t	nan nn thá ti						

Note 1: If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

REGISTER 25-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)

- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of the comparator connects to the internal selectable reference voltage specified by the CVREFM<1:0> bits in the CVRCON register
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CxINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin
- **Note 1:** If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

REGISTER 25-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC			
CMIDL	—	—	—	—	C3EVT	C2EVT	C1EVT			
bit 15										

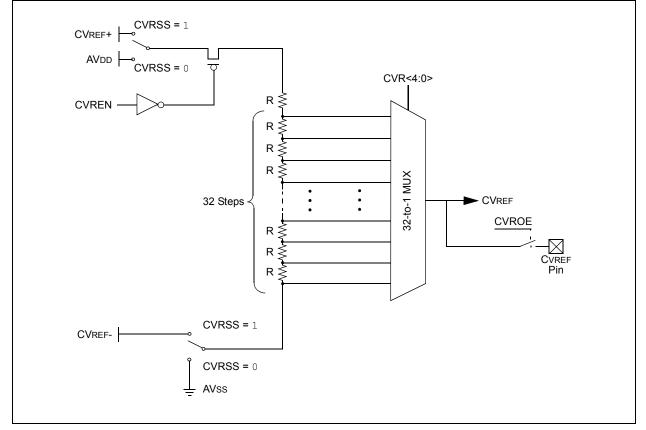
U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	C3OUT	C2OUT	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Sett	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	CMIDL: Comparator Stop in Idle Mode bit 1 = Discontinues operation of all comparators when device enters Idle mode 0 = Continues operation of all enabled comparators in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

NOTES:

26.0 COMPARATOR VOLTAGE REFERENCE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Comparator Voltage Reference Module" (DS39709). The information in this data sheet supersedes the information in the FRM.

26.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 26-1). The comparator voltage reference provides a range of output voltages with 32 distinct levels. The comparator reference supply voltage can come from either VDD and VSs or the external CVREF+ and CVREF- pins. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

REGISTER 26-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	_	—	CVREFP	CVREFM1	CVREFM0
bit 15							bit 8
							5444.0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-11	Unimplemen	ted: Read as '0)'				
bit 10	CVREFP: Co	mparator Voltag	ge Reference S	Select bit (valid	only when CR	EF is '1')	
		used as a refere (4-bit DAC) wit	•	•		ge to the comp	arators
bit 9-8		D>: Comparator en CCH<1:0> =		Gap Reference	e Source Selec	t bits	
	01 = Band ga 10 = Reserve	ip voltage is pro ip voltage, divid				nparators	
	11 = VREF+ pin is provided as an input to the comparators						
hit 7	-	in is provided a	-	-			
bit 7	CVREN: Com 1 = CVREF cir	in is provided a nparator Voltage cuit is powered	e Reference Er on	-			
bit 7 bit 6	CVREN: Com 1 = CVREF cir 0 = CVREF cir	in is provided a nparator Voltage cuit is powered cuit is powered	e Reference Er on down	able bit			
	CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo	in is provided a nparator Voltage cuit is powered	e Reference Er on down Dutput Enable b tput on the CV	nable bit bit /REF pin			
	CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo	in is provided a nparator Voltage cuit is powered cuit is powered nparator VREF C Itage level is ou Itage level is di	e Reference Er on down Dutput Enable b itput on the CV sconnected fro	nable bit bit 'REF pin m the CVREF p			
bit 6	CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo CVRSS: Com 1 = Comparat	in is provided a nparator Voltage cuit is powered cuit is powered nparator VREF C Itage level is ou	e Reference Er on down Dutput Enable b totput on the CV sconnected fro ource Selection ource, CVRSRC	hable bit fref pin m the CVREF p n bit = VREF+ – VRE	in F-		
bit 6	CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo CVRSS: Com 1 = Comparat 0 = Comparat	in is provided a oparator Voltage cuit is powered cuit is powered oparator VREF C ltage level is ou ltage level is di- oparator VREF S tor reference so	e Reference Er on down Dutput Enable to ttput on the CV sconnected fro ource Selection ource, CVRSRC ource, CVRSRC	nable bit verify the contract of the contract	in F-		

27.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Time Measurement Unit, refer to the "dsPIC33/PIC24 Family Reference Manual", "Charge Time Measurement Unit (CTMU) with Threshold Detect" (DS39743).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

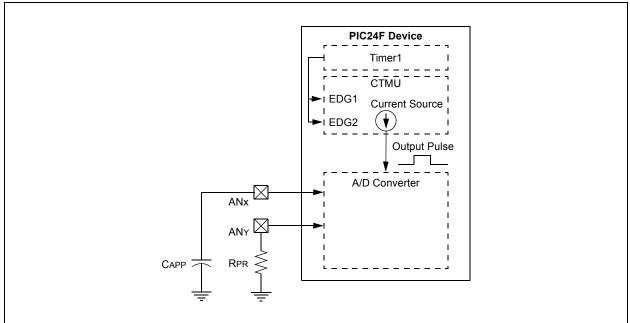
- Thirteen external edge input trigger sources
- · Polarity control for each edge source
- · Control of edge sequence
- Control of response to edge levels or edge transitions
- Time measurement resolution of one nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 enables the module and controls the mode of operation of the CTMU, as well as controlling edge sequencing. CTMUCON2 controls edge source selection and edge source polarity selection. The CTMUICON register selects the current range of current source and trims the current.

27.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and up to 13 external pins (CTED1 through CTED13). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:


EQUATION 27-1:

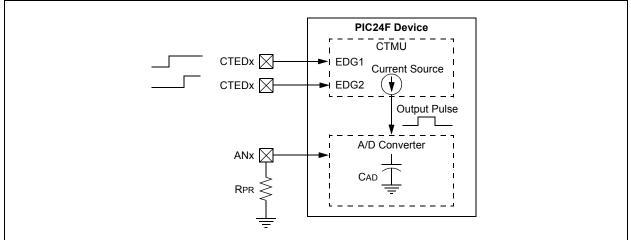
$$I = C \bullet \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an external Capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 27-1 illustrates the external connections used for capacitance measurements and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the *"dsPIC33/PIC24 Family Reference Manual"*, **"Charge Time Measurement Unit (CTMU) with Threshold Detect"** (DS39743).

FIGURE 27-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

27.2 Measuring Time


Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 27-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.

27.3 Pulse Generation and Delay

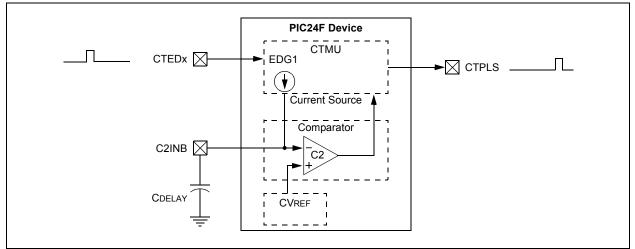

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module. When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON1<12>), the internal current source is connected to the B input of Comparator 2. A Capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the Comparator Voltage Reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 27-3 illustrates the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTED1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "dsPIC33/PIC24 Family Reference Manual".

FIGURE 27-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15					· · · · ·		bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	_	—	_	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimple	mented bit, read	as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown
							-
bit 15	CTMUEN: CT	MU Enable bit					
	1 = Module is	enabled					
	0 = Module is	disabled					
bit 14	Unimplement	ted: Read as '0)'				
bit 13	CTMUSIDL: (CTMU Stop in Id	dle Mode bit				
		ues module operations module operations and the second second second second second second second second second s			dle mode		
bit 12	TGEN: Time (Generation Ena	ble bit				
		edge delay gene edge delay gen					
bit 11	EDGEN: Edge	e Enable bit					
	1 = Edges are						
	0 = Edges are						
bit 10		Edge Sequence		. .			
		vent must occur sequence is nee		2 event can oc	cur		
bit 9	IDISSEN: Ana	alog Current So	ource Control b	bit			
		irrent source ou irrent source ou					
bit 8	CTTRIG: CTM	/IU Trigger Con	trol bit				
	1 = Trigger ou	itout is onabled					
		ilpul is ellableu					
	••	itput is disabled					

REGISTER 27-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0		
bit 7							bit 0
Legend:							
R = Readable		W = Writable I	oit	-	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15		Edge 1 Edge-Se	ensitive Select	bit			
	1 = Input is ed 0 = Input is le						
bit 14	•	dge 1 Polarity State	Select hit				
		programmed for		lae response			
	•	programmed for	•	•			
bit 13-10	EDG1SEL<3:	0>: Edge 1 So	urce Select bits	5			
		1 source is Co					
		1 source is Co					
		1 source is Col		put			
		1 source is IC3 1 source is IC2					
		1 source is IC1					
	•	1 source is CT					
		1 source is CT					
		1 source is CT 1 source is CT					
		1 source is CT					
		1 source is CT					
		1 source is CT					
		1 source is CT					
		1 source is OC					
hit O	0	1 source is Tim					
bit 9		Edge 2 Status b		written to contro	ol current sourc	0	
	1 = Edge 2 ha					с.	
		as not occurred					
bit 8	EDG1STAT: E	Edge 1 Status b	it				
	Indicates the	status of Edge	1 and can be v	vritten to contro	ol current sourc	e.	
	1 = Edge 1 ha						
	-	as not occurred					
bit 7		Edge 2 Edge-Se	ensitive Select	bit			
	1 = Input is eq						
hit C	0 = Input is le		Coloct h ^{it}				
bit 6		dge 2 Polarity S					
		programmed for programmed for					
	0	r. • J. a		-30.3000100			

REGISTER 27-2: CTMUCON2: CTMU CONTROL REGISTER 2

Note 1: Edge source, CTED7, is not available in 28-pin packages.

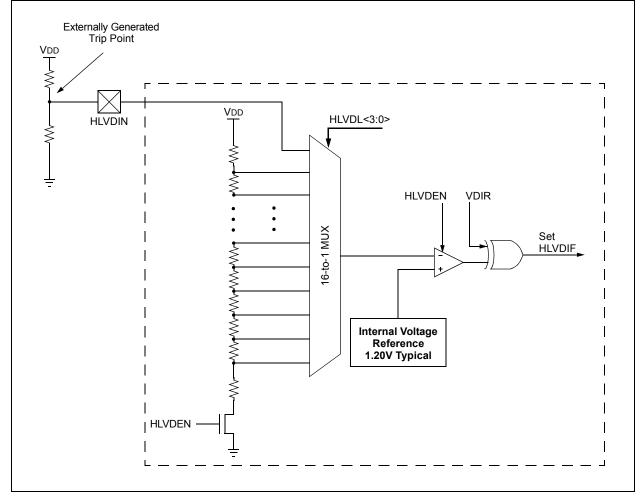
REGISTER 27-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)

- bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Edge 2 source is Comparator 3 output 1110 = Edge 2 source is Comparator 2 output 1101 = Edge 2 source is Comparator 1 output 1100 = Unimplemented; do not use 1011 = Edge 2 source is IC3 1010 = Edge 2 source is IC2 1001 = Edge 2 source is IC1 1000 = Edge 2 source is CTED13 0111 = Edge 2 source is CTED12 0110 = Edge 2 source is CTED11 0101 = Edge 2 source is CTED10 0100 = Edge 2 source is CTED9 0011 = Edge 2 source is CTED1 0010 = Edge 2 source is CTED2 0001 = Edge 2 source is OC1 0000 = Edge 2 source is Timer1 bit 1-0 Unimplemented: Read as '0'
- Note 1: Edge source, CTED7, is not available in 28-pin packages.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15	·			· ·			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	_	_	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
	000000 = Nc 111111 = Min •	minal current o	utput specified	nominal current d by IRNG<1:0> nominal current			
	100010 100001 = Ma	aximum negativ	e change from	n nominal curren	nt		
bit 9-8		Current Source	•				

REGISTER 27-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

NOTES:


28.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725). The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The HLVD Control register (see Register 28-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user

FIGURE 28-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
HLVDEN	_	LSIDL	_	_		_	_
bit 15							bit
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
VDIR	BGVST	IRVST		HLVDL3	HLVDL2	HLVDL1	HLVDL0
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable t	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	HLVDEN: Hi	gh/Low-Voltage	Detect Powe	r Enable bit			
	1 = HLVD is						
L:1 4 4	0 = HLVD is		3				
bit 14	-	nted: Read as '0					
bit 13	•	Low-Voltage De	•	die Mode bit device enters Idl	o modo		
		•			e moue		
bit 12-8	 0 = Continues module operation in Idle mode Unimplemented: Read as '0' 						
bit 7	VDIR: Voltag	e Change Direc	tion Select bi	t			
	1 = Event oc	curs when voltag	ge equals or	exceeds trip poir falls below trip p			
bit 6	BGVST: Ban	d Gap Voltage S	stable Flag bi	t	·		
		that the band g that the band g					
bit 5	IRVST: Inter	nal Reference Vo	oltage Stable	Flag bit			
		reference voltag d voltage range	e is stable; th	e High-Voltage D	etect logic ger	erates the inter	rupt flag at th
	0 = Internal	reference voltag		; the High-Voltag d the HLVD inter			te the interrup
bit 4	•	nted: Read as '0	• •				
bit 3-0	•	: High/Low-Volt		n Limit bits			
	1111 = Exte	rnal analog inpu	-	ut comes from th	e HLVDIN pin)	
	1110 = Trip						
	1101 = Trip 1100 = Trip	Point 2 ⁽¹⁾ Point 3 ⁽¹⁾					
	•	On St					
	•						
	•	$D_{a} := t \cdot d \cdot d \cdot d \cdot d \cdot d \cdot d \cdot d \cdot d \cdot d \cdot$					
	0100 = Trip 00xx = Unus						

REGISTER 28-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

29.0 SPECIAL FEATURES

- Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "dsPIC33/ PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRMs.
 - "Watchdog Timer (WDT)" (DS39697)
 - "High-Level Device Integration" (DS39719)
 - "Programming and Diagnostics" (DS39716)

PIC24FJ128GA204 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation (ICE)

29.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location, F80000h. A detailed explanation of the various bit functions is provided in Register 29-1 through Register 29-6.

Note that address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using Table Reads and Table Writes.

