

16-Bit Flash Microcontrollers with Dual Partition Flash Memory, XLP, LCD, Cryptographic Engine and USB On-The-Go

Extreme Low-Power Features

- Multiple Power Management Options for Extreme Power Reduction:
 - VBAT allows for lowest power consumption on backup battery (with or without RTCC)
 - Deep Sleep allows near total power-down with the ability to wake-up on external triggers
 - Sleep and Idle modes selectively shut down peripherals
 - and/or core for substantial power reduction and fast wake-up
 Doze mode allows CPU to run at a lower clock speed than peripherals
- Alternate Clock modes allow On-the-Fly Switching to a Lower Clock Speed for Selective Power Reduction
- Extreme Low-Power Current Consumption for Deep Sleep:
- WDT: 650 nA @ 2V typical
- RTCC: 650 nA @ 32 kHz, 2V typical
- Deep Sleep current, 60 nA typical
- 160 μ A/MHz in Run mode

High-Performance CPU

- Modified Harvard Architecture
- Up to 16 MIPS Operation @ 32 MHz
- 8 MHz Internal Oscillator:
- 96 MHz PLL option
 - Multiple clock divide options
 - Run-time self-calibration capability for maintaining better than ±0.20% accuracy
- Fast start-up
- 17-Bit x 17-Bit Single-Cycle Hardware Fractional/Integer Multiplier
- · 32-Bit by 16-Bit Hardware Divider
- 16 x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory

Cryptographic Engine

- Performs NIST Standard Encryption/Decryption
 Operations without CPU Intervention
- · AES Cipher Support for 128, 192 and 256-Bit Keys
- DES/3DES Cipher Support, with up to Three Unique Keys for 3DES
- Supports ECB, CBC, OFB, CTR and CFB128 modes
- Programmatically Secure OTP Array for Key Storage
- True Random Number Generation
- Battery-Backed RAM Key Storage

Analog Features

- 10/12-Bit, up to 24-Channel Analog-to-Digital (A/D) Converter:
- Conversion rate of 500 ksps (10-bit), 200 kbps (12-bit)
- Auto-scan and threshold compare features
- Conversion available during Sleep
- One 10-Bit Digital-to-Analog Converter (DAC):
- 1 Msps update rate
- Three Rail-to-Rail, Enhanced Analog Comparators with Programmable Input/Output Configuration
- Charge Time Measurement Unit (CTMU):
 - Used for capacitive touch sensing, up to 24 channels
 Time measurement down to 100 ps resolution

Dual Partition Flash with Live Update Capability

- Capable of Holding Two Independent Software Applications, including Bootloader
- Permits Simultaneous Programming of One Partition while Executing Application Code from the Other
- Allows Run-Time Switching Between Active Partitions

Universal Serial Bus Features (PIC24FJXXXGB4XX Only)

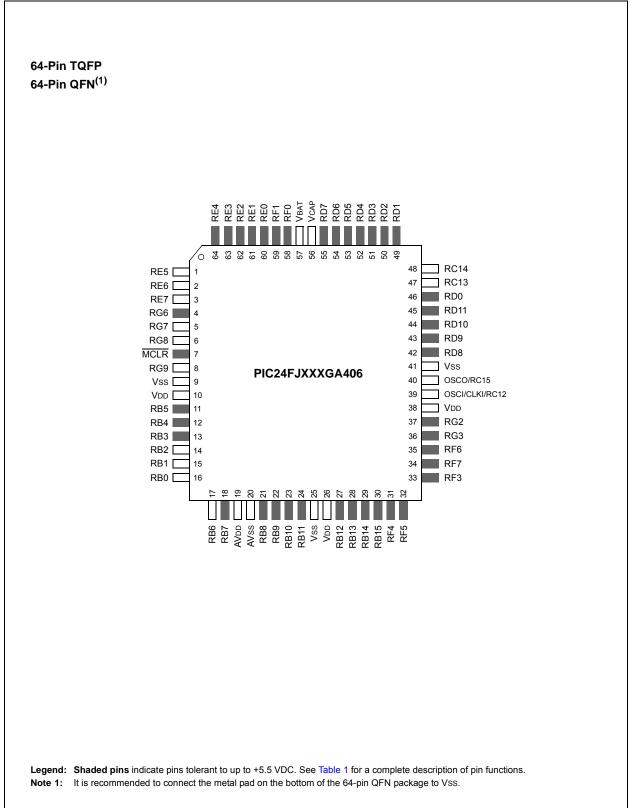
- USB v2.0 On-The-Go (OTG) Compliant
- Dual Role Capable Can Act as Either Host or Peripheral
- Low-Speed (1.5 Mb/s) and Full-Speed (12 Mb/s) USB
 Operation in Host mode
- Full-Speed USB Operation in Device mode
- High-Precision PLL for USB
- USB Device mode Operation from FRC Oscillator No Crystal Oscillator Required
- Supports up to 32 Endpoints (16 bidirectional):
 - USB module can use any RAM locations on the device as USB endpoint buffers
- On-Chip USB Transceiver with Interface for Off-Chip USB Transceiver
- Supports Control, Interrupt, Isochronous and Bulk Transfers
- On-Chip Pull-up and Pull-Down Resistors