29.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ128GA204 FAMILY DEVICES

In PIC24FJ128GA204 family devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the four words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 29-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note: Configuration data is reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '0's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

TABLE 29-1: FLASH CONFIGURATION WORD LOCATIONS FOR THE PIC24FJ128GA204 FAMILY

Device		Configuration V	Vord Addresses	
Device	1	2	3	4
PIC24FJ64GA2XX	ABFEh	ABFCh	ABFAh	ABF8h
PIC24FJ128GA2XX	157FEh	157FCh	157FAh	157F8h

REGISTER 29-1: CW1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
—	JTAGEN	GCP	GWRP	DEBUG	LPCFG	ICS1	ICS0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN1	FWDTEN0	WINDIS	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

Legend:	r = Reserved bit	PO = Program Once bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit
	1 = JTAG port is enabled0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	 1 = Code protection is disabled 0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed0 = Writes to program memory are not allowed
bit 11	DEBUG: Background Debugger Enable bit
	1 = Device resets into Operational mode0 = Device resets into Debug mode
bit 10	LPCFG: Low-Voltage/Retention Regulator Configuration bit
	 1 = Low-voltage/retention regulator is always disabled 0 = Low-power, low-voltage/retention regulator is enabled and controlled in firmware by the RETEN bit
bit 9-8	ICS<1:0>: Emulator Pin Placement Select bits
	 11 = Emulator functions are shared with PGEC1/PGED1 10 = Emulator functions are shared with PGEC2/PGED2 01 = Emulator functions are shared with PGEC3/PGED3 00 = Reserved; do not use
bit 7-6	FWDTEN<1:0>: Watchdog Timer Configuration bits
	 11 = WDT is always enabled; the SWDTEN bit has no effect 10 = WDT is enabled and controlled in firmware by the SWDTEN bit 01 = WDT is enabled only in Run mode and disabled in Sleep modes; SWDTEN bit is disabled 00 = WDT is disabled; the SWDTEN bit is disabled
bit 5	WINDIS: Windowed Watchdog Timer Disable bit
	 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled (FWDTEN<1:0> must not be '00')
bit 4	FWPSA: WDT Prescaler Ratio Select bit
	 1 = Prescaler ratio of 1:128 0 = Prescaler ratio of 1:32

REGISTER 29-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

bit 3-0 **WDTPS<3:0>:** Watchdog Timer Postscaler Select bits

1111 = 1:32,768 1110 = 1:16,384 1101 **= 1:8,192** 1100 = 1:4,096 1011 **= 1:2,048** 1010 = 1:1,024 1001 **= 1:512** 1000 **= 1:256** 0111 **= 1:128** 0110 **= 1:64** 0101 = 1:32 0100 = 1:16 0011 **= 1:8** 0010 = 1:4 0001 = 1:2 0000 = 1:1

REGISTER 29-2: CW2: FLASH CONFIGURATION WORD 2

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	r-0	R/PO-1	R/PO-1	r-1	R/PO-1	R/PO-1	R/PO-1
IESO	—	WDTCMX	ALTCMPI	—	FNOSC2	FNOSC1	FNOSC0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1	R/PO-1
FCKSM1	FCKSM0	OSCIOFCN	WDTCLK1	WDTCLK0	_	POSCMD1	POSCMD0
bit 7							bit 0

Legend:	r = Reserved bit	PO = Program Once bit	t		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-16	Unimplemented: Read as '1'
bit 15	IESO: Internal External Switchover bit
	 1 = IESO mode (Two-Speed Start-up) is enabled 0 = IESO mode (Two-Speed Start-up) is disabled
bit 14	Reserved: Read as '0'
bit 13	WDTCMX: WDT Clock Multiplex Control bit
	 1 = WDT clock source is determined by the WDTCLK<1:0> Configuration bits 0 = WDT always uses LPRC as its clock source
bit 12	ALTCMPI: Alternate Comparator Input bit
	 1 = C1INC is on RB13, C2INC is on RB9 and C3INC is on RA0 0 = C1INC, C2INC and C3INC are on RB9
bit 11	Reserved: Configure as '1'
bit 10-8	FNOSC<2:0>: Initial Oscillator Select bits
	111 = Fast RC Oscillator with Postscaler (FRCDIV)
	110 = Reserved 101 = Low-Power RC Oscillator (LPRC)
	100 = Secondary Oscillator (SOSC)
	011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
	010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)
bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits
	1x = Clock switching and Fail-Safe Clock Monitor are disabled
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
	00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5	OSCIOFCN: OSCO Pin Configuration bit
	$\frac{\text{If POSCMD<1:0> = 11 or 00:}}{1 = OSCO/CLKO/RA3 \text{ functions as CLKO (Fosc/2)}}$
	0 = OSCO/CLKO/RA3 functions as port I/O (RA3)
	If POSCMD<1:0> = 10 or 01:
	OSCIOFCN has no effect on OSCO/CLKO/RA3.
Note 1:	The 31 kHz FRC source is used when a Windowed WDT mode is selected and the LPRC is not be

Note 1: The 31 kHz FRC source is used when a Windowed WDT mode is selected and the LPRC is not being used as the system clock. The LPRC is used when the device is in Sleep mode and in all other cases.

REGISTER 29-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

- WDTCLK<1:0>: WDT Clock Source Select bits bit 4-3
 - When WDTCMX = 1:
 - - 11 = LPRC
 - 10 = Either the 31 kHz FRC source or LPRC, depending on device configuration⁽¹⁾
 - 01 = SOSC input
 - 00 = System clock when active, LPRC while in Sleep mode

When WDTCMX = 0: LPRC is always the WDT clock source.

bit 2 Reserved: Configure as '1'

bit 1-0 POSCMD<1:0>: Primary Oscillator Configuration bits

- 11 = Primary Oscillator mode is disabled
- 10 = HS Oscillator mode is selected
- 01 = XT Oscillator mode is selected
- 00 = EC Oscillator mode is selected
- Note 1: The 31 kHz FRC source is used when a Windowed WDT mode is selected and the LPRC is not being used as the system clock. The LPRC is used when the device is in Sleep mode and in all other cases.

REGISTER 29-3: CW3: FLASH CONFIGURATION WORD 3

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WPEND	WPCFG	WPDIS	BOREN	PLLSS ⁽⁴⁾	WDTWIN1	WDTWIN0	SOSCSEL
bit 15							bit 8

r-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
_	WPFP6 ⁽³⁾	WPFP5	WPFP4	WPFP3	WPFP2	WPFP1	WPFP0
bit 7							bit 0

Legend:	PO = Program Once bit	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 23-16	Unimplemented: Read as '1'
bit 15	WPEND: Segment Write Protection End Page Select bit
	1 = Protected program memory segment upper boundary is at the last page of program memory; the lower boundary is the code page specified by WPFP<6:0>
	 Protected program memory segment lower boundary is at the bottom of the program memory (000000h); upper boundary is the code page specified by WPFP<6:0>
bit 14	WPCFG: Configuration Word Code Page Write Protection Select bit
	 1 = Last page (at the top of program memory) and Flash Configuration Words are not write-protected⁽¹⁾ 0 = Last page and Flash Configuration Words are write-protected provided WPDIS = 0
bit 13	WPDIS: Segment Write Protection Disable bit
	 1 = Segmented program memory write protection is disabled 0 = Segmented program memory write protection is enabled; protected segment is defined by the WPEND, WPCFG and WPFPx Configuration bits
bit 12	BOREN: Brown-out Reset Enable bit
	1 = BOR is enabled (all modes except Deep Sleep)0 = BOR is disabled
bit 11	PLLSS: PLL Secondary Selection Configuration bit ⁽⁴⁾
	1 = PLL is fed by the Primary Oscillator
	0 = PLL is fed by the on-chip Fast RC (FRC) Oscillator
bit 10-9	WDTWIN<1:0>: Watchdog Timer Window Width Select bits
	11 = 25% 10 = 37.5%
	01 = 50%
	00 = 75%
bit 8	SOSCSEL: SOSC Selection bit
	1 = SOSC circuit is selected
	0 = Digital (SCLKI) mode ⁽²⁾
Note 1:	Regardless of WPCFG status, if WPEND = 1 or if the WPFP<6:0> bits correspond to the Configuration Word page, the Configuration Word page is protected.
2:	Ensure that the SCLKI pin is made a digital input while using this configuration (see Table 11-1).
3:	For the 64K devices (PIC24FJ64GA2XX), maintain WPFP6 as '0'.
4.	This Configuration hit only takes affect when DLL is not being used

4: This Configuration bit only takes effect when PLL is not being used.

REGISTER 29-3: CW3: FLASH CONFIGURATION WORD 3 (CONTINUED)

- bit 7
 Reserved: Always maintain as '1'

 bit 6-0
 WPFP<6:0>: Write-Protected Code Segment Boundary Page bits⁽³⁾

 Designates the 512 instruction words page boundary of the protected Code Segment.

 If WPEND = 1:

 Specifies the lower page boundary of the code-protected segment; the last page being the last implemented page in the device.

 If WPEND = 0:

 Specifies the upper page boundary of the code-protected segment; Page 0 being the lower boundary.
- **Note 1:** Regardless of WPCFG status, if WPEND = 1 or if the WPFP<6:0> bits correspond to the Configuration Word page, the Configuration Word page is protected.
 - 2: Ensure that the SCLKI pin is made a digital input while using this configuration (see Table 11-1).
 - 3: For the 64K devices (PIC24FJ64GA2XX), maintain WPFP6 as '0'.
 - 4: This Configuration bit only takes effect when PLL is not being used.

REGISTER 29-4: CW4: FLASH CONFIGURATION WORD 4

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1
IOL1WAY	I2C1SEL	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0	—	DSSWEN
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
DSWDTEN	DSBOREN	DSWDTOSC	DSWDTPS4	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0
bit 7 bi							bit 0

Legend:	PO = Program Once bit	r = Reserved bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	IOL1WAY: IOLOCK One-Way Set Enable bit
	 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has been completed; once set, the Peripheral Pin Select registers cannot be written to a second time 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been completed
bit 14	I2C1SEL: Alternate I2C1 Location Select bit
	 1 = I2C1 uses the SCL1 and SDA1 pins 0 = I2C1 uses the ASCL1 and ASDA1 pins
bit 13-10	PLLDIV<3:0>: PLL Prescaler Select bits
	1111 = PLL is disabled
	1110 = 8x PLL is selected 1101 = 6x PLL is selected
	1100 = 4x PLL is selected
	1011
	 = Reserved, do not use
	•
	0000
bit 9	Reserved: Always maintain as '1'
bit 8	DSSWEN: Deep Sleep Software Control Select bit
	 1 = Deep Sleep operation is enabled and controlled by the DSEN bit 0 = Deep Sleep operation is disabled
bit 7	DSWDTEN: Deep Sleep Watchdog Timer Enable bit
	 1 = Deep Sleep WDT is enabled 0 = Deep Sleep WDT is disabled
bit 6	DSBOREN: Deep Sleep Brown-out Reset Enable bit
	1 = BOR is enabled in Deep Sleep mode
	0 = BOR is disabled in Deep Sleep mode (remains active in other Sleep modes)
bit 5	DSWDTOSC: Deep Sleep Watchdog Timer Clock Select bit
	1 = Clock source is LPRC 0 = Clock source is SOSC

REGISTER 29-4: CW4: FLASH CONFIGURATION WORD 4 (CONTINUED)

- bit 4-0 **DSWDTPS<4:0>:** Deep Sleep Watchdog Timer Postscaler Select bits
 - 11111 = 1:68,719,476,736 (25.7 days) 11110 = 1:34,359,738,368(12.8 days) 11101 = 1:17,179,869,184 (6.4 days) 11100 = 1:8,589,934592 (77.0 hours) 11011 = 1:4,294,967,296 (38.5 hours) 11010 = 1:2,147,483,648 (19.2 hours) 11001 = 1:1,073,741,824 (9.6 hours) 11000 = 1:536,870,912 (4.8 hours) 10111 = 1:268,435,456 (2.4 hours) 10110 = 1:134,217,728 (72.2 minutes) 10101 = 1:67,108,864 (36.1 minutes) 10100 = 1:33,554,432 (18.0 minutes) 10011 = 1:16,777,216 (9.0 minutes) 10010 = 1:8,388,608 (4.5 minutes) 10001 = 1:4,194,304 (135.3s) 10000 = 1:2,097,152 (67.7s) 01111 = 1:1,048,576 (33.825s) 01110 = 1:524,288 (16.912s) 01101 = 1:262,114 (8.456s) 01100 = 1:131,072 (4.228s) 01011 = 1:65,536 (2.114s) 01010 = 1:32,768 (1.057s) 01001 = 1:16,384 (528.5 ms) 01000 = 1:8,192 (264.3 ms) 00111 = 1:4,096 (132.1 ms) 00110 = 1:2,048 (66.1 ms) 00101 = 1:1,024 (33 ms) 00100 = 1:512 (16.5 ms) 00011 = 1:256 (8.3 ms) 00010 = 1:128 (4.1 ms) 00001 = 1:64 (2.1 ms) 00000 = 1:32 (1 ms)

REGISTER 29-5: DEVID: DEVICE ID REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	—	—	—
bit 23							bit 16
R	R	R	R	R	R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15							bit 8
R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0
Legend: F	end: R = Readable bit U = Unimplemented bit						
bit 23-16	Unimplement	ted: Read as 'a	L'				

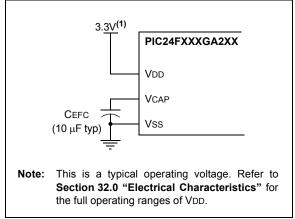
- bit 15-8FAMID<7:0>: Device Family Identifier bits01001100 = PIC24FJ128GA204 familybit 7-0DEV<7:0>: Individual Device Identifier bits
 - 0101 0000 = PIC24FJ64GA202
 - 0101 0010 = PIC24FJ128GA202
 - 0101 0001 = PIC24FJ64GA204
 - 0101 0011 = PIC24FJ128GA204

REGISTER 29-6: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R	R	R	R
—	—	—	—		REV	<3:0>	
bit 7		•	•				bit 0
Legend: R	= Readable bit			U = Unimplem	nented bit		

bit 23-4 **Unimplemented:** Read as '0'

bit 3-0 **REV<3:0>:** Device Revision Identifier bits


29.2 On-Chip Voltage Regulator

All PIC24FJ128GA204 family devices power their core digital logic at a nominal 1.8V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ128GA204 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

This regulator is always enabled. It provides a constant voltage (1.8V nominal) to the digital core logic, from a VDD of about 2.1V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brown-out Reset occurs. Then, the regulator output follows VDD with a typical voltage drop of 300 mV.

A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the Filter Capacitor (CEFC) is provided in Section 32.1 "DC Characteristics".

FIGURE 29-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

29.2.1 ON-CHIP REGULATOR AND POR

The voltage regulator requires a small amount of time to transition from a disabled or standby state into normal operating mode. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. TVREG is determined by the status of the VREGS bit (RCON<8>). Refer to Section 32.0 "Electrical Characteristics" for more information on TVREG.

Note:	For more information, see Section 32.0 "Electrical Characteristics". The infor- mation in this data sheet supersedes the information in the "dsPIC33/PIC24 Family
	Reference Manual".

29.2.2 VOLTAGE REGULATOR STANDBY MODE

The on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be made to enter Standby mode on its own, whenever the device goes into Sleep mode. This feature is controlled by the VREGS bit (RCON<8>). Clearing the VREGS bit enables the Standby mode. When waking up from Standby mode, the regulator needs to wait for TVREG to expire before wake-up.

29.2.3 LOW-VOLTAGE/RETENTION REGULATOR

When a power-saving mode, such as Sleep is used, PIC24FJ128GA204 family devices may use a separate low-power, low-voltage/retention regulator to power critical circuits. This regulator, which operates at 1.2V nominal, maintains power to data RAM and the RTCC while all other core digital logic is powered down. It operates only in Sleep and VBAT modes.

The low-voltage/retention regulator is described in more detail in Section 10.1.3 "Low-Voltage/Retention Regulator".

29.3 Watchdog Timer (WDT)

For PIC24FJ128GA204 family devices, the WDT is driven by the LPRC Oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT Time-out (TWDT) period of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS<3:0> Configuration bits (CW1<3:0>), which allows the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranges from 1 ms to 131 seconds can be achieved.

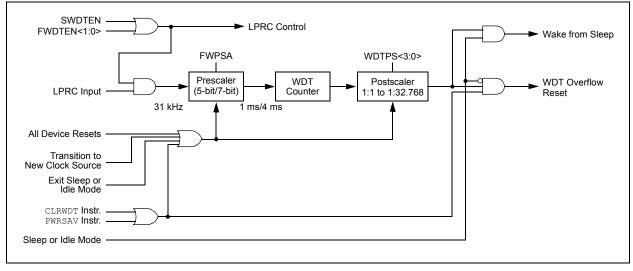
The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE (RCON<3:2>) bits will need to be cleared in software after the device wakes up. The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note:	The CLRWDT and PWRSAV instructi	ions						
	clear the prescaler and postscaler counts							
	when executed.							

29.3.1 WINDOWED OPERATION


The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the window width, 25%, 37.5%, 50% or 75% of the programmed WDT period controlled by WDTWIN<1:0> Configuration bits (CW3<10:9>). A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the WINDIS Configuration bit (CW1<5>) to '0'.

29.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits. When the Configuration bits, FWDTEN<1:0> = 11, the WDT is always enabled.

The WDT can be optionally controlled in software when the Configuration bits, FWDTEN<1:0> = 10. When FWDTEN<1:0> = 00, the Watchdog Timer is always disabled. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical Code Segments and disable the WDT during non-critical segments for maximum power savings.

FIGURE 29-2: WDT BLOCK DIAGRAM

29.4 Program Verification and Code Protection

PIC24FJ128GA204 family devices provide two complimentary methods to protect application code from overwrites and erasures. These also help to protect the device from inadvertent configuration changes during run time.

29.4.1 GENERAL SEGMENT PROTECTION

For all devices in the PIC24FJ128GA204 family, the on-chip program memory space is treated as a single block, known as the General Segment (GS). Code protection for this block is controlled by one Configuration bit, GCP. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode.

Write protection is controlled by the GWRP bit in the Configuration Word. When GWRP is programmed to '0', internal write and erase operations to program memory are blocked.

29.4.2 CODE SEGMENT PROTECTION

In addition to global General Segment protection, a separate subrange of the program memory space can be individually protected against writes and erases. This area can be used for many purposes where a separate block of write and erase-protected code is needed, such as bootloader applications. Unlike common boot block implementations, the specially protected segment in the PIC24FJ128GA204 family devices can be located by the user anywhere in the program space and configured in a wide range of sizes.

Code Segment (CS) protection provides an added level of protection to a designated area of program memory by disabling the NVM safety interlock whenever a write or erase address falls within a specified range. It does not override General Segment protection controlled by the GCP bit or GWRP bit. For example, if the GCP and GWRP bits are enabled, enabling segmented code protection for the bottom half of program memory does not undo General Segment protection for the top half.

The size and type of protection for the segmented code range are configured by the WPFPx, WPEND, WPCFG and WPDIS bits in Configuration Word 3. Code Segment protection is enabled by programming the WPDIS bit (= 0). The WPFPx bits specify the size of the segment to be protected by specifying the 512-word code page that is the start or end of the protected segment. The specified region is inclusive, therefore, this page will also be protected.

The WPEND bit determines if the protected segment uses the top or bottom of the program space as a boundary. Programming WPEND (= 0) sets the bottom of program memory (000000h) as the lower boundary of the protected segment. Leaving WPEND unprogrammed (= 1) protects the specified page through the last page of implemented program memory, including the Configuration Word locations.

A separate bit, WPCFG, is used to protect the last page of program space, including the Flash Configuration Words. Programming WPCFG (= 0) protects the last page, in addition to the pages selected by the WPEND and WPFP<6:0> bits setting. This is useful in circumstances where write protection is needed for both the Code Segment in the bottom of the memory and the Flash Configuration Words.

The various options for segment code protection are shown in Table 29-2.

Segment Configuration Bits			Erase/Write Protection of Code Segment
WPDIS	WPEND	WPCFG	Erase/write Protection of Code Segment
1	х	х	No additional protection is enabled; all program memory protection is configured by GCP and GWRP.
0	1	X	Addresses from the first address of the code page are defined by WPFP<6:0> through the end of implemented program memory (inclusive); erase/write-protected, including Flash Configuration Words.
0	0	1	Address, 000000h, through the last address of the code page, are defined by WPFP<6:0> (inclusive); erase/write-protected.
0	0	0	Address, 000000h, through the last address of code page, are defined by WPFP<6:0> (inclusive); erase/write-protected and the last page, including Flash Configuration Words, are erase/write-protected.

TABLE 29-2: CODE SEGMENT PROTECTION CONFIGURATION OPTIONS

29.4.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers are protected against inadvertent or unwanted changes or reads in two ways. The primary protection method is the same as that of the RP registers – shadow registers contain a complimentary value which is constantly compared with the actual value.

To safeguard against unpredictable events, Configuration bit changes resulting from individual cell-level disruptions (such as ESD events) will cause a parity error and trigger a device Reset.

The data for the Configuration registers is derived from the Flash Configuration Words in program memory. When the GCP bit is set, the source data for device configuration is also protected as a consequence. Even if General Segment protection is not enabled, the device configuration can be protected by using the appropriate Code Segment protection setting.

29.5 JTAG Interface

PIC24FJ128GA204 family devices implement a JTAG interface, which supports boundary scan device testing and programming.

29.6 In-Circuit Serial Programming

PIC24FJ128GA204 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power (VDD), ground (VSS) and \overline{MCLR} . This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

29.7 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the incircuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS and the PGECx/PGEDx pin pair, designated by the ICSx Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

30.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

30.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

30.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

30.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

30.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

30.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

31.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 31-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 31-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register, 'Wb', without any address modifier
- The second source operand, which is typically a register, 'Ws', with or without an address modifier
- The destination of the result, which is typically a register, 'Wd', with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register, 'Wb', without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register, 'Wd', with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/ computed branch), indirect CALL/GOTO, all Table Reads and Table Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
<text]< td=""><td>Means "the location addressed by text"</td></text]<>	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
bit4	4-bit Bit Selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016383}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388607}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ {Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd]}
Wdo	Destination W register ∈ {Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb]}
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 destination Working registers ∈ {W0W15}
Wns	One of 16 source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ {Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws]}
Wso	Source W register ∈ {Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb]}

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f.AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f.AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
2	BRA	GE,Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE,Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT, Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV, Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
			Computed Branch	1	2	None
BSET	BRA BSET	Wn f,#bit4	Bit Set f	1	1	None
1001	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSET BSW.C		Write C bit to Ws <wb></wb>	1	1	None
WCO		Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	
DTC	BSW.Z	Ws,Wb				None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
DESC	BTG	Ws, #bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 31-2:	INSTRUCTION SET OVERVIEW

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	COM	f	f = f	1	1	N, Z
	COM	f,WREG	WREG = \overline{f}	1	1	N, Z
	COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z
	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CPO	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
010	CPO	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C, DC, N, OV, Z
			$(Wb - Ws - \overline{C})$			-,, -, -, -, -
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f-1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wis, [Wils+Sileio] Wso,Wdo	Move Wis to [Wis Sairio]	1	1	None
	MOV		Move WREG to f	1	1	N, Z
		WREG, f Wns, Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D		Move Double from Ws to W(nd+1):W(nd)	1	2	None
	MOV.D	Ws, Wnd		1	1	
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)			None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws) {Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd		1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 31-2:	INSTRUCTION SET OVERVIEW	

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f - WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
SODD		f,WREG	$WREG = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	•				
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,#lit5,Wd	Wd = Wb - lit5 - (C)	1	1	C, DC, N, OV, Z
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

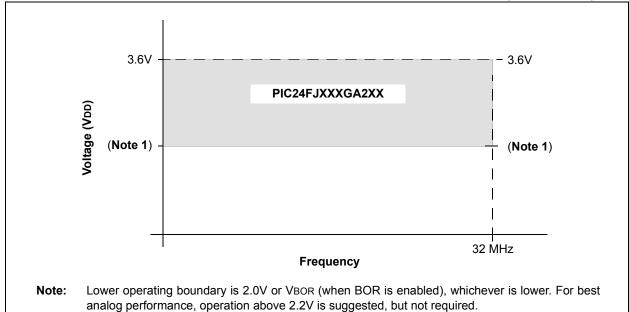
NOTES:

32.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FJ128GA204 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24FJ128GA204 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)


+

Ambient temperature under bias Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any general purpose digital or analog pin (not 5.5V tolerant) with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any general purpose digital or analog pin (5.5V tolerant, including MCLR) with resp	pect to Vss:
When VDD = 0V:	0.3V to +4.0V
When VDD \geq 2.0V:	-0.3V to +6.0V
Voltage on AVDD with respect to Vss	of: 4.0V or (VDD + 0.3V))
Voltage on AVss with respect to Vss	0.3V to +0.3V
Voltage on VBAT with respect to VSS	0.3V to +4.0V
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin (Note 1)	250 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 1)	

Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 32-1).

NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

32.1 DC Characteristics

FIGURE 32-1: PIC24FJ128GA204 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

TABLE 32-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
PIC24FJ128GA204:					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	Pdmax	(TJ – TA)/θJ	IA	W

TABLE 32-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Мах	Unit	Notes
Package Thermal Resistance, 7.50 mm 28-Pin SOIC	θJA	49		°C/W	(Note 1)
Package Thermal Resistance, 6x6x0.9 mm 28-Pin QFN-S	θJA	33.7	-	°C/W	(Note 1)
Package Thermal Resistance, 8x8 mm 44-Pin QFN	θJA	28	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm 44-Pin TQFP	θJA	39.3	_	°C/W	(Note 1)
Package Thermal Resistance, 5.30 mm 28-Pin SSOP	θJA	—	-	°C/W	(Note 1)
Package Thermal Resistance, 300 mil 28-Pin SPDIP	θJA	_		°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance; Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 32-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

рс сн	ARACTE	RISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions			
Operat	ing Voltag	je								
DC10	Vdd	Supply Voltage	2.0	_	3.6	V	BOR disabled			
			VBOR	_	3.6	V	BOR enabled			
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	Greater of: VPORREL or VBOR	_	-	V	VBOR used only if BOR is enabled (BOREN = 1)			
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	-	V	(Note 2)			
DC16A	VPORREL	VDD Power-on Reset Release Voltage	1.80	1.88	1.95	V	(Note 3)			
DC17A	SRVDD	Recommended VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	_	V/ms	0-3.3V in 66 ms, 0-2.5V in 50 ms (Note 2)			
DC17B	VBOR	Brown-out Reset Voltage on VDD Transition, High-to-Low	2.0	2.1	2.2	V	(Note 3)			

Note 1: This is the limit to which VDD may be lowered and the RAM contents will always be retained.

2: If the VPOR or SRVDD parameters are not met, or the application experiences slow power-down VDD ramp rates, it is recommended to enable and use BOR.

3: On a rising VDD power-up sequence, application firmware execution begins at the higher of the VPORREL or VBOR level (when BOREN = 1).

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	Conditions				
Operating C	urrent (IDD) ⁽	2)							
DC19	0.20	0.28	mA	-40°C to +125°C	2.0V	0.5 MIPS,			
DC20A	0.21	0.28	mA	-40°C to +125°C	3.3V	Fosc = 1 MHz			
DC20	0.38	0.52	mA	-40°C to +125°C	2.0V	1 MIPS,			
	0.39	0.52	mA	-40°C to +125°C	3.3V	Fosc = 2 MHz			
DC23	1.5	2.0	mA	-40°C to +125°C	2.0V	4 MIPS,			
	1.5	2.0	mA	-40°C to +125°C	3.3V	Fosc = 8 MHz			
DC24	5.6	7.6	mA	-40°C to +125°C	2.0V	16 MIPS,			
	5.7	7.6	mA	-40°C to +125°C	3.3V	Fosc = 32 MHz			
DC31	23	78	μA	-40°C to +85°C	2.0V				
	—	98	μA	+125°C	2.0V	LPRC (15.5 KIPS),			
	25	80	μA	-40°C to +85°C	3.3V	Fosc = 31 kHz			
	_	100	μA	+125°C	3.3V				

TABLE 32-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Typical parameters are for design guidance only and are not tested.

2: The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail-to-rail. All I/O pins are configured as outputs and driven to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed).

DC CHARAC	TERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Parameter No.	ter Typical ⁽¹⁾ Max		Units	Operating Temperature	Vdd	Conditions				
Idle Current	(IIDLE) ⁽²⁾									
DC40	116	150	μA	-40°C to +85°C						
		170	μA	+125°C	2.0V	1 MIPS,				
	123	160	μA	-40°C to +85°C	3.3V	Fosc = 2 MHz				
		180	μA	+125°C	3.3V					
DC43	0.39	0.5	mA	-40°C to +85°C	2.0V					
		0.52	mA	+125°C	2.0V	4 MIPS,				
	0.41	0.54	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz				
		0.56	mA	+125°C	3.3V					
DC47	1.5	1.9	mA	-40°C to +85°C	2.0V					
	—	2	mA	+125°C	2.0V	16 MIPS,				
	1.6	2.0	mA	-40°C to +85°C	3.3V	Fosc = 32 MHz				
		2.1	mA	+125°C	3.3V					
DC50	0.54	0.61	mA	-40°C to +85°C	2.0V	4 MIPS (FRC),				
	0.54	0.64	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz				
DC51	17	78	μA	-40°C to +85°C	2.0V					
		128	μA	+125°C	2.0V	LPRC (15.5 KIPS),				
	18	80	μA	-40°C to +85°C	3.3V	Fosc = 31 kHz				
		130	μA	+125°C	3.3V					

TABLE 32-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with the core off, the clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

TABLE 32-6 :	DC CHARACTERISTICS: POWER-DOWN CURRENT ((IPD)
---------------------	--	-------

DC CHARA	CTERISTIC	S		Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	VDD	Conditions				
Power-Dow	/n Current (IPD) ^(5,6)								
DC60	2.9	17	μA	-40°C						
	4.3	17	μA	+25°C						
	8.3	27.5	μA	+60°C	2.0V					
	20	27.5	μA	+85°C						
	_	79	μA	+125°C		– Sleep ⁽²⁾				
	2.9	18	μA	-40°C						
	4.3	18	μA	+25°C						
	8.4	28	μA	+60°C	3.3V					
	20.5	28	μA	+85°C						
	_	80	μA	+125°C						
DC61	0.07	_	μA	-40°C						
	0.38	_	μA	+25°C	2.0V					
	2.6	_	μA	+60°C	2.00					
	9.0	_	μA	+125°C		– Low-Voltage Sleep ⁽³⁾				
	0.09	_	μA	-40°C						
	0.42	_	μA	+25°C	3.3V					
	2.75	_	μA	+60°C	3.3V					
	9.0	_	μA	+125°C						
DC70	0.1	700	nA	-40°C						
	18	700	nA	+25°C						
	230	1700	nA	+60°C	2.0V					
	1.8	3.0	μA	+85°C						
	_	24	μA	+125°C		– Deep Sleep				
	5	900	nA	-40°C						
	75	900	nA	+25°C						
	540	3450	nA	+60°C	3.3V					
	1.5	6.0	μA	+85°C						
	_	48	μA	+125°C						
DC74	0.4	2.0	μA	-40°C to +125°C	0V	RTCC with VBAT mode (LPRC/SOSC)(4)				

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The retention low-voltage regulator is disabled; RETEN (RCON<12>) = 0, LPCFG (CW1<10>) = 1.

3: The retention low-voltage regulator is enabled; RETEN (RCON<12>) = 1, <u>LPCFG</u> (CW1<10>) = 0.

4: The VBAT pin is connected to the battery and RTCC is running with VDD = 0.

5: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off.

6: These currents are measured on the device containing the most memory in this family.