Special Microcontroller Features

- 20,000 Erase/Write Cycle Endurance, Typical
- Data Retention: 20 Years Minimum
- Self-Programmable under Software Control
- Supply Voltage Range of 2.0V to 3.6V
- Two On-Chip Voltage Regulators (1.8V and 1.2V) for Regular and Extreme Low-Power Operation
- Programmable Reference Clock Output
- In-Circuit Serial Programming[™] (ICSP[™]) and In-Circuit Emulation (ICE) via 2 Pins
- JTAG Boundary Scan Support
- Fail-Safe Clock Monitor (FSCM) Operation:
 Detects clock failure and switches to on-chip, Low-Power RC (LPRC) Oscillator
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Separate Brown-out Reset (BOR) and Deep Sleep Brown-out Reset (DSBOR) Circuits
- Programmable High/Low-Voltage Detect (HLVD)
- Flexible Watchdog Timer (WDT) with its own RC Oscillator for Reliable Operation
- Standard and Ultra Low-Power Watchdog Timers (ULPW) for Reliable Operation in Standard and Deep Sleep modes
- Temperature Range: -40°C to +85°C

PIC24FJ256GA412/GB412 FAMILY

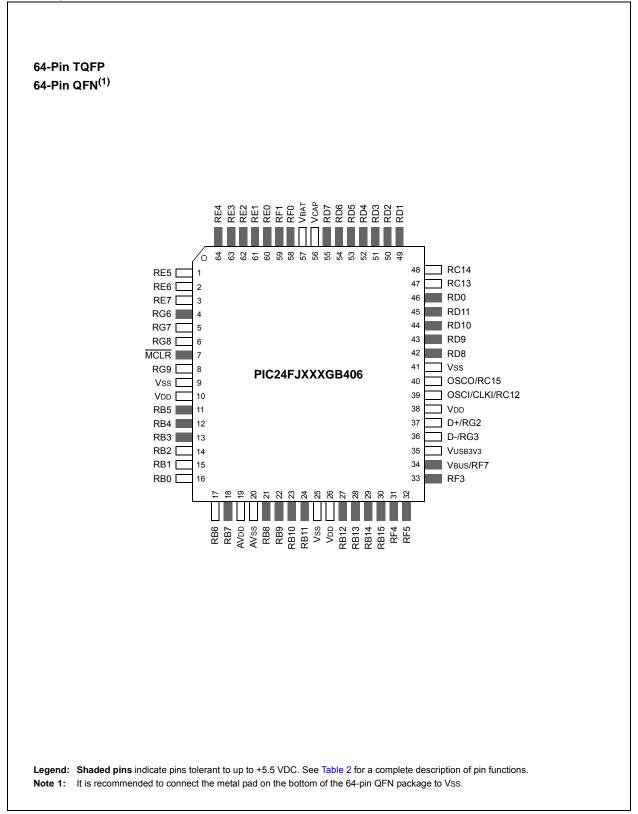
Memory				Ana	log P	eriphe	erals			Digita	al Per	ipher	als					els)	AT
Device	Program (bytes)	Data (bytes)	Pins	10/12-Bit A/D (ch)	10-Bit DAC	Comparators	CTMU	MCCP/SCCP	16/32-Bit Timers	IC/OC-PWM	I²C™	IdS		EPMP/EPSP	CLC	USB OTG	Crypto Engine	LCD Controller (pixels)	Deep Sleep + VBAT
PIC24FJ256GA412	256K	16K	121	24	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Ν	Υ	512	Y
PIC24FJ256GA410	256K	16K	100	24	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Ν	Y	480	Y
PIC24FJ256GA406	256K	16K	64	16	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Ν	Y	248	Y
PIC24FJ128GA412	128K	16K	121	24	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Ν	Υ	512	Y
PIC24FJ128GA410	128K	16K	100	24	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Ν	Y	480	Y
PIC24FJ128GA406	128K	16K	64	16	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Ν	Y	248	Y
PIC24FJ64GA412	64K	8K	121	24	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Ν	Y	512	Υ
PIC24FJ64GA410	64K	8K	100	24	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Ν	Υ	480	Y
PIC24FJ64GA406	64K	8K	64	16	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Ν	Y	248	Y
PIC24FJ256GB412	256K	16K	121	24	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Y	Y	512	Y
PIC24FJ256GB410	256K	16K	100	24	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Y	Υ	480	Y
PIC24FJ256GB406	256K	16K	64	16	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Υ	Y	240	Y
PIC24FJ128GB412	128K	16K	121	24	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Y	Y	512	Y
PIC24FJ128GB410	128K	16K	100	24	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Y	Y	480	Y
PIC24FJ128GB406	128K	16K	64	16	1	3	Y	3/4	31/15	6/6	3	4	6	Υ	4	Υ	Υ	240	Y
PIC24FJ64GB412	64K	8K	121	24	1	3	Y	3/4	31/15	6/6	3	4	6	Υ	4	Y	Υ	512	Y
PIC24FJ64GB410	64K	8K	100	24	1	3	Y	3/4	31/15	6/6	3	4	6	Y	4	Υ	Y	480	Y
PIC24FJ64GB406	64K	8K	64	16	1	3	Y	3/4	31/15	6/6	3	4	6	Υ	4	Y	Υ	240	Y