DC CHARAG	CTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature		Conditions			
Incremental	Current Bro	wn-out Res	et (∆BOR) ⁽²⁾						
DC25	3.1	5.0	μA	-40°C to +125°C	2.0V	∆BOR ⁽²⁾			
	4.3	6.0	μA	-40°C to +125°C	3.3V				
Incremental	Current Wat	chdog Time	er (∆WDT) ⁽²⁾						
DC71	0.8	1.5	μA	-40°C to +125°C	2.0V				
	0.8	1.5	μA	-40°C to +125°C	3.3V				
Incremental	Current Hig	h/Low-Volta	ge Detect (A	HLVD) ⁽²⁾					
DC75	4.2	15	μA	-40°C to +125°C	2.0V				
	4.2	15	μA	-40°C to +125°C	3.3V				
Incremental	Current Rea	I-Time Cloc	k and Calen	dar (∆RTCC) ⁽²⁾					
DC77	0.3	1.0	μA	-40°C to +125°C	2.0V	△RTCC (with SOSC) ⁽²⁾			
	0.35	1.0	μA	-40°C to +125°C	3.3V				
DC77A	0.3	1.0	μA	-40°C to +125°C	2.0V	△RTCC (with LPRC) ⁽²⁾			
	0.35	1.0	μA	-40°C to +125°C	3.3V				
Incremental	Current Dee	p Sleep BO) ⁽²⁾					
DC81	0.11	0.40	μA	-40°C to +125°C	2.0V	∆Deep Sleep BOR ⁽²⁾			
	0.12	0.40	μA	-40°C to +125°C	3.3V				
Incremental	Current Dee	p Sleep Wa	tchdog Time	er Reset (∆DSWD	Г) ⁽²⁾				
DC80	0.24	0.40	μA	-40°C to +125°C	2.0V				
	0.24	0.40	μA	-40°C to +125°C	3.3V	– ∆Deep Sleep WDT ⁽²⁾			
VBAT A/D Mo	onitor ⁽³⁾	-				·			
DC91	1.5		μA	-40°C to +125°C	3.3V	VBAT = 2V			
	4	—	μA	-40°C to +125°C	3.3V	VBAT = 3.3V			

TABLE 32-7: DC CHARACTERISTICS: △ CURRENT (BOR, WDT, DSBOR, DSWDT)⁽⁴⁾

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Incremental current while the module is enabled and running.

3: The A/D channel is connected to the VBAT pin internally; this is the current during A/D VBAT operation.

4: The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

DC CH/	ARACTE	RISTICS	Standard Operat Operating tempe	-	$-40^{\circ}C \le TA$	litions: 2.0V to 3.6V (unless otherwise stated -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended			
Param No.	Symbo I	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
	VIL	Input Low Voltage ⁽³⁾							
DI10		I/O Pins with ST Buffer	Vss		0.2 VDD	V			
DI11		I/O Pins with TTL Buffer	Vss		0.15 VDD	V			
DI15		MCLR	Vss		0.2 VDD	V			
DI16		OSCI (XT mode)	Vss		0.2 VDD	V			
DI17		OSCI (HS mode)	Vss		0.2 VDD	V			
DI18		I/O Pins with I ² C™ Buffer	Vss		0.3 VDD	V			
DI19		I/O Pins with SMBus Buffer	Vss		0.8	V	SMBus enabled		
	Viн	Input High Voltage ⁽³⁾							
DI20		I/O Pins with ST Buffer: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd		VDD 5.5	V V			
DI21		I/O Pins with TTL Buffer: with Analog Functions Digital Only	0.25 VDD + 0.8 0.25 VDD + 0.8		VDD 5.5	V V			
DI25		MCLR	0.8 VDD		Vdd	V			
DI26		OSCI (XT mode)	0.7 Vdd		Vdd	V			
DI27		OSCI (HS mode)	0.7 Vdd		Vdd	V			
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		VDD 5.5	V V			
DI29		I/O Pins with SMBus Buffer: with Analog Functions Digital Only	2.1 2.1		Vdd 5.5	V V	$2.5V \leq V\text{PIN} \leq V\text{DD}$		
DI30	ICNPU	CNxx Pull-up Current	150	340	550	μA	VDD = 3.3V, VPIN = VSS		
DI30A	ICNPD	CNxx Pull-Down Current	150	310	550	μA	VDD = 3.3V, VPIN = VDD		
DI50	lı∟	Input Leakage Current ⁽²⁾ I/O Ports	_	_	±1	μA	Vss \leq VPIN \leq VDD, pin at high-impedance		
DI51		Analog Input Pins	_	_	±1	μA	Vss \leq VPIN \leq VDD, pin at high-impedance		
DI55		MCLR	—	_	±1	μA	$Vss \leq V PIN \leq V DD$		
DI56		OSCI/CLKI	—	—	±1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ EC, \ XT \ \text{and} \ HS \ \text{modes} \end{array}$		

TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-3 for I/O pin buffer types.

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbo I	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
	Vol	Output Low Voltage						
DO10		I/O Ports	—		0.4	V	IOL = 6.6 mA, VDD = 3.6V	
			—		0.4	V	IOL = 5.0 mA, VDD = 2V	
DO16		OSCO/CLKO	—		0.4	V	IOL = 6.6 mA, VDD = 3.6V	
			—		0.4	V	IOL = 5.0 mA, VDD = 2V	
	Vон	Output High Voltage						
DO20		I/O Ports	3.0		—	V	Юн = -3.0 mA, VDD = 3.6V	
			2.4		—	V	Юн = -6.0 mA, VDD = 3.6V	
			1.65		—	V	Юн = -1.0 mA, VDD = 2V	
			1.4		—	V	Юн = -3.0 mA, VDD = 2V	
DO26		OSCO/CLKO	2.4		_	V	ЮН = -6.0 mA, VDD = 3.6V	
			1.4	—	—	V	юн = -1.0 mA, Vdd = 2V	

TABLE 32-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHARACTERISTICS			Operating temperature -4			-40°C	2.0V to 3.6V (unless otherwise stated) \leq TA \leq +85°C for Industrial \leq TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	20000		—	E/W	-40°C to +125°C
D131	Vpr	VDD for Read	VMIN		3.6	V	VміN = Minimum Operating Voltage
D132B		VDD for Self-Timed Write	VMIN		3.6	V	VміN = Minimum Operating Voltage
D133A	Tiw	Self-Timed Word Write Cycle Time	_	20	—	μS	
		Self-Timed Row Write Cycle Time	_	1.5	—	ms	
D133B	TIE	Self-Timed Page Erase Time	20	—	40	ms	
D134	TRETD	Characteristic Retention	20		—	Year	If no other specifications are violated
D135	IDDP	Supply Current during Programming	_	5	—	mA	
D136	Votp	OTP Programming	3.1	—	3.6	V	
D137	Тотр	OTP Memory Write/Bit	—	500	_	μS	

TABLE 32-10: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 32-11: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operatin	$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments				
DVR	TVREG	Voltage Regulator Start-up Time		10	-	μS	VREGS = 1 with any POR or BOR				
DVR10	Vbg	Internal Band Gap Reference	_	1.2	—	V					
DVR11	Tbg	Band Gap Reference Start-up Time	_	1	-	ms					
DVR20	Vrgout	Regulator Output Voltage	_	1.8	—	V	Vdd > 1.9V				
DVR21	CEFC	External Filter Capacitor Value	4.7	10	-	μF	Series resistance < 3Ω recommended; < 5Ω required				
DVR30	Vlvr	Low-Voltage Regulator Output Voltage		1.2	_	V	RETEN = 1, LPCFG = 0				

TABLE 32-12: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Operati	$\begin{array}{llllllllllllllllllllllllllllllllllll$											
Param No.	Symbol	Chara	cteristic	Min	Тур	Max	Units	Conditions				
DC18	VHLVD	HLVD Voltage on VDD	HLVDL<3:0> = 0100 ⁽¹⁾	3.45	3.59	3.74	V					
		Transition	HLVDL<3:0> = 0101	3.33	3.45	3.58	V					
		HLVDL<3:0> = 0110	3.0	3.125	3.25	V						
			HLVDL<3:0> = 0111	2.8	2.92	3.04	V					
			HLVDL<3:0> = 1000	2.7	2.81	2.93	V					
			HLVDL<3:0> = 1001	2.50	2.6	2.70	V					
			HLVDL<3:0> = 1010	2.4	2.52	2.64	V					
			HLVDL<3:0> = 1011	2.30	2.4	2.50	V					
			HLVDL<3:0> = 1100	2.20	2.29	2.39	V					
			HLVDL<3:0> = 1101	2.1	2.19	2.28	V					
			HLVDL<3:0> = 1110	2.0	2.08	2.17	V					
DC101	VTHL	HLVD Voltage on HLVDIN Pin Transition	HLVDL<3:0> = 1111		1.2		V					

Note 1: Trip points for values of HLVD<3:0> from '0000' to '0011' are not implemented.

TABLE 32-13: COMPARATOR DC SPECIFICATIONS

Operatir	$\begin{array}{l} \textbf{Dperating Conditions: -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} \end{array}$											
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments					
D300	VIOFF	Input Offset Voltage	_	20	±40	mV	(Note 1)					
D301	VICM	Input Common-Mode Voltage	0	_	Vdd	V	(Note 1)					
D302	CMRR	Common-Mode Rejection Ratio	55	—	_	dB	(Note 1)					
D306	IQCMP	AVDD Quiescent Current per Comparator	_	27	_	μs	Comparator enabled					
D307	TRESP	Response Time	_	300	_	ns	(Note 2)					
D308	Тмс2оv	Comparator Mode Change to Valid Output	_	—	10	μs						

Note 1: Parameters are characterized but not tested.

2: Measured with one input at VDD/2 and the other transitioning from Vss to VDD, 40 mV step, 15 mV overdrive.

TABLE 32-14: COMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments			
VR310	TSET	Settling Time	—	—	10	μs	(Note 1)			
VRD311	CVRAA	Absolute Accuracy	-100	—	100	mV				
VRD312	CVRur	Unit Resistor Value (R)	—	4.5		kΩ				

Note 1: Measures the interval while CVR<4:0> transitions from '11111' to '00000'.

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
DVB01	Vbt	Operating Voltage	1.6	_	3.6	V	Battery connected to the VBAT pin
DVB10	VBTADC	VBAT A/D Monitoring Voltage Specification ⁽¹⁾	1.6	—	3.6		A/D monitoring the VBAT pin using the internal A/D channel

TABLE 32-15: VBAT OPERATING VOLTAGE SPECIFICATIONS

Note 1: Measuring the A/D value using the A/D is represented by the equation: Measured Voltage = ((VBAT/2)/VDD) * 4096) for 12-bit A/D

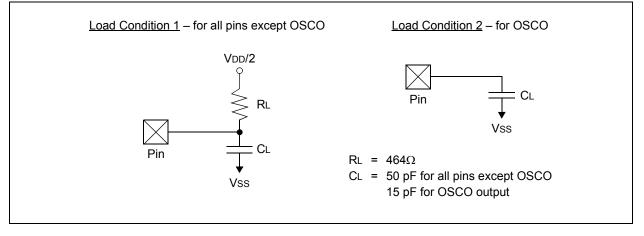
TABLE 32-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CH	ARACT	ERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Sym	Characteristic	Min	Min Typ ⁽¹⁾ Max ⁽³⁾ Units Comments				Conditions		
DCT10	IOUT1	CTMU Current Source, Base Range	208	550	797	nA	CTMUICON<9:8> = 00			
DCT11	IOUT2	CTMU Current Source, 10x Range	3.32	5.5	7.67	μA	CTMUICON<9:8> = 01	2.5V < VDD < VDDMAX		
DCT12	Ιουτ3	CTMU Current Source, 100x Range	32.22	55	77.78	μA	CTMUICON<9:8> = 10	2.5V < VDD < VDDMAX		
DCT13	IOUT4	CTMU Current Source, 1000x Range	322	550	777	μA	CTMUICON<9:8> = 11 ⁽²⁾			
DCT21	VΔ	Temperature Diode Voltage Change per Degree Celsius	—	-3	—	mV/°C				

Note 1: Nominal value at the center point of the current trim range (CTMUICON<15:10> = 000000).

2: Do not use this current range with a temperature sensing diode.

3: Maximum values are tested at +85°C.


32.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ128GA204 family AC characteristics and timing parameters.

TABLE 32-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
	Operating voltage VDD range as described in Section 32.1 "DC Characteristics".						

FIGURE 32-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

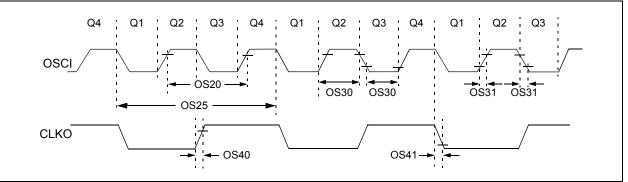


TABLE 32-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSCO/CLKO Pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 32-3: EXTERNAL CLOCK TIMING

TABLE 32-19: EXTERNAL CLOCK TIMING REQUIREMENTS

АС СН/	AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Symbol Characteristic		Typ ⁽¹⁾	Мах	Units	Conditions		
OS10 Fosc		External CLKI Frequency (External clocks allowed only in EC mode)	DC 4		32 48	MHz MHz	EC ECPLL (Note 2)		
		Oscillator Frequency	3.5 4 10 12 31		10 8 32 32 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC		
OS20	Tosc	Tosc = 1/Fosc	_	—	—	—	See Parameter OS10 for FOSC value		
OS25	Тсү	Instruction Cycle Time ⁽³⁾	62.5		DC	ns			
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	_	—	ns	EC		
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	_	20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽⁴⁾	—	6	10	ns			
OS41	TckF	CLKO Fall Time ⁽⁴⁾	—	6	10	ns			

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Represents input to the system clock prescaler. PLL dividers and postscalers must still be configured so that the system clock frequency does not exceed the maximum frequency shown in Figure 32-1.

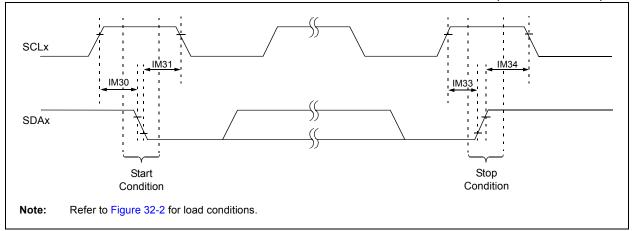
- 3: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min" values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.
- 4: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

ас сн	AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol Characteristic		Min	Typ ⁽¹⁾	Мах	Units	Conditions			
OS50	Fplli	USB PLL Input	2	4	4	MHz	ECPLL mode			
		Frequency Range	2	4	4	MHz	HSPLL mode			
			2	4	4	MHz	XTPLL mode			
OS52	TLOCK	USB PLL Start-up Time (Lock Time)	-	—	128	μS				
OS53	DCLK	CLKO Stability (Jitter)	-0.25	_	0.25	%				
OS54	F4xpll	4x PLL Input Frequency Range	2	—	8	MHz	4x PLL			
OS55	F6xpll	6x PLL Input Frequency Range	2	—	5	MHz	6x PLL			
OS56	F8xpll	8x PLL Input Frequency Range	2	_	4	MHz	8x PLL			
OS57	TXPLLLOCK	PLL Start-up Time (Lock Time)	-	—	24	μS				
OS58	DXPLLCLK	PLL CLKO Stability (Jitter)	-2	—	2	%				

TABLE 32-20: PLL CLOCK TIMING SPECIFICATIONS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 32-21: INTERNAL RC ACCURACY


AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min	Тур	yp Max Units Conditions					
F20	FRC Accuracy @ 8 MHz	-1	±0.15	1	%	$\begin{array}{l} 2.0V \leq V \text{DD} \leq 3.6 \text{V}, \ 0^{\circ} \text{C} \leq \text{TA} \leq +85^{\circ} \text{C} \\ \textbf{(Note 1)} \end{array}$			
		1.5	—	1.5	%	$2.0V \leq V \text{DD} \leq 3.6V \text{, } \text{-}40^\circ \text{C} \leq \text{Ta} \leq 0^\circ \text{C}$			
		-0.20	±0.05	-0.20	%	$2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le Ta \le +85^{\circ}C$, self-tune is enabled and locked (Note 2)			
			3	5	%	$2.0V \leq V\text{DD} \leq 3.6V\text{, Ta} = +125^\circ\text{C}$			
F21	LPRC @ 31 kHz	-20	—	20	%	VCAP Output Voltage = 1.8V			
F22	OSCTUN Step-Size	_	0.05	—	%/bit				
F23	FRC Self-Tune Lock Time	—	<5	8	ms	(Note 3)			

Note 1: To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB) must be kept to a minimum.

2: Accuracy is measured with respect to the reference source.

3: Time from reference clock stable and in range to FRC tuned within range specified by F20 (with self-tune).

FIGURE 32-4: I²C[™] BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

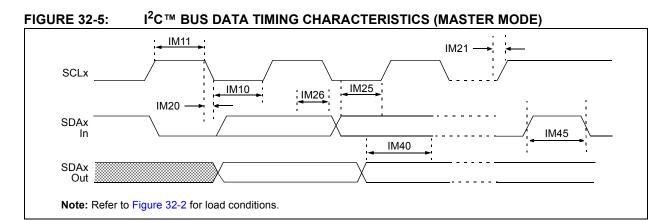
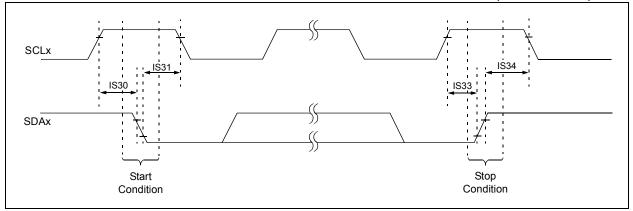


TABLE 32-22: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (MASTER MODE)

AC CH	ARACTE	RISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy (BRG + 1)	—	μs	Only relevant for		
	Setup Tim	Setup Time	400 kHz mode	TCY (BRG + 1)	_	μs	Repeated Start		
			1 MHz mode ⁽²⁾	TCY (BRG + 1)		μs	condition		
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy (BRG + 1)		μs	After this period, the		
			400 kHz mode	TCY (BRG + 1)	_	μS	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)		μs	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy (BRG + 1)		μs			
		Setup Time	400 kHz mode	TCY (BRG + 1)	_	μS			
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)		μs			
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	Tcy (BRG + 1)		ns			
			400 kHz mode	Tcy (BRG + 1)		ns			
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	ns			

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 17.2 "Setting Baud Rate when Operating as a Bus Master" for details.

2: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).


TABLE 32-23: I²C[™] BUS DATA TIMING REQUIREMENTS (MASTER MODE)

АС СН	ARACTE	RISTICS		Standard Operating Co Operating temperature	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Symbol Characteristic		Min ⁽¹⁾	Max	Units	Conditions				
IM10	TLO:SCL	Clock Low	100 kHz mode	Tcy (BRG + 1)	_	μS					
		Time	400 kHz mode	Tcy (BRG + 1)	_	μS					
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	_	μS					
IM11	THI:SCL	Clock High	100 kHz mode	Tcy (BRG + 1)		μS					
		Time	400 kHz mode	Tcy (BRG + 1)		μS					
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)		μS					
IM20	0 TF:SCL	SDAx and	100 kHz mode	—	300	ns	CB is specified to be from				
		SCLx	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF				
		Fall Time	1 MHz mode ⁽²⁾	—	100	ns					
IM21	TR:SCL	SDAx and	100 kHz mode	—	1000	ns	CB is specified to be from				
		SCLx	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF				
		Rise Time	1 MHz mode ⁽²⁾	—	300	ns					
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns					
			400 kHz mode	100		ns					
			1 MHz mode ⁽²⁾	40		ns					
IM26	THD:DAT		100 kHz mode	0	_	ns					
		Hold Time	400 kHz mode	0	0.9	μS					
			1 MHz mode ⁽²⁾	0.2		ns					
IM40	TAA:SCL	Output	100 kHz mode	—	3500	ns					
		Valid from	400 kHz mode	—	1000	ns					
		Clock	1 MHz mode ⁽²⁾	_	400	ns					
IM45	TBF:SDA	Bus Free	100 kHz mode	4.7	—	μs	Time the bus must be free				
		Time	400 kHz mode	1.3	—	μS	before a new transmission				
			1 MHz mode ⁽²⁾	0.5		μs	can start				
IM50	Св	Bus Capaci	tive Loading	_	400	pF					

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 17.2 "Setting Baud Rate when Operating as a Bus Master" for details.

2: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

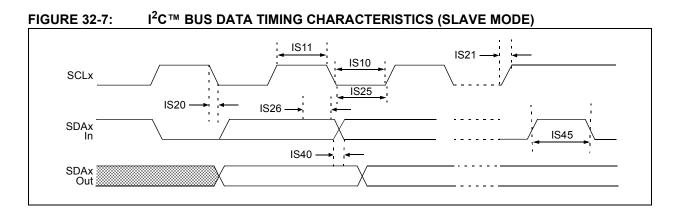
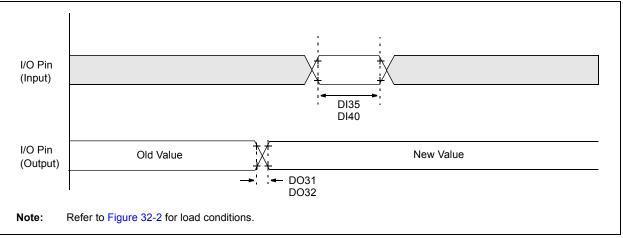

FIGURE 32-6: I²C[™] BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

TABLE 32-24: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (SLAVE MODE)

АС СН	ARACTE	RISTICS		Standard Opera (unless otherwi Operating temp	se stated) -40°C ≤	ditions: 2.0V to 3.6V -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Symbol	Charac	teristic	Min	Max	Units	Conditions		
IS30	Tsu:sta	Start Condition	100 kHz mode	4.7	_	μs	Only relevant for Repeated		
	Setup Time		400 kHz mode	0.6	_	μs	Start condition		
			1 MHz mode ⁽¹⁾	0.25	—	μS			
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	_	μS	After this period, the first clock		
			400 kHz mode	0.6	_	μS	pulse is generated		
			1 MHz mode ⁽¹⁾	0.25	_	μS			
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	_	μs			
		Setup Time	400 kHz mode	0.6	_	μS			
			1 MHz mode ⁽¹⁾	0.6	—	μS			
IS34	THD:STO	Stop Condition Hold Time	100 kHz mode	4000	_	ns			
			400 kHz mode	600	_	ns			
			1 MHz mode ⁽¹⁾	250	_	ns			

Note 1: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

TABLE 32-25: I²C[™] BUS DATA TIMING REQUIREMENTS (SLAVE MODE)


АС СН	ARACTE	RISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	ymbol Characteristi		Min	Max	Units	Conditions		
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μs	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	—	μS			
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	-	μs	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	-	μs	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	_	μs			
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode		300	ns	CB is specified to be from		
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾		100	ns]		
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from		
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	300	ns			
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns			
		Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽¹⁾	100		ns			
IS26	THD:DAT	Data Input	100 kHz mode	0		ns			
		Hold Time	400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽¹⁾	0	0.3	μs			
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	1		
		From Clock	400 kHz mode	0	1000	ns			
			1 MHz mode ⁽¹⁾	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free before a		
			400 kHz mode	1.3	—	μS	new transmission can start		
			1 MHz mode ⁽¹⁾	0.5	—	μS			
IS50	Св	Bus Capacitive L	oading	—	400	pF			

Note 1: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

TABLE 32-26: RC OSCILLATOR START-UP TIME

			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
FR0	TFRC	FRC Oscillator Start-up Time		15		μS			
FR1	TLPRC	Low-Power RC Oscillator Start-up Time	—	50	—	μS			

FIGURE 32-8: CLKO AND I/O TIMING CHARACTERISTICS

TABLE 32-27: CLKO AND I/O TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DO31	TIOR	Port Output Rise Time	—	10	25	ns		
DO32	TIOF	Port Output Fall Time	—	10	25	ns		
DI35	Tinp	INTx Pin High or Low Time (input)	20	—	—	ns		
DI40	Trbp	CNxx High or Low Time (input)	2	—	—	Тсү		

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions	
SY10	TMCL	MCLR Pulse Width (Low)	2			μS		
SY12	TPOR	Power-on Reset Delay		2	_	μS		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	Lesser of: (3 Tcy + 2) or 700		(3 Tcy + 2)	μS		
SY25	TBOR	Brown-out Reset Pulse Width	1		_	μs	$V \text{DD} \leq V \text{BOR}$	
SY45	TRST	Internal State Reset Time	—	50	_	μs		
SY70	Toswu	Deep Sleep Wake-up Time	_	200	—	μs	VCAP is fully discharged before wake-up	
SY71	Трм	Program Memory Wake-up Time	—	20	—	μS	Sleep wake-up with VREGS = 0	
			_	1	—	μs	Sleep wake-up with VREGS = 1	
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	90	_	μS	Sleep wake-up with VREGS = 0	
			—	70	_	μS	Sleep wake-up with VREGS = 1	

TABLE 32-28: RESET AND BROWN-OUT RESET REQUIREMENTS

FIGURE 32-9: TIMER1, 2, 3, 4 AND 5 EXTERNAL CLOCK TIMING CHARACTERISTICS

AC CHARACTERISTICS				$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \\ \end{array} $					
Param No.	Symbol	Characteristic		Min	Тур	Мах	Units	Conditions	
TA10	ТтхН	T1CK High Time	Synchronous, No Prescaler	0.5 TCY + 20	-	—	ns	Must also meet Parameter TA15	
			Synchronous, with Prescaler	10		—	ns		
			Asynchronous	10	_	—	ns		
TA11	ΤτχL	T1CK Low Time	Synchronous, No Prescaler	0.5 Tcy + 20	_	—	ns	Must also meet Parameter TA15	
			Synchronous, with Prescaler	10		—	ns		
			Asynchronous	10	_	_	ns		
TA15	ΤτχΡ	T1CK Input Period	Synchronous, No Prescaler	Tcy + 40		—	ns		
			Synchronous, with Prescaler	Greater of: 20 ns or (Tcy + 40)/N	_	_	_	N = Prescale Value (1, 8, 64, 256)	
			Asynchronous	20	_	_	ns		
OS60	F⊤1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC	—	50	kHz		
TA20	TCKEXTMRL	Delay from External to Timer Increment	0.5 TCY	_	1.5 TCY				

TABLE 32-29: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

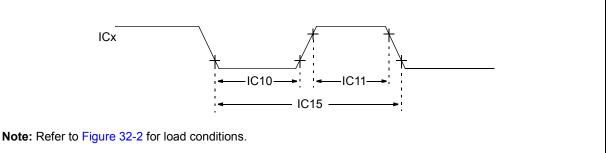

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic		Min	Тур	Мах	Units	Conditions
TB10	ТтхН	TxCK High Time	Synchronous, no prescaler	0.5 Tcy + 20		—	ns	Must also meet Parameter TB15
			Synchronous, with prescaler	10	_	_	ns	
TB11	ΤτxL	TxCK Low Time	Synchronous, no prescaler	0.5 TCY + 20	_	—	ns	Must also meet Parameter TB15
			Synchronous, with prescaler	10	_	_	ns	
TB15	ΤτχΡ	TxCK Input Period	Synchronous, no prescaler	Tcy + 40	_	—	ns	N = Prescale Value (1, 8, 64, 256)
			Synchronous, with prescaler	Greater of: 20 ns or (Tcy + 40)/N				
TB20	TCKEXTMRL	Delay from Extern Edge to Timer Inci		0.5 TCY		1.5 TCY		

TABLE 32-30: TIMER2 AND TIMER4 EXTERNAL CLOCK TIMING REQUIREMENTS

TABLE 32-31: TIMER3 AND TIMER5 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СН/	ARACTERIS	STICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic		Min	Тур	Мах	Units	Conditions
TC10	ТтхН	TxCK High Time	Synchronous	0.5 TCY + 20		I	ns	Must also meet Parameter TC15
TC11	ΤτxL	TxCK Low Time	Synchronous	0.5 Tcy + 20	_	_	ns	Must also meet Parameter TC15
TC15	ΤτχΡ	TxCK Input Period	Synchronous, no prescaler	Tcy + 40	_	—	ns	N = Prescale Value (1, 8, 64, 256)
			Synchronous, with prescaler	Greater of: 20 ns or (Tcy + 40)/N				
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incr		0.5 TCY	_	1.5 Tcy	_	

FIGURE 32-10: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

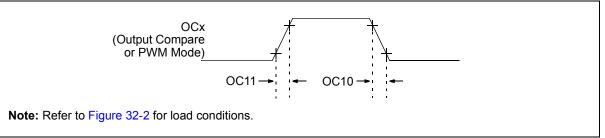


TABLE 32-32: INPUT CAPTURE x TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	DI Characteristic ⁽¹⁾		Min	Мах	Units	Conditions	
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20	_	ns		
			With Prescaler	10	_	ns		
IC11	ТссН	ICx Input High Time	No Prescaler	0.5 TCY + 20	_	ns		
		With Prescaler		10	_	ns		
IC15	TccP	ICx Input Period		(Tcy + 40)/N	_	ns	N = Prescale Value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 32-11: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

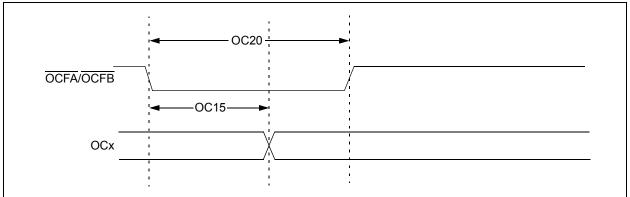


TABLE 32-33: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
OC10	TccF	OCx Output Fall Time	_	_		ns	See Parameter DO32		
OC11	TccR	OCx Output Rise Time	— — ns See Parameter DO31						

Note 1: These parameters are characterized but not tested in manufacturing.

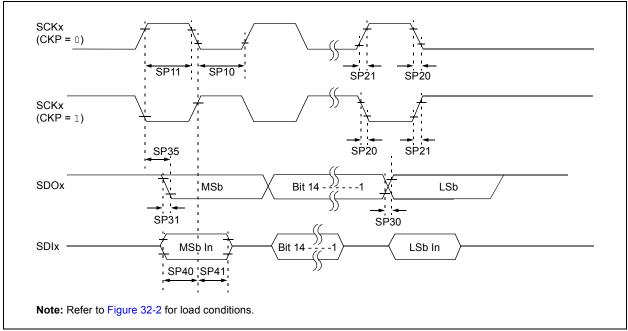

FIGURE 32-12: OCx/PWM MODULE TIMING CHARACTERISTICS

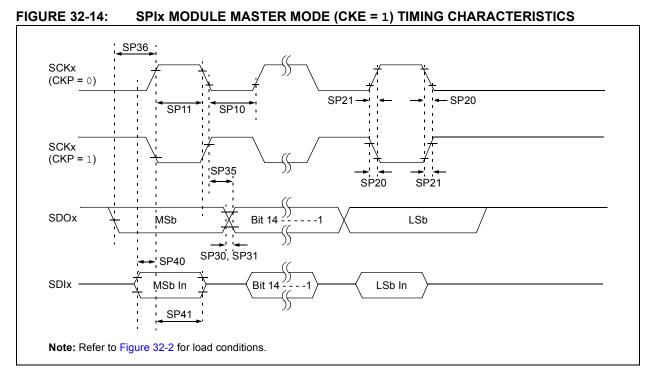
TABLE 32-34: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Condition				Conditions	
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns		
OC20	TFLT	Fault Input Pulse Width	50	—	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 32-13: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 32-35: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

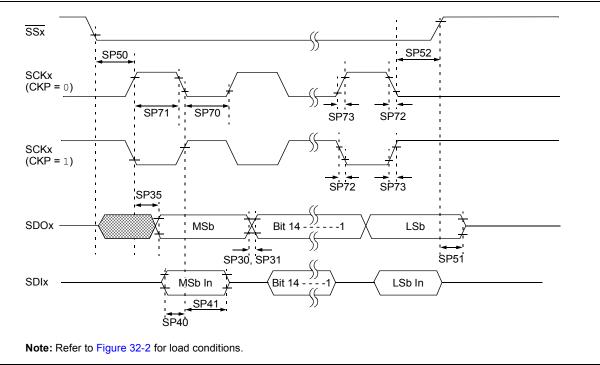

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Condition				Conditions		
SP10	TscL	SCKx Output Low Time	Tcy/2	_	_	ns	(Note 3)		
SP11	TscH	SCKx Output High Time	Tcy/2	_	_	ns	(Note 3)		
SP20	TscF	SCKx Output Fall Time	-		_	ns	See Parameter DO32 (Note 4)		
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)		
SP35	P35 TscH2doV, SDOx Data Output Valid After TscL2doV SCKx Edge		—	6	20	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.