Peripheral Features

- LCD Display Controller:
 - Up to 64 Segments by 8 Commons
 - Internal charge pump and low-power, internal resistor biasing
 - Operation in Sleep mode
- New LCD charge pump consumes less than 4 μA
- Up to Five External Interrupt Sources
- Peripheral Pin Select (PPS); allows Independent
 I/O Mapping of Many Peripherals
- I/O Mapping of Many PeripheralsSix-Channel DMA Supports All Peripheral modules:
- Minimizes CPU overhead and increases data throughput
- Five 16-Bit Timers/Counters with Prescalers:
 Can be paired as 32-bit timers/counters
- Using a combination of Timer, CCP, IC and OC Timers, the Device can be Configured to use up to 31 16-Bit Timers, and up to 15 32-Bit Timers
- Six Input Capture modules, each with a Dedicated 16-Bit Timer
- Six Output Compare/PWM modules, each with a Dedicated 16-Bit Timer
- Four Single Output CCPs (SCCP) and Three Multiple Output CCPs (MCCP) modules:
 - Independent 16/32-bit time base for each module
 - Internal time base and Period registers
 - Legacy PIC24F Capture and Compare modes
 - (16 and 32-bit)
 - Special variable frequency pulse and Brushless DC Motor (BDCM) Output modes

- Enhanced Parallel Master/Slave Port (EPMP/EPSP)
- Hardware Real-Time Clock/Calendar (RTCC) with Timestamping:
- Tamper detection with timestamping feature and tamper pin
- Runs in Deep Sleep and VBAT modes
- Four 3-Wire/4-Wire SPI modules (support 4 Frame modes) with 8-Level FIFO Buffer
- Three $I^2 C^{\,\text{TM}}$ modules support Multi-Master/Slave mode and 7-Bit/10-Bit Addressing
- · Six UART modules:
 - Support RS-485, RS-232 and LIN/J2602
 - On-chip hardware encoder/decoder for IrDA®
 - Auto-wake-up on Auto-Baud Detect (ABD)
 - 4-level deep FIFO buffer
- Programmable 32-Bit Cyclic Redundancy Check (CRC) Generator
- Four Configurable Logic Cells (CLCs):
 - Two inputs and one output, all mappable to peripherals or I/O pins
- AND/OR/XOR logic and D/JK flip-flop functions
- High-Current Sink/Source (18 mA/18 mA) on All I/O Pins
- Configurable Open-Drain Outputs on Digital I/O Pins
- 5.5V Tolerant Inputs on Multiple I/O Pins

PIC24FJ256GA412/GB412 FAMILY



Pin	Function	Pin	Function				
1	LCDBIAS2/IC4/CTED4/PMD5/RE5	33	SEG12/AN16/ RP16 /RF3				
2	LCDBIAS1/SCL3/IC5/PMD6/RE6	34	SEG40/RP30/RF2				
3	LCDBIAS0/SDA3/IC6/PMD7/RE7	35	RF6				
4	SEG0/C1IND/RP21/ICM1/OCM1A/PMA5/RG6	36	SDA1/RG3				
5	VLCAP1/C1INC/ RP26 /OCM1B/PMA4/RG7	37	SCL1/RG2				
6	VLCAP2/C2IND/RP19/ICM2/OCM2A/PMA3/RG8	38	Vdd				
7	MCLR	39	OSCI/CLKI/RC12				
8	SEG1/AN21/C1INC/C2INC/C3INC/RP27/DAC1/PMA2/PMALU/RG9	40	OSCO/EOSCEN/CLKO/RC15				
9	Vss	41	Vss				
10	Vdd	42	SEG13/CLC4OUT/RP2/RTCC/U6RTS/U6BCLK/ICM5/RD8				
11	PGEC3/SEG2/AN5/C1INA/RP18/ICM3/OCM3A/RB5	43	SEG14/ RP4 /PMACK2/RD9				
12	PGED3/SEG3/AN4/C1INB/ RP28 /RB4	44	SEG15/C3IND/RP3/PMA15/PMCS2/RD10				
13	SEG4/AN1-/AN3/C2INA/RB3	45	SEG16/C3INC/RP12/PMA14/PMCS/PMCS1/RD11				
14	SEG5/AN2/CTCMP/C2INB/RP13/CTED13/RB2	46	SEG17/CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0				
15	PGEC1/SEG6/CVREF-/AN1/RP1/CTED12/RB1	47	SOSCI/RC13				
16	PGED1/SEG7/CVREF+/DVREF+/AN0/ RP0 /PMA6/RB0	48	SOSCO/SCLKI/RPI37/PWRLCLK/RC14				
17	PGEC2/LCDBIAS3/AN6/ RP6 /RB6	49	SEG20/RP24/U5TX/ICM4/RD1				
18	PGED2/SEG63/AN7/ RP7 /U6TX/RB7	50	SEG21/AN23/RP23/PMACK1/RD2				
19	AVREF+/DVREF+	51	SEG22/RP22/ICM7/PMBE0/RD3				
20	AVREF-/DVREF-	52	SEG23/RP25/PMWR/PMENB/RD4				
21	COM7/SEG31/AN8/ RP8 /RB8	53	SEG24/ RP20 /PMRD/PMWR/RD5				
22	COM6/SEG30/AN9/TMPR/RP9/PMA7/IOCB9/RB9	54	SEG25/C3INB/U5RX/OC4/RD6				
23	TMS/COM5/SEG29/CVREF/AN10/SDO4/PMA13/RB10	55	SEG26/AN20/C3INA/U5RTS/U5BCLK/OC5/RD7				
24	TDO/AN11/REFI1/SS4/FSYNC4/PMA12/RB11	56	VCAP				
25	Vss	57	VBAT				
26	Vdd	58	SEG27/U5CTS/OC6/RF0				
27	TCK/SEG18/AN12/CTED2/PMA11/RB12	59	COM4/SEG47/SCK4/RF1				
28	TDI/SEG19/AN13/SDI4/CTED1/PMA10/RB13	60	COM3/PMD0/RE0				
29	SEG8/AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	61	COM2/PMD1/RE1				
30	SEG9/AN15/RP29/CTED6/PMA0/PMALL/RB15	62	COM1/PMD2/RE2				
31	SEG10/RP10/SDA2/PMA9/RF4	63	COM0/CTED9/PMD3/RE3				
32	SEG11/RP17/SCL2/PMA8/RF5	64	SEG62/LVDIN/CTED8/PMD4/RE4				
l eger	egend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.						