TABLE 32-36: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

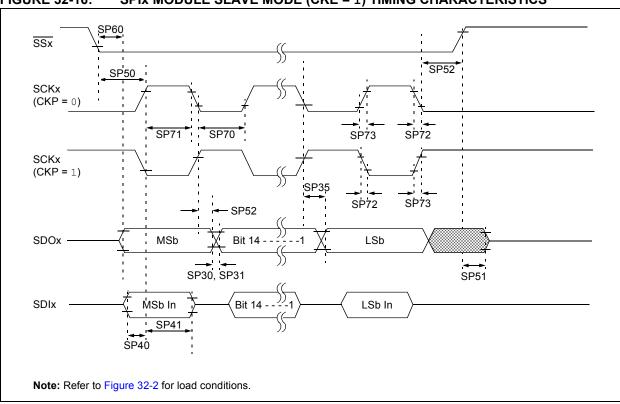
АС СНА	RACTERIST	ICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tcy/2	—		ns			
SP11	TscH	SCKx Output High Time ⁽³⁾	Tcy/2		_	ns			
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	_	_	_	ns	See Parameter DO32		
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	—	—	_	ns	See Parameter DO31		
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	—	—		ns	See Parameter DO32		
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	—	—	_	ns	See Parameter DO31		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns			
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-15: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS


TABLE 32-37: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)

АС СН	AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Cond		Conditions					
SP70	TscL	SCKx Input Low Time	30	_	_	ns				
SP71	TscH	SCKx Input High Time	30	—		ns				
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns				
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns				
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—			ns	See Parameter DO32			
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	—		ns	See Parameter DO31			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—		30	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20		_	ns				
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120		_	ns				
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	—	50	ns				
SP52	TscH2ssH, TscL2ssH	SSx After SCKx Edge	1.5 Tcy + 40	_		ns				

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: Assumes 50 pF load on all SPIx pins.

FIGURE 32-16: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 32-38: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions		
SP70	TscL	SCKx Input Low Time	30			ns			
SP71	TscH	SCKx Input High Time	30	_		ns			
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns			
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns			
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	-	_	ns	See Parameter DO32		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	_	_	ns	See Parameter DO31		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	_	30	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	-	_	ns			
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	120		_	ns			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns			
SP52	TscH2ssH TscL2ssH	SSx ↑ After SCKx Edge	1.5 TCY + 40	_	_	ns			
SP60	TssL2doV	SDOx Data Output Valid After SSx Edge	—	_	50	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 32-39: A/D MODULE SPECIFICATIONS

АС СНА	ARACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Тур	Conditions				
	•	·	Devi	ce Supp	ly				
AD01	AVdd	Module VDD Supply	Greater of: VDD – 0.3 or 2.2	_	Lesser of: VDD + 0.3 or 3.6	V			
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V			
		·	Refer	ence Inp	uts				
AD05	VREFH	Reference Voltage High	AVss + 1.7		AVdd	V			
AD06	VREFL	Reference Voltage Low	AVss	—	AVDD – 1.7	V			
AD07	Vref	Absolute Reference Voltage	AVss – 0.3		AVDD + 0.3	V			
	-		Ana	log Inpu	ts				
AD10	VINH-VINL	Full-Scale Input Span	VREFL		VREFH	V	(Note 2)		
AD11	VIN	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V			
AD12	VINL	Absolute VINL Input Voltage	AVss – 0.3		AVDD/3	V			
AD13		Leakage Current		±1.0	±610	nA	$\label{eq:VINL} \begin{array}{l} VINL = AVSS = VREFL = 0V,\\ AVDD = VREFH = 3V,\\ Source Impedance = 2.5 \ k\Omega \end{array}$		
AD17	RIN	Recommended Impedance of Analog Voltage Source	_	_	2.5K	Ω	10-bit		
			A/D	Accurac	ÿ				
AD20B	Nr	Resolution	—	12	—	bits			
AD21B	INL	Integral Nonlinearity	_	±1	<±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD22B	DNL	Differential Nonlinearity	—		<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD23B	Gerr	Gain Error	_	±1	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD24B	EOFF	Offset Error	_	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V		
AD25B		Monotonicity ⁽¹⁾					Guaranteed		

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: Measurements are taken with the external VREF+ and VREF- used as the A/D voltage reference.

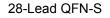

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Conditions					
			Clock	Paramete	rs				
AD50	TAD	A/D Clock Period	75	—	—	ns	Tcy = 75 ns, AD1CON3 in default state		
AD51	tRC	A/D Internal RC Oscillator Period	—	250	—	ns			
		•	Conv	ersion Rat	e				
AD55	tCONV	Conversion Time		14		Tad			
AD56	FCNV	Throughput Rate			200	ksps	AVDD > 2.7V		
AD57	tSAMP	Sample Time	_	1		Tad			
			Clock	Paramete	rs				
AD61	tpss	Sample Start Delay from Setting Sample bit (SAMP)	2	_	3	Tad			

TABLE 32-40: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

28-Lead SOIC (.300")

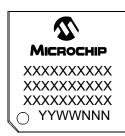
28-Lead SPDIP

Example

28-Lead SSOP

Example

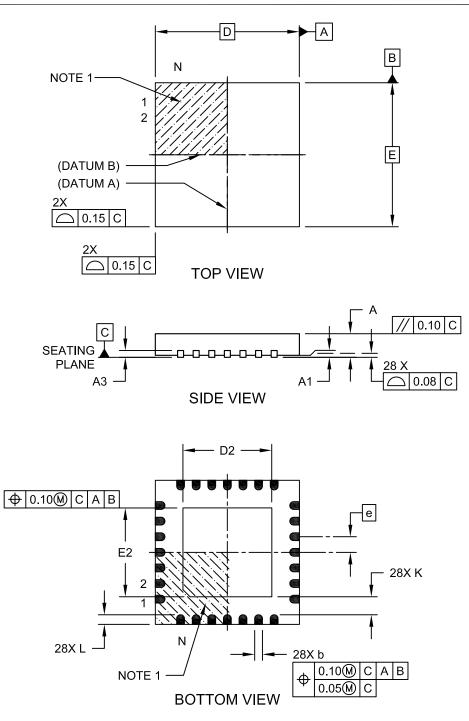
Legend	: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code				
	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.				


44-Lead QFN

Example

44-Lead TQFP

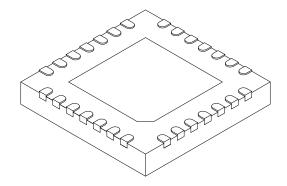
Example



33.2 Package Details

The following sections give the technical details of the packages.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

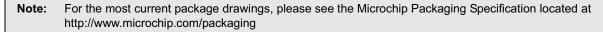
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

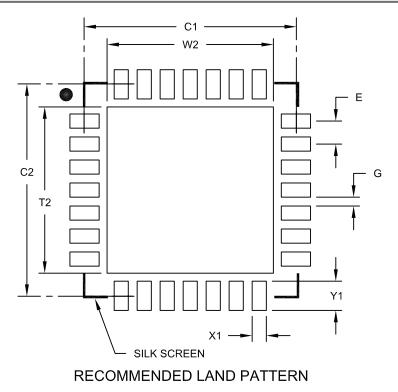
	Units	nits MILLIMETERS		S
Dimensior	n Limits MIN NOM		MAX	
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	Е	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.70
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

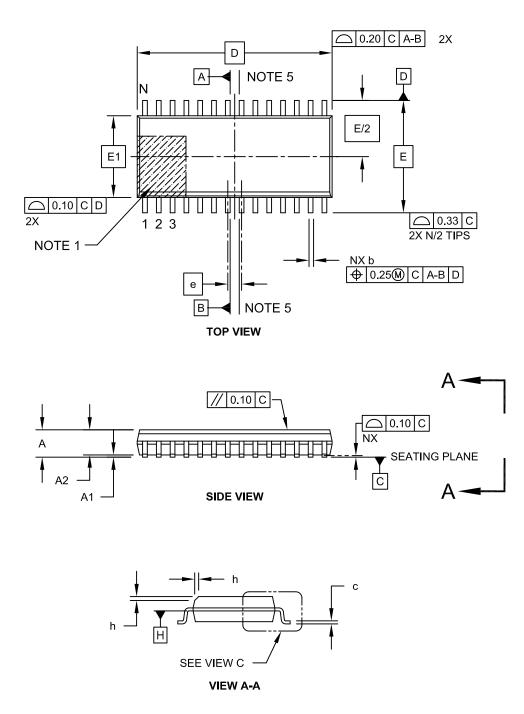
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

	Units		MILLIM	ETERS
Dimens	Dimension Limits		NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

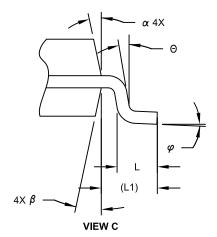
Notes:

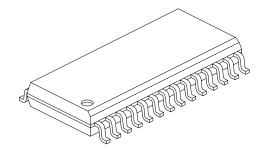

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

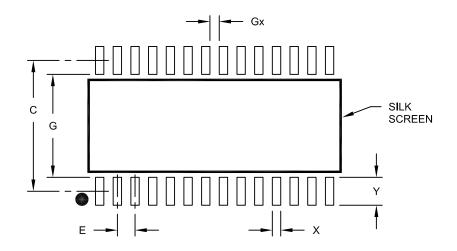


Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

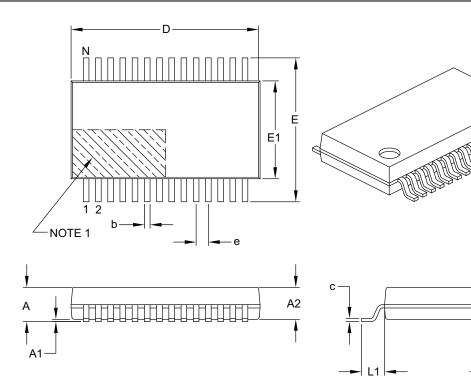
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETER	S
Dimens	ion Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

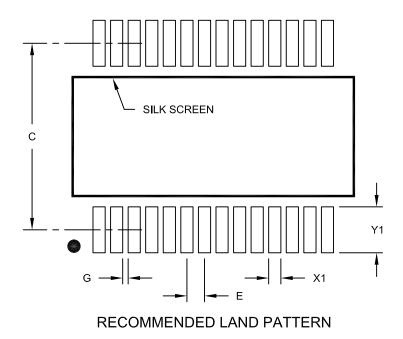
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.65 BSC	
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1		1.25 REF	
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

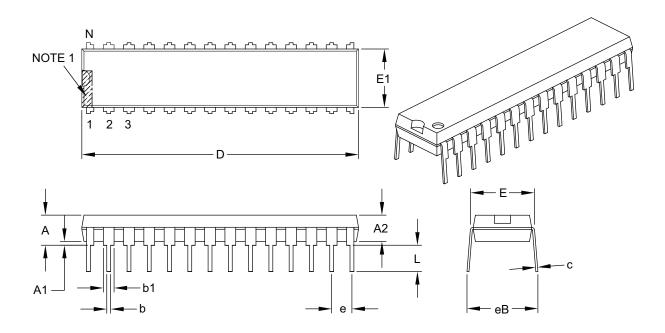
Microchip Technology Drawing C04-073B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Units MILLIMETERS		S
Dimensior	n Limits	MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

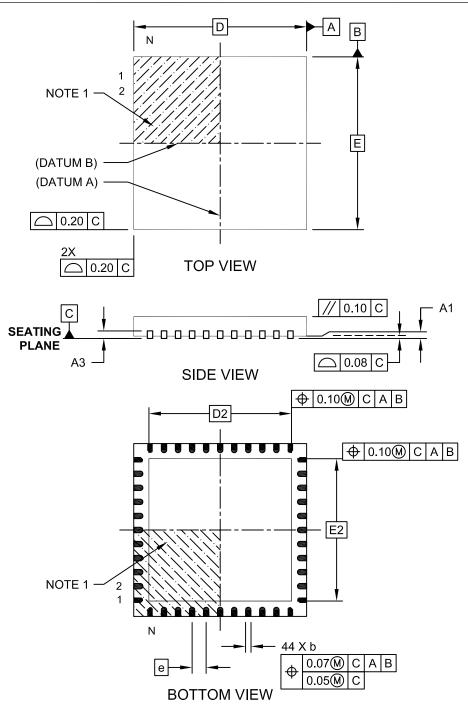
	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	e		.100 BSC	
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

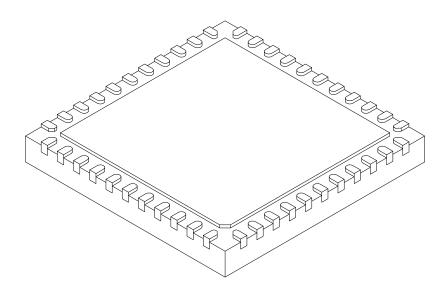
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

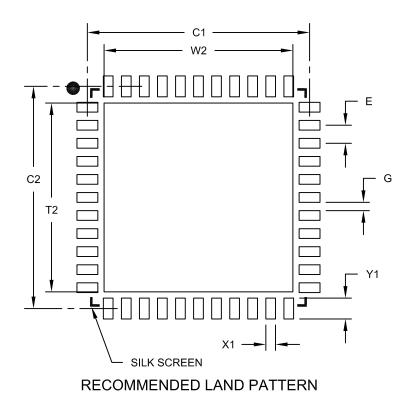
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Jnits MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		44	
Pitch	e		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	Е		8.00 BSC	
Exposed Pad Width	E2	6.25	6.45	6.60
Overall Length	D	8.00 BSC		
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width	b	0.20	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension. usually without tolerance. for information purposes only.