TABLE 1: COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGA406 DEVICES

 $\label{eq:legend: RPn and RPin represent remappable pins for Peripheral Pin Select functions.$

Pin Diagrams (Continued)

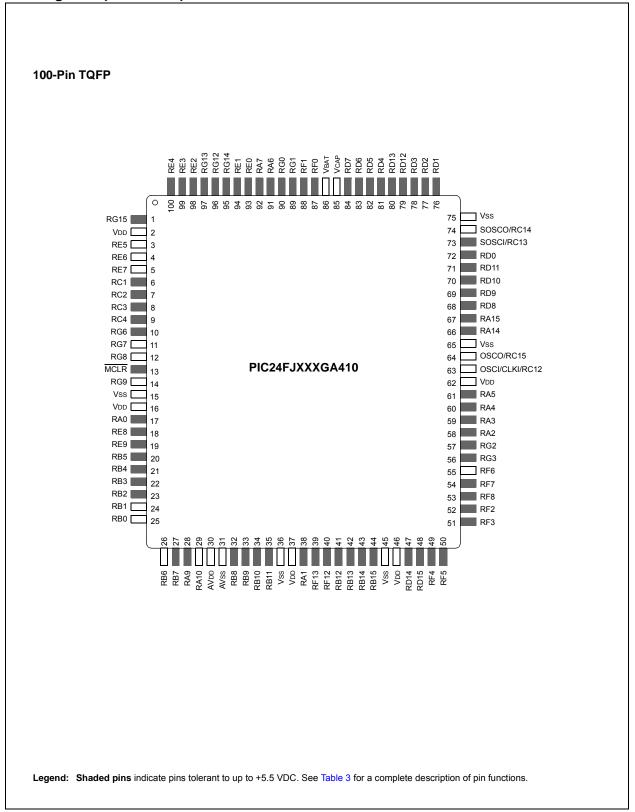

Pin	Function	Pin	Function				
1	LCDBIAS2/IC4/CTED4/PMD5/RE5	33	SEG12/AN16/ RP16 /USBID/RF3				
2	LCDBIAS1/SCL3/IC5/PMD6/RE6	34	VBUS/RF7				
3	LCDBIAS0/SDA3/IC6/PMD7/RE7	35	VUSB3V3				
4	SEG0/C1IND/RP21/ICM1/OCM1A/PMA5/RG6	36	D-/RG3				
5	VLCAP1/C1INC/ RP26 /OCM1B/PMA4/RG7	37	D+/RG2				
6	VLCAP2/C2IND/RP19/ICM2/OCM2A/PMA3/RG8	38	Vdd				
7	MCLR	39	OSCI/CLKI/RC12				
8	SEG1/AN21/C1INC/C2INC/C3INC/RP27/DAC1/PMA2/PMALU/RG9	40	OSCO/EOSCEN/CLKO/RC15				
9	Vss	41	Vss				
10	Vdd	42	SEG13/CLC4OUT/RP2/RTCC/U6RTS/U6BCLK/ICM5/RD8				
11	PGEC3/SEG2/AN5/C1INA/RP18/ICM3/OCM3A/RB5	43	SEG14/RP4/SDA1/PMACK2/RD9				
12	PGED3/SEG3/AN4/C1INB/RP28/USBOE/RB4	44	SEG15/C3IND/RP3/SCL1/PMA15/PMCS2/RD10				
13	SEG4/AN1-/AN3/C2INA/RB3	45	SEG16/C3INC/RP12/PMA14/PMCS/PMCS1/RD11				
14	SEG5/AN2/CTCMP/C2INB/RP13/CTED13/RB2	46	SEG17/CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0				
15	PGEC1/SEG6/CVREF-/AN1/RP1/CTED12/RB1	47	SOSCI/RC13				
16	PGED1/SEG7/CVREF+/DVREF+/AN0/RP0/PMA6/RB0	48	SOSCO/SCLKI/RPI37/PWRLCLK/RC14				
17	PGEC2/LCDBIAS3/AN6/ RP6 /RB6	49	SEG20/RP24/U5TX/ICM4/RD1				
18	PGED2/SEG63/AN7/ RP7 /U6TX/RB7	50	SEG21/AN23/RP23/PMACK1/RD2				
19	AVREF+/DVREF+	51	SEG22/RP22/ICM7/PMBE0/RD3				
20	AVREF-/DVREF-	52	SEG23/ RP25 /PMWR/PMENB/RD4				
21	COM7/SEG31/AN8/ RP8 /RB8	53	SEG24/ RP20 /PMRD/PMWR/RD5				
22	COM6/SEG30/AN9/TMPR/RP9/PMA7/IOCB9/RB9	54	SEG25/C3INB/U5RX/OC4/RD6				
23	TMS/COM5/SEG29/CVREF/AN10/SDO4/PMA13/RB10	55	SEG26/AN20/C3INA/U5RTS/U5BCLK/OC5/RD7				
24	TDO/AN11/REFI1/SS4/FSYNC4/PMA12/RB11	56	VCAP				
25	Vss	57	VBAT				
26	Vdd	58	SEG27/U5CTS/OC6/RF0				
27	TCK/SEG18/AN12/CTED2/PMA11/RB12	59	COM4/SEG47/SCK4/RF1				
28	TDI/SEG19/AN13/SDI4/CTED1/PMA10/RB13	60	COM3/PMD0/RE0				
29	SEG8/AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	61	COM2/PMD1/RE1				
30	SEG9/AN15/RP29/CTED6/PMA0/PMALL/RB15	62	COM1/PMD2/RE2				
31	SEG10/ RP10 /SDA2/PMA9/RF4	63	COM0/CTED9/PMD3/RE3				
32	SEG11/RP17/SCL2/PMA8/RF5	64	SEG62/LVDIN/CTED8/PMD4/RE4				
l eger	Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.						

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGB406 DEVICES

 $\label{eq:legend: RPn and RPin represent remappable pins for Peripheral Pin Select functions.$

PIC24FJ256GA412/GB412 FAMILY

Pin Diagrams (Continued)

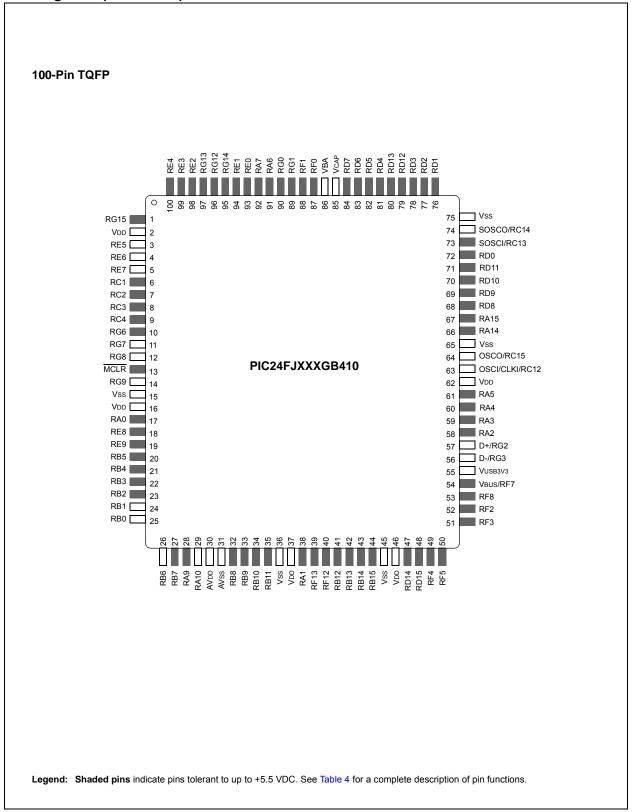
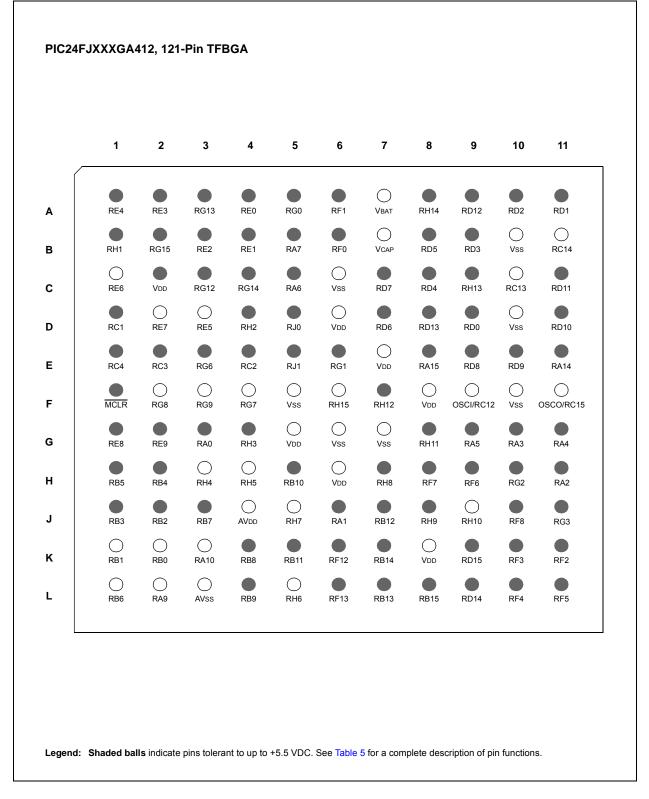