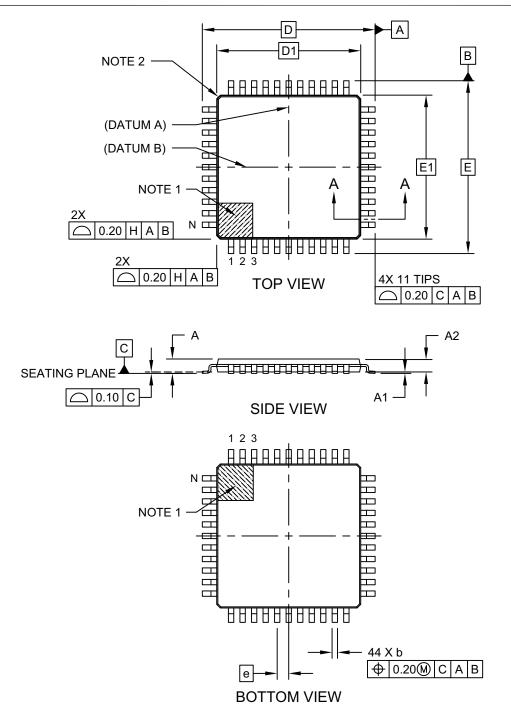
Microchip Technology Drawing C04-103C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		N	IILLIMETER	S
Dimensior	l Limits	MIN	NOM	MAX
Contact Pitch	Е	0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

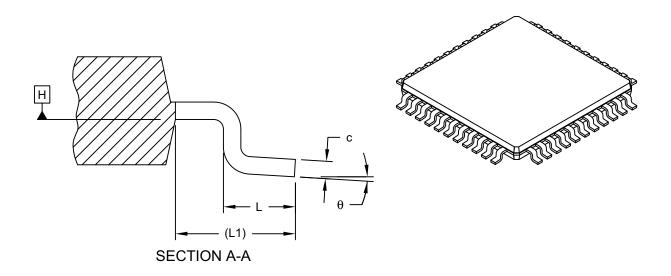
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

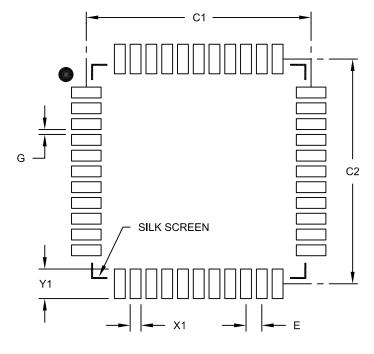
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Units MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Overall Width	E	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Length	D1		10.00 BSC	
Lead Width	b	0.30	0.37	0.45
Lead Thickness	С	0.09	-	0.20
Lead Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	θ	0°	3.5°	7°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		S
Dimensior	l Limits	MIN	NOM	MAX
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (July 2013)

Original data sheet for the PIC24FJ128GA204 family of devices.

Revision B (May 2014)

This revision incorporates the following updates:

- · Sections:
 - Added Section 16.5 "Audio Mode" and Section 16.6 "Registers" Section 16.1 "Standard Master Mode", Section 16.2 "Standard Slave Mode", Section 16.3 "Enhanced Master Mode" and Section 16.4 "Enhanced Slave Mode"
 - Added Section 18.9 "Registers"
 - Updated Section 17.3 "Slave Address Masking",
 - Updated Section 29.3.1 "Windowed Operation"
- Registers:
 - Updated Register 8-45, Register 11-2, Register 11-29, Register 16-6, Register 16-7, Register 17-1, Register 17-2, Register 18-2, Register 18-4, Register 18-6, Register 22-5
 - Updated note in Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"
 - Updated Sections: Section 18.5 "Receiving in 8-Bit or 9-Bit Data Mode"
- Tables:
 - Included Table 32-22, Table 32-23, Table 32-24 and Table 32-25
 - Updated Tables:Table 4-4, Table 4-6, Table 4-9, Table 4-10, Table 4-11, Table 4-12, Table 4-13, Table 4-28, Table 32-3, Table 32-4, Table 32-5, Table 32-6, Table 32-7, Table 32-8, Table 32-10, Table 32-12, Table 32-13, Table 32-14, Table 32-15, Table 32-16 and Table 32-20
- Figures:
 - Included Figure 32-5, Figure 32-6, Figure 32-7 and Figure 32-8
- · Examples:
 - Updated Example 21-1
- Packaging diagrams in Section 33.0 "Packaging Information" were updated
- Changes to text and formatting were incorporated throughout the document

Revision C (March 2015)

This revision incorporates the following updates:

- · Registers:
 - Register 25-1
- Tables:
 - Table 32-4, Table 32-5, Table 32-6 and Table 32-21
- Package Marking examples in Section 33.0 "Packaging Information" were updated

NOTES:

INDEX

Α

A/D	
Control Registers	
Extended DMA Operations	
Operation	
Transfer Functions	
10-Bit	330
12-Bit	329
AC Characteristics	
A/D Conversion Timing	406
A/D Module Specifications	405
and Timing Parameters	
Capacitive Loading on Output Pins	387
CLKO and I/O Timing Requirements	394
External Clock Timing Requirements	
I ² C Bus Data (Master Mode)	. 390, 391
I ² C Bus Data (Slave Mode)	
I ² C Bus Start/Stop Bit (Slave Mode)	392
Input Capture x Timing Requirements	398
Internal RC Accuracy	
Load Conditions and Requirements for	
Specifications	
Output Compare x Requirements	
PLL Clock Timing Specifications	
RC Oscillator Start-up Time	
Reset and Brown-out Reset Requirements	
Simple OCx/PWM Mode Requirements	
SPIx Master Mode (CKE = 0) Requirements	
SPIx Master Mode (CKE = 1) Requirements	
SPIx Slave Mode (CKE = 0) Requirements	
SPIx Slave Mode (CKE = 1) Requirements	
Timer1 External Clock Requirements	
Timer2 and Timer4 External Clock	
Requirements	
Timer3 and Timer5 External Clock	
Requirements	
Alternate Interrupt Vector Table (AIVT)	
Assembler	
MPASM Assembler	

В

Block Diagrams	
10-Bit A/D Converter Analog Input Model	328
12-Bit A/D Converter	312
16-Bit Asynchronous Timer3/5	201
16-Bit Synchronous Timer2/4	201
16-Bit Timer1 Module	195
Accessing Program Space Using	
Table Instructions	64
Addressing for Table Registers	75
Buffer Address Generation in PIA Mode	315
CALL Stack Frame	61
Comparator Voltage Reference Module	337
CPU Programmer's Model	29
CRC Module	305
CRC Shift Engine Detail	305
Cryptographic Engine	289
CTMU Connections and Internal Configuration	
for Capacitance Measurement	340

CTMU Typical Connections and Internal	
Configuration for Pulse Delay Generation	. 341
CTMU Typical Connections and Internal	
Configuration for Time Measurement	. 341
Data Access from Program Space Address	
Generation	63
Data Signal Modulator	. 257
Direct Memory Access (DMA)	
EDS Address Generation for Read	59
EDS Address Generation for Write	
Extended Data Space (EDS)	
High/Low-Voltage Detect (HLVD)	
I2Cx Module	238
Individual Comparator Configurations,	. 200
CREF = 0	333
Individual Comparator Configurations,	. 552
CREF = 1, CVREFP = 0	222
Individual Comparator Configurations,	
CREF = 1, CVREFP = 1	
Input Capture x Module	. 205
MCLR Pin Connections	
On-Chip Regulator Connections	
Output Compare x (16-Bit Mode)	. 212
Output Compare x (Double-Buffered,	
16-Bit PWM Mode)	
PIC24F CPU Core	
PIC24FJ128GA204 Family (General)	
PSV Operation Access (Lower Word)	66
PSV Operation Access (Upper Word)	66
Recommended Minimum Connections	
Reset System	81
RTCC Module	. 275
Shared I/O Port Structure	. 167
Smart Card Subsystem Connection	. 249
SPIx Master, Frame Master Connection	. 235
SPIx Master, Frame Slave Connection	. 236
SPIx Master/Slave Connection	
(Enhanced Buffer Modes)	. 235
SPIx Master/Slave Connection	
(Standard Mode)	234
SPIx Module (Enhanced Mode)	
SPIx Module (Standard Mode)	
SPIx Slave, Frame Master Connection	
SPIX Slave, Frame Slave Connection	
System Clock	
Timer2/3 and Timer4/5 (32-Bit)	
Triple Comparator Module	
UARTx (Simplified)	. 246
Watchdog Timer (WDT)	. 360

C

C Compilers	
MPLAB XC Compilers 3	64
Charge Time Measurement Unit. See CTMU.	

Code Examples	
Basic Clock Switching Sequence	. 148
Configuring UART1 Input/Output Functions	
EDS Read from Program Memory in Assembly	
EDS Read in Assembly	
EDS Write in Assembly	
Erasing a Program Memory Block (Assembly)	
Erasing a Program Memory Block (C Language)	
Initiating a Programming Sequence	
Loading the Write Buffers	
Port Read/Write in Assembly	
Port Read/Write in C	
PWRSAV Instruction Syntax	
Repeat Sequence	
Setting the RTCWREN Bit	
Single-Word Flash Programming	
Single-Word Flash Programming (C Language)	
Code Protection	
Code Segment Protection	
Configuration Options	
Configuration Register Protection	
General Segment Protection	
Comparator Voltage Reference	
Configuring	
Configuration Bits	
Core Features	
CPU	
Arithmetic Logic Unit (ALU)	32
Control Registers	
Core Registers	
Programmer's Model	
-	21
CRC	
CRC Polynomials	. 306
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials	. 306 . 306
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 306
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 306 . 289
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 306 . 289 . 290
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 306 . 289 . 290 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 306 . 289 . 290 . 291 . 290
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 289 . 290 . 291 . 291 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 294
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 294
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 293 . 293
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 293 . 293
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 293 . 293 . 292 . 292
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 293 . 293 . 292 . 292
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 293 . 293 . 292 . 293
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 293 . 293 . 292 . 293 . 339
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	.306 .306 .289 .290 .291 .290 .291 .290 .291 .290 .291 .290 .294 .293 .293 .293 .293 .293 .339 .341
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	.306 .306 .289 .290 .291 .290 .291 .290 .291 .290 .294 .294 .293 .293 .293 .292 .293 .339 .341 .341
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	.306 .306 .289 .290 .291 .290 .291 .290 .291 .290 .291 .290 .294 .294 .293 .293 .293 .293 .293 .339 .341 .341
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	.306 .306 .289 .290 .291 .290 .291 .290 .291 .290 .291 .290 .294 .293 .293 .293 .293 .293 .293 .339 .341 .341 .433

D

Data Memory
Address Space
Extended Data Space (EDS)58
Memory Map
Near Data Space
SFR Space
Software Stack 61
Space Organization, Alignment
Data Signal Modulator (DSM) 257
Data Signal Modulator. See DSM.
DC Characteristics
Comparator Specifications
Comparator Voltage Reference Specifications
CTMU Current Source Specifications
△ Current (BOR, WDT, DSBOR, DSWDT)
High/Low-Voltage Detect
I/O Pin Input Specifications
I/O Pin Output Specifications
Idle Current (IIDLE)
Internal Voltage Regulator Specifications
Operating Current (IDD)
Power-Down Current (IPD)
Program Memory
Temperature and Voltage Specifications
Thermal Operating Conditions
Thermal Packaging
VBAT Operating Voltage Specifications
Demo/Development Boards, Evaluation
and Starter Kits
Development Support
Third-Party Tools
Device Features
28-Pin Devices 12
44-Pin Devices11
Direct Memory Access Controller, See DMA.
DMA
Channel Trigger Sources74
Control Registers
Peripheral Module Disable (PMD)
Summary of Operations
Types of Data Transfers
Typical Setup
DMA Controller
DSM

Ε

Electrical Characteristics	
Absolute Maximum Ratings	. 375
V/F Graph (Industrial)	. 376
Enhanced Parallel Master Port (EPMP)	. 263
Enhanced Parallel Master Port. See EPMP.	
EPMP	
Key Features	. 263
Memory Addressable in Different Modes	. 263
Pin Descriptions	. 265

Equations

16-Bit, 32-Bit CRC Polynomials	306
A/D Conversion Clock Period	328
Baud Rate Reload Calculation	
Calculating the PWM Period	
Calculation for Maximum PWM Resolution	
Fractional Divisor for ROTRIMx Bits	149
Relationship Between Device and	
SPIx Clock Speed	
UARTx Baud Rate with BRGH = 0	
UARTx Baud Rate with BRGH = 1	
Errata	7
Extended Data Space (EDS)	

F

Flash Configuration Word Locations	
Flash Configuration Words	
Flash Program Memory	75
and Table Instructions	75
Control Registers	76
Enhanced ICSP Operation	76
JTAG Operation	76
Programming Algorithm	78
Programming Operations	76
RTSP Operation	76
Single-Word Programming	80

G

Getting Started with 16-Bit MCUs	21
Basic Connection Requirements	21
Configuration of Analog/Digital Pins During ICSP	26
External Oscillator Pins	25
ICSP Pins	24
Master Clear (MCLR) Pin	22
Power Supply Pins	22
Unused I/Os	26
Voltage Regulator Pins	23

Η

High/Low-Voltage Detect (HLVD)	347
High/Low-Voltage Detect. See HLVD.	

I

I/O F	Ports	
	Analog Port Pins Configuration (ANSx)	168
	Configuring Analog/Digital Function of I/O Pin	168
	Input Change Notification (ICN)	171
	Input Voltage Levels for Port/Pin Tolerated	
	Description Input	168
	Open-Drain Configuration	168
	Parallel (PIO)	167
	Peripheral Pin Select	172
	Pull-ups and Pull-Downs	171
	Selectable Input Sources	173
	Selectable Output Sources	174
	Write/Read Timing	168
l ² C		
	Communicating as Master in	
	Single Master Environment	237
	Reserved Addresses	239
	Setting Baud Rate as Bus Master	239
	Slave Address Masking	239
Inpu	t Capture	
	32-Bit Cascaded Mode	206
	Operations	206
	Synchronous and Trigger Modes	205

Input Capture with Dedicated Timers Instruction Set	205
Overview	369
Summary	
Symbols Used in Opcode Descriptions	
Interfacing Program and Data Spaces	
Inter-Integrated Circuit. See I ² C.	
Internet Address	433
Interrupt Vector Table (IVT)	
Interrupts	
Control and Status Registers	91
Implemented Vectors	
Reset Sequence	
Setup and Service Procedures	
Trap Vectors	
Vector Table	
J	
JTAG Interface	362
Κ	
Key Features	349
L	
Low-Voltage/Retention Regulator	157
Μ	
Memory Organization	33
Microchip Internet Web Site	
MPLAB Assembler, Linker, Librarian	
MPLAB ICD 3 In-Circuit Debugger	
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	305
MPLAB X Integrated Development	0.00
Environment Software	
MPLAB X SIM Software Simulator	
MPLIB Object Librarian	
MPLINK Object Linker	364
Ν	
Near Data Space	
0	
On-Chip Voltage Regulator	359
POR	
Standby Mode	
Oscillator	
Clock Switching Operation	1/7
Sequence	
Configuration Bit Values for Clock Selection	
Control Registers	
FRC Self-Tuning	
Initial Configuration on POR	
Initial CPU Clocking Scheme	
On-Chip PLL	
Reference Clock Output	149

Output Compare	
32-Bit Cascaded Mode	211
Operations	212
Synchronous and Trigger Modes	211
Output Compare with Dedicated Timers	211