Pin	Function	Pin	Function
1	SEG50/OCM1C/CTED3/RG15	51	SEG12/ RP16 /RF3
2	Vdd	52	SEG40/ RP30 /IOCF2/RF2
3	LCDBIAS2/IC4/CTED4/PMD5/RE5	53	SEG41/ RP15 /IOCF8/RF8
4	LCDBIAS1/SCL3/IC5/PMD6/RE6	54	RF7
5	LCDBIAS0/SDA3/IC6/PMD7/RE7	55	RF6
6	SEG32/ RPI38 /OCM1D/RC1	56	SDA1/RG3
7	SEG51/ RPI39 /RC2	57	SCL1/RG2
8	SEG33/ RPI40 /RC3	58	SEG55/SCL2/RA2
9	SEG52/AN16/RPI41/PMCS2/RC4	59	SEG56/SDA2/PMA20/RA3
10	SEG0/AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6	60	TDI/PMA21/RA4
11	VLCAP1/AN18/C1INC/ RP26 /OCM1B/PMA4/RG7	61	TDO/SEG28/RA5
12	VLCAP2/AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8	62	Vdd
13	MCLR	63	OSCI/CLKI/RC12
14	SEG1/AN21/C1INC/C2INC/C3INC/RP27/DAC1/PMA2/PMALU/RG9	64	OSCO/EOSCEN/CLKO/RC15
15	Vss	65	Vss
16	VDD	66	SEG42/ RPIN36 /PMA22/RA14
17	TMS/SEG48/CTED14/RA0	67	SEG43/RPIN35/PMBE1/RA15
18	SEG34/ RPI33 /PMCS1/RE8	68	SEG13/CLC4OUT/ RP2 /RTCC/U6RTS/U6BCLK/ICM5/RD8
19	SEG35/ RPI34 /PMA19/RE9	69	SEG14/AN22/RP4/PMACK2/RD9
20	PGEC3/SEG2/AN5/C1INA/ RP18 /ICM3/OCM3A/RB5	70	SEG15/C3IND/ RP3 /PMA15/PMCS2/RD10
21	PGED3/SEG3/AN4/C1INB/ RP28 /RB4	71	SEG16/C3INC/RP12/PMA14/PMCS/PMCS1/RD11
22	SEG4/AN1-/AN3/C2INA/RB3	72	SEG17/CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0
23	SEG5/AN2/CTCMP/C2INB/RP13/CTED13/RB2	73	SOSCI/RC13
23	PGEC1/SEG6/VREF-/CVREF-/AN1/AN1-/ RP1 /CTED12/RB1	73	SOSCO/SCLKI/RPI37/PWRLCLK/RC14
24	PGED1/SEG7/VREF+/CVREF+/AN1/AN1-/KF1/CTED12/KB1	74	Vss
25	PGEC2/LCDBIAS3/AN6/RP6/RB6	75	SEG20/ RP24 /U5TX/ICM4/RD1
20	PGED2/SEG63/AN7/ RP7 /U6TX/RB7	70	SEG21/AN23/RP23/PMACK1/RD2
	SEG36/VREF-/CVREF-/PMA7/RA9	78	
28	SEG37/VREF+/CVREF+/PMA//RA9 SEG37/VREF+/CVREF+/DVREF+/PMA6/RA10	78	SEG22/RP22/ICM7/PMBE0/RD3
29		-	SEG44/ RPI42 /PMD12/RD12
30	AVREF+/DVREF+	80	SEG45/PMD13/RD13
31		81	SEG23/RP25/PMWR/PMENB/RD4
32	COM7/SEG31/AN8/ RP8 /RB8	82	SEG24/RP20/PMRD/PMWR/RD5
33	COM6/SEG30/AN9/TMPR/ RP9 /PMA7/RB9	83	SEG25/C3INB/U5RX/OC4/PMD14/RD6
34	COM5/SEG29/CVREF/AN10/SDO4/PMA13/RB10	84	SEG26/AN20/C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7
35	AN11/REFI1/SS4/FSYNC4/PMA12/RB11	85	VCAP
36	Vss	86	VBAT
37	VDD	87	SEG27/U5CTS/OC6/PMD11/RF0
38	TCK/RA1	88	COM4/SEG47/SCK4/PMD10/RF1
39	SEG53/ RP31 /RF13	89	SEG46/PMD9/RG1
40	SEG54/RPI32/CTED7/PMA18/RF12	90	SEG49/PMD8/RG0
41	SEG18/AN12/U6RX/CTED2/PMA11/RB12	91	SEG57/AN23/OCM1E/RA6
42	SEG19/AN13/SDI4/CTED1/PMA10/RB13	92	SEG58/AN22/OCM1F/PMA17/RA7
43	SEG8/AN14/ RP14 /CTED5/CTPLS/PMA1/PMALH/RB14	93	COM3/PMD0/RE0
44	SEG9/AN15/ RP29 /CTED6/PMA0/PMALL/RB15	94	COM2/PMD1/RE1
45	Vss	95	SEG59/CTED11/PMA16/RG14
46	Vdd	96	SEG60/RG12
47	SEG38/ RPI43 /RD14	97	SEG61/CTED10/RG13
48	SEG39/ RP5 /RD15	98	COM1/PMD2/RE2
49	SEG10/ RP10 /PMA9/RF4	99	COM0/CTED9/PMD3/RE3
50	SEG11/ RP17 /PMA8/RF5	100	SEG62/LVDIN/CTED8/PMD4/RE4