Ρ

Packaging	
Details	
Marking	
Peripheral Pin Select (PPS)	
Available Peripherals and Pins	
Configuration Control	
Considerations for Use	
Control Registers	
Input Mapping	
Mapping Exceptions	
Output Mapping	
Peripheral Priority	
PICkit 3 In-Circuit Debugger/Programmer	
Pinout Descriptions	14
Power-Saving Features	155
Clock Frequency, Clock Switching	165
Doze Mode	
Instruction-Based Modes	156
Deep Sleep	158
Idle	157
Sleep	157
Overview of Modes	155
VBAT Mode	160
Product Identification System	435
Program Memory	
Access Using Table Instructions	64
Address Construction	62
Address Space	
Flash Configuration Words	
Hard Memory Vectors	
Memory Maps	
Organization	
Reading from Program Memory Using EDS	65
Program Verification	361
Programmable Cyclic Redundancy Check (CRC)	
Generator	305
Pulse-Width Modulation (PWM) Mode	213
Pulse-Width Modulation. See PWM.	
PWM	
Duty Cycle and Period	214
B	2 14
R	
Real-Time Clock and Calendar (RTCC)	
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC.	
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC. Register Maps	275
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC.	275
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC. Register Maps A/D Converter Analog Configuration	275 49 50
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC. Register Maps A/D Converter	275 49 50
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC. Register Maps A/D Converter Analog Configuration	275 49 50 53
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC. Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC	275 49 50 53 37 54
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC. Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine	275 49 50 53 37 54 56
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC. Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine CTMU	275 49 50 53 53 54 56
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC. Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine	275 49 50 53 53 54 56
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC. Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine CTMU	275 49 50 53 54 56 50 53
Real-Time Clock and Calendar (RTCC) Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine CTMU Data Signal Modulator (DSM) Deep Sleep DMA	275
Real-Time Clock and Calendar (RTCC) Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine CTMU Data Signal Modulator (DSM) Deep Sleep DMA Enhanced Parallel Master/Slave Port	275 49 50 53 54 56 50 53 56 51 52
Real-Time Clock and Calendar (RTCC) Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine CTMU Data Signal Modulator (DSM) Deep Sleep DMA	275 49 50 53 54 56 50 53 56 51 52
Real-Time Clock and Calendar (RTCC) Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine CTMU Data Signal Modulator (DSM) Deep Sleep DMA Enhanced Parallel Master/Slave Port	275 49 50 53 54 56 51 52 44 38
Real-Time Clock and Calendar (RTCC) Register Maps A/D Converter Analog Configuration Comparator CPU Core. CRC Cryptographic Engine CTMU Data Signal Modulator (DSM) Deep Sleep DMA Enhanced Parallel Master/Slave Port I ² C	275 49 50 53 54 56 51 52 44 38
Real-Time Clock and Calendar (RTCC) Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine CTMU Data Signal Modulator (DSM) Deep Sleep DMA Enhanced Parallel Master/Slave Port	275 49 50 53 54 56 51 52 44 38 42
Real-Time Clock and Calendar (RTCC) Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine CTMU Data Signal Modulator (DSM) Deep Sleep DMA. Enhanced Parallel Master/Slave Port I ² C ICN Input Capture Interrupt Controller NVM.	275 49 50 53 54 56 51 52 44 38 42 39 56
Real-Time Clock and Calendar (RTCC) Real-Time Clock and Calendar. See RTCC. Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine CTMU. Data Signal Modulator (DSM) Deep Sleep DMA Enhanced Parallel Master/Slave Port I ² C ICN Input Capture Interrupt Controller NVM Output Compare	275 49 50 53 54 56 51 52 51 52 44 38 39 56 39 56 31
Real-Time Clock and Calendar (RTCC) Register Maps A/D Converter Analog Configuration Comparator CPU Core CRC Cryptographic Engine CTMU Data Signal Modulator (DSM) Deep Sleep DMA. Enhanced Parallel Master/Slave Port I ² C ICN Input Capture Interrupt Controller NVM.	275 49 50 53 54 56 51 52 51 52 44 38 42 39 56 43 48

Peripheral Pin Select	54
PORTA	48
PORTB	48
PORTC	48
Real-Time Clock and Calendar (RTCC)	53
SPI1	46
SPI2	
SPI3	47
System Control (Clock and Reset)	
Timers	
UART	
Registers	0
AD1CHITL (A/D Scan Compare Hit, Low Word)	325
AD1CHS (A/D Sample Select)	
AD1CON1 (A/D Control 1)	
, , , , , , , , , , , , , , , , , , ,	
AD1CON2 (A/D Control 2)	
AD1CON3 (A/D Control 3)	
AD1CON4 (A/D Control 4)	
AD1CON5 (A/D Control 5)	
AD1CSSH (A/D Input Scan Select, High Word)	
AD1CSSL (A/D Input Scan Select, Low Word)	
AD1CTMENL (CTMU Enable, Low Word)	327
ALCFGRPT (Alarm Configuration)	280
ALMINSEC (Alarm Minutes and	
Seconds Value)	284
ALMTHDY (Alarm Month and Day Value)	
ALWDHR (Alarm Weekday and Hours Value)	
ANCFG (A/D Band Gap	
Reference Configuration)	324
ANSA (PORTA Analog Function Selection)	
ANSB (PORTB Analog Function Selection)	
ANSC (PORTC Analog Function Selection)	
CFGPAGE (Secure Array Configuration Bits)	
CLKDIV (Clock Divider)	
CMSTAT (Comparator Status)	335
CMxCON (Comparator x Control,	
Comparators 1-3)	
CORCON (CPU Core Control) 3 ²	1, 93
CRCCON1 (CRC Control 1)	
CRCCON2 (CRC Control 2)	309
CRCXORH (CRC XOR Polynomial, High Byte)	310
CRCXORL (CRC XOR Polynomial, Low Byte)	310
CRYCONH (Cryptographic Control High)	297
CRYCONL (Cryptographic Control Low)	
CRYOTP (Cryptographic OTP Page	
Program Control)	299
CRYSTAT (Cryptographic Status)	
CTMUCON1 (CTMU Control 1)	
CTMUCON2 (CTMU Control 2)	
CTMUICON (CTMU Current Control)	
CVRCON (Comparator Voltage	545
Reference Control)	220
CW1 (Flash Configuration Word 1)	
CW2 (Flash Configuration Word 2)	
CW3 (Flash Configuration Word 3)	
CW4 (Flash Configuration Word 4)	
DEVID (Device ID)	
DEVREV (Device Revision)	
DMACHn (DMA Channel n Control)	
DMACON (DMA Engine Control)	
DMAINTn (DMA Channel n Interrupt)	
DSCON (Deep Sleep Control)	
DSWAKE (Deep Sleep Wake-up Source)	163
HLVDCON (High/Low-Voltage Detect Control)	348
I2CxCONH (I2Cx Control High)	242

I2CxCONL (I2Cx Control Low)240
I2CxMSK (I2Cx Slave Mode Address Mask)
I2CxSTAT (I2Cx Status)
ICxCON1 (Input Capture x Control 1)207
ICxCON2 (Input Capture x Control 2)
IEC0 (Interrupt Enable Control 0)
IEC1 (Interrupt Enable Control 1)
IEC2 (Interrupt Enable Control 2)
IEC3 (Interrupt Enable Control 3)
IEC4 (Interrupt Enable Control 4) 114
IEC5 (Interrupt Enable Control 5) 115
IEC6 (Interrupt Enable Control 6) 116
IEC7 (Interrupt Enable Control 7)116
IFS0 (Interrupt Flag Status 0)96
IFS1 (Interrupt Flag Status 1)
IFS2 (Interrupt Flag Status 2) 100
IFS3 (Interrupt Flag Status 3) 102
IFS4 (Interrupt Flag Status 4) 103
IFS5 (Interrupt Flag Status 5) 104
IFS6 (Interrupt Flag Status 6)
IFS7 (Interrupt Flag Status 7)
INTCON1 (Interrupt Control 1)
INTCON2 (Interrupt Control 2)
INTTREG (Interrupt Controller Test)
IPC0 (Interrupt Priority Control 0) 117
IPC1 (Interrupt Priority Control 1) 118
IPC10 (Interrupt Priority Control 10) 127
IPC11 (Interrupt Priority Control 11) 128
IPC12 (Interrupt Priority Control 12) 129
IPC13 (Interrupt Priority Control 13) 130
IPC14 (Interrupt Priority Control 14) 131
IPC15 (Interrupt Priority Control 15) 132
IPC16 (Interrupt Priority Control 16) 133
IPC18 (Interrupt Priority Control 18)
IPC19 (Interrupt Priority Control 19) 134
IPC2 (Interrupt Priority Control 2)
IPC20 (Interrupt Priority Control 20)
IPC21 (Interrupt Priority Control 21)
IPC22 (Interrupt Priority Control 22)
IPC26 (Interrupt Priority Control 26)
IPC29 (Interrupt Priority Control 29)
IPC3 (Interrupt Priority Control 3) 120
IPC4 (Interrupt Priority Control 4) 121
IPC5 (Interrupt Priority Control 5) 122
IPC6 (Interrupt Priority Control 6) 123
IPC7 (Interrupt Priority Control 7) 124
IPC8 (Interrupt Priority Control 8) 125
IPC9 (Interrupt Priority Control 9) 126
MDCAR (DSM Carrier Control)
MDCON (DSM Control)
MDSRC (DSM Source Control)
MINSEC (RTCC Minutes and Seconds Value)
MTHDY (RTCC Month and Day Value)
NVMCON (Flash Memory Control)
OCxCON1 (Output Compare x Control 1)
OCxCON2 (Output Compare x Control 2)
OSCCON (Oscillator Control)
OSCTUN (FRC Oscillator Tune)
PADCFG1 (Pad Configuration Control)
PMCON1 (EPMP Control 1)
PMCON2 (EPMP Control 2)267
PMCON3 (EPMP Control 3)268
PMCON4 (EPMP Control 4)269
PMCSxBS (EPMP Chip Select x Base Address) 271
PMCSxCF (EPMP Chip Select x Configuration) 270

PMCSxMD (EPMP Chip Select x Mode) PMSTAT (EPMP Status, Slave Mode)	
RCFGCAL (RTCC Calibration	
and Configuration)	277
RCON (Reset Control)	
RCON2 (Reset and System Control 2)	84, 164
REFOCONH (Reference Oscillator	
Control High)	151
REFOCONL (Reference Oscillator	
Control Low)	150
REFOTRIML (Reference Oscillator Trim)	
RPINR0 (PPS Input 0)	
RPINR1 (PPS Input 1)	
RPINR11 (PPS Input 11)	
RPINR17 (PPS Input 17)	
RPINR18 (PPS Input 18)	181
RPINR19 (PPS Input 19)	181
RPINR2 (PPS Input 2)	
RPINR20 (PPS Input 20)	
RPINR21 (PPS Input 21)	182
RPINR22 (PPS Input 22)	183
RPINR23 (PPS Input 23)	
RPINR27 (PPS Input 27)	
RPINR28 (PPS Input 28)	
RPINR29 (PPS Input 29)	
RPINR30 (PPS Input 30)	
RPINR31 (PPS Input 31)	
RPINR7 (PPS Input 7)	
RPINR8 (PPS Input 8)	
RPINR9 (PPS Input 9)	
RPOR0 (PPS Output 0)	
RPOR1 (PPS Output 1)	
RPOR10 (PPS Output 10)	192
RPOR11 (PPS Output 11)	192
RPOR12 (PPS Output 12)	
RPOR2 (PPS Output 2)	
RPOR3 (PPS Output 3)	
RPOR4 (PPS Output 4)	
RPOR5 (PPS Output 5)	
RPOR6 (PPS Output 6)	
RPOR7 (PPS Output 7)	100
RPOR8 (PPS Output 8)	
RPOR9 (PPS Output 9)	191
RTCCSWT (RTCC Power Control and	
Sample Window Timer)	
RTCPWC (RTCC Power Control)	279
SPIxCON1H (SPIx Control 1 High)	
SPIxCON1L (SPIx Control 1 Low)	224
SPIxCON2L (SPIx Control 2 Low)	228
SPIxIMSKH (SPIx Interrupt Mask High)	
SPIxIMSKL (SPIx Interrupt Mask Low)	
SPIxSTATH (SPIx Status High)	231
SPIxSTATL (SPIx Status Low)	
SR (ALU STATUS)	
T1CON (Timer1 Control)	
TxCON (Timer 2/4 Control)	
TXCON (Timer2/4 Control)	
TyCON (Timer3/5 Control)	
UxADMD (UARTx Address Match Detect)	254
UxMODE (UARTx Mode)	
UxSCCON (UARTx Smart Card Control)	
UxSCINT (UARTx Smart Card Interrupt)	
UxSTA (UARTx Status and Control)	
UxTXREG (UARTx Transmit)	
WKDYHR (RTCC Weekday and Hours Value)	
YEAR (RTCC Year Value)	281

Resets

	BOR (Brown-out Reset)	
	Brown-out Reset (BOR)	
	Clock Source Selection	85
	CM (Configuration Mismatch Reset)	
	Delay Times	86
	Device Times	85
	IOPUWR (Illegal Opcode Reset)	81
	MCLR (Master Clear Pin Reset)	
	POR (Power-on Reset)	81
	RCON Flags, Operation	84
	SFR States	85
	SWR (RESET Instruction)	81
	TRAPR (Trap Conflict Reset)	81
	UWR (Uninitialized W Register Reset)	
	WDT (Watchdog Timer Reset)	81
Revi	sion History	
RTC	C	
	Alarm Configuration	. 286
	Alarm Mask Settings (figure)	. 287
	Calibration	
	Clock Source Selection	. 276
	Control Registers	. 277
	Module Registers	.276
	Power Control	
	Register Mapping	.276
	Source Clock	
	VBAT Operation	
	Write Lock	
c		

S

Selective Peripheral Module Control		
Serial Peripheral Interface (SPI)		
Serial Peripheral Interface. See SPI.		
SFR Space		
Software Stack	61	
Special Features		
SPI		
Audio Mode		
Control Registers		
Enhanced Master Mode		
Enhanced Slave Mode		
Standard Master Mode		
Standard Slave Mode		

Т

Timer1	
Timing Diagrams	
CLKO and I/O Characteristics 3	394
External Clock 3	888
I ² C Bus Data (Master Mode) 3	391
I ² C Bus Data (Slave Mode) 3	
I ² C Bus Start/Stop Bits (Master Mode)	390
I ² C Bus Start/Stop Bits (Slave Mode)	392
Input Capture x (ICx) 3	398
OCx/PWM Characteristics 3	399
Output Compare x (OCx) 3	398
SPIx Master Mode (CKE = 0) 4	00
SPIx Master Mode (CKE = 1) 4	01
SPIx Slave Mode (CKE = 0) 4	02
SPIx Slave Mode (CKE = 1) 4	03
Timer1, 2, 3, 4, 5 External Clock	396
Triple Comparator Module 3	331

U

UART	
Baud Rate Error Calculation 24	7
Baud Rate Generator (BRG) 24	7
Control Registers	60
Infrared Support24	8
Operation of UxCTS and UxRTS Pins	8
Receiving	
8-Bit or 9-Bit Data Mode 24	8
Smart Card ISO 7816 Support 24	9
Transmitting	
8-Bit Data Mode24	8
9-Bit Data Mode24	8
Break and Sync Sequence 24	8
Universal Asynchronous Receiver Transmitter. See UART.	

W

Watchdog Timer (WDT)	
Control Register	
Windowed Operation	
WWW Address	433
WWW, On-Line Support	7

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PIC24FJ FAMILY

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel FI Temperature Rar Package		 Examples: a) PIC24F J128GA202-I/MM: PIC24F device with 128-Kbyte program memory, 8-Kbyte data memory, 28-pin, Industrial temp., QFN-S package. b) PIC24F,128GA204-I/PT: PIC24F device with 128-Kbyte program memory, 8-Kbyte data memory, 44-pin, Industrial temp., TQFP package.
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	FJ = Flash program memory	
Product Group	GA2 = General purpose microcontrollers	
Pin Count	02 = 28-pin 04 = 44-pin	
Temperature Range	I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package	MM = 28-lead (6x6x0.9 mm) QFN-S (Quad Flat) ML = 44-lead (8x8 mm) QFN (Quad Flat) PT = 44-lead (10x10x1 mm) TQFP (Thin Quad Flatpack) SO = 28-lead (7.50 mm wide) SOIC (Small Outline) SP = 28-lead (300 mil) SPDIP (Skinny Plastic Dual In-Line) SS = 28-lead (5.30 mm) SSOP (Plastic Shrink Small Outline)	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-205-3

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

 PIC24FJ128GA202-I/SP
 PIC24FJ128GA204-I/PT
 PIC24FJ128GA202-I/SO
 PIC24FJ128GA202-I/MM

 PIC24FJ128GA202-I/SS
 PIC24FJ128GA204-I/ML
 PIC24FJ128GA202-I/SO
 PIC24FJ128GA202-I/MM