TABLE 3: COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGA410 DEVICES

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

PIC24FJ256GA412/GB412 FAMILY

Pin Diagrams (Continued)



Pin	Function	Pin	Function
1	SEG50/OCM1C/CTED3/RG15	51	SEG12/RP16/USBID/RF3
2	Vdd	52	SEG40/ RP30 /IOCF2/RF2
3	LCDBIAS2/IC4/CTED4/PMD5/RE5	53	SEG41/ RP15 /IOCF8/RF8
4	LCDBIAS1/SCL3/IC5/PMD6/RE6	54	VBUS/RF7
5	LCDBIAS0/SDA3/IC6/PMD7/RE7	55	VUSB3V3
6	SEG32/ RPI38 /OCM1D/RC1	56	D-/RG3
7	SEG51/ RPI39 /RC2	57	D+/RG2
8	SEG33/RPI40/RC3	58	SEG55/SCL2/RA2
9	SEG52/AN16/ RPI41 /PMCS2/RC4	59	SEG56/SDA2/PMA20/RA3
10	SEG0/AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6	60	TDI/PMA21/RA4
11	VLCAP1/AN18/C1INC/RP26/OCM1B/PMA4/RG7	61	TDO/SEG28/RA5
12	VLCAP2/AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8	62	VDD
13	MCLR	63	OSCI/CLKI/RC12
14	SEG1/AN21/C1INC/C2INC/C3INC/RP27/DAC1/PMA2/PMALU/RG9	64	OSCO/EOSCEN/CLKO/RC15
15	Vss	65	Vss
16	Vdd	66	SEG42/ RPI36 /SCL1/PMA22/RA14
17	TMS/SEG48/CTED14/RA0	67	SEG43/ RPI35 /SDA1/PMBE1/RA15
18	SEG34/ RPI33 /PMCS1/RE8	68	SEG13/CLC4OUT/ RP2 /RTCC/U6RTS/U6BCLK/ICM5/RD8
19	SEG35/ RPI34 /PMA19/RE9	69	SEG14/AN22/ RP4 /PMACK2/RD9
20	PGEC3/SEG2/AN5/C1INA/RP18/ICM3/OCM3A/RB5	70	SEG15/C3IND/RP3/PMA15/PMCS2/RD10
21	PGED3/SEG3/AN4/C1INB/RP28/USBOE/RB4	71	SEG16/C3INC/RP12/PMA14/PMCS/PMCS1/RD11
22	SEG4/AN1-/AN3/C2INA/RB3	72	SEG17/CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0
23	SEG5/AN2/CTCMP/C2INB/RP13/CTED13/RB2	73	SOSCI/RC13
24	PGEC1/SEG6/VRef-/CVRef-/AN1/AN1-/ RP1 /CTED12/RB1	74	SOSCO/SCLKI/ RPI37 /PWRLCLK/RC14
25	PGED1/SEG7/VREF+/CVREF+/DVREF+/AN0/RP0/RB0	75	Vss
26	PGEC2/LCDBIAS3/AN6/ RP6 /RB6	76	SEG20/RP24/U5TX/ICM4/RD1
27	PGED2/SEG63/AN7/ RP7 /U6TX/RB7	77	SEG21/AN23/ RP23 /PMACK1/RD2
28	SEG36/VREF-/CVREF-/PMA7/RA9	78	SEG22/RP22/ICM7/PMBE0/RD3
29	SEG37/VREF / CVREF / DVREF / PMA6/RA10	79	SEG44/ RPI42 /PMD12/RD12
30	AVREF+/DVREF+	80	SEG45/PMD13/RD13
31	AVREF-/DVREF-	81	SEG23/ RP25 /PMWR/PMENB/RD4
32	COM7/SEG31/AN8/ RP8 /RB8	82	SEG24/RP20/PMRD/PMWR/RD5
33	COM6/SEG30/AN9/TMPR/ RP9 /PMA7/RB9	-	SEG25/C3INB/U5RX/OC4/PMD14/RD6
		83 84	SEG26/AN20/C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7
34	COM5/SEG29/CVREF/AN10/SDO4/PMA13/RB10	84	
35	AN11/REFI1/SS4/FSYNC4/PMA12/RB11	85	VCAP
36	Vss	86	
37	VDD	87	SEG27/U5CTS/OC6/PMD11/RF0
38		88	COM4/SEG47/SCK4/PMD10/RF1
39	SEG53/RP31/RF13	89	SEG46/PMD9/RG1
40	SEG54/ RPI32 /CTED7/PMA18/RF12	90	SEG49/PMD8/RG0
41	SEG18/AN12/U6RX/CTED2/PMA11/RB12	91	SEG57/AN23/OCM1E/RA6
42	SEG19/AN13/SDI4/CTED1/PMA10/RB13	92	SEG58/AN22/OCM1F/PMA17/RA7
43	SEG8/AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	93	COM3/PMD0/RE0
44	SEG9/AN15/RP29/CTED6/PMA0/PMALL/RB15	94	COM2/PMD1/RE1
45	Vss	95	SEG59/CTED11/PMA16/RG14
46	VDD	96	SEG60/RG12
47	SEG38/ RPI43 /RD14	97	SEG61/CTED10/RG13
48	SEG39/ RP5 /RD15	98	COM1/PMD2/RE2
49	SEG10/ RP10 /PMA9/RF4	99	COM0/CTED9/PMD3/RE3
50	SEG11/ RP17 /PMA8/RF5	100	SEG62/LVDIN/CTED8/PMD4/RE4

TABLE 4: COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGB410 DEVICES

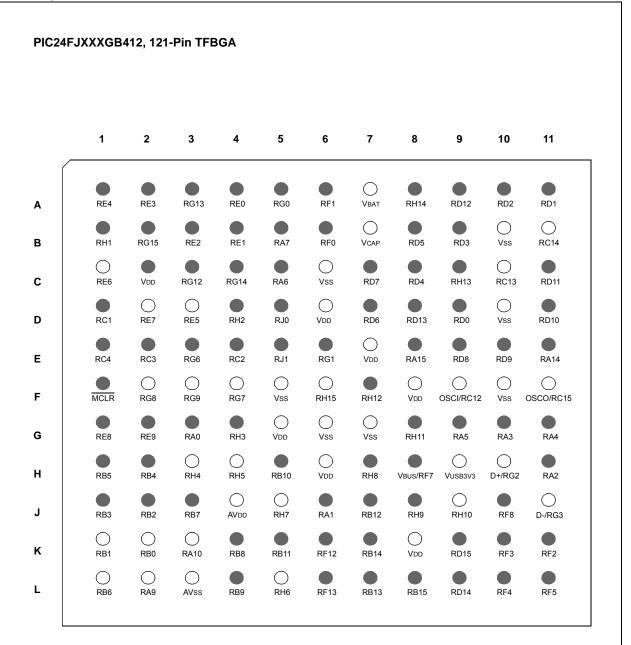
Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

Pin Diagrams (Continued)

TABLE 5:	COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGA412
----------	--

Pin	Function	Pin	Function
A1	SEG62/LVDIN/CTED8/PMD4/RE4	E1	SEG52/AN16/RPIN41/OCM3C/PMCS2/RC4
A2	COM0/CTED9/PMD3/RE3	E2	SEG33/RPI40/OCM2D/RC3
A3	SEG61/CTED10/RG13	E3	SEG0/AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6
A4	COM3/PMD0/RE0	E4	SEG51/ RPI39 /OCM2C/RC2
A5	SEG49/PMD8/RG0	E5	RJ1
A6	SEG47/SCK4/PMD10/RF1	E6	SEG46/PMD9/RG1
A7	VBAT	E7	Vdd
A8	RH14	E8	SEG43/ RPI35 /PMBE1/RA15
A9	SEG44/ RPI42 /PMD12/RD12	E9	SEG13/CLC4OUT/ RP2 /RTCC/U6RTS/U6BCLK/ICM5/RD8
A10	SEG21/RP23/PMACK1/RD2	E10	SEG14/ RP4 /PMPACK2/IOCD9/RD9
A11	SEG20/RP24/U5TX/ICM4/RD1	E11	SEG42/ RPI36 /PMA22/RA14
B1	COM4/RH1	F1	MCLR
B2	SEG50/OCM1C/CTED3/RG15	F2	VLCAP2/AN19/C2IND/ RP19 /ICM2/OCM2A/PMA3/RG8
B3	COM1/PMD2/RE2	F3	SEG1/AN20/C1INC/C2INC/C3INC/ RP27 /DAC1/OCM2B/PMA2/ PMALU/RG9
B4	COM2/PMD1/RE1	F4	VLCAP1/AN18/C1INC/ RP26 /OCM1B/PMA4/RG7
B5	SEG58/AN22/OCM1F/PMA17/RA7	F5	Vss
B6	SEG27/U5CTS/OC6/PMD11/RF0	F6	RH15
B7	VCAP	F7	RH12
B8	SEG24/ RP20 /PMRD/PMWR/RD5	F8	VDD
B9	SEG22/RP22/ICM7/PMBE0/RD3	F9	OSCI/CLKI/RC12
B10	Vss	F10	Vss
B10	SOSCO/RPI37/PWRLCLK/RC14	F11	OSCO/CLKO/RC15
C1	LCDBIAS1/SCL3/IC5/PMD6/RE6	G1	SEG34/RPI33/PMCS1/RE8
C2	VDD	G2	SEG35/AN21/ RPI34 /PMA19/RE9
C3	SEG60/RG12	G3	TMS/SEG48/OCM3D/CTED14/RA0
C4	SEG59/CTED11/PMA16/RG14	G4	COM6/RH3
C5	SEG57/AN23/OCM1E/RA6	G5	VDD
C6	Vss	G6	Vss
C7	SEG26/C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7	G7	Vss
C8	SEG23/RP25/PMWR/PMENB/RD4	G8	OCM3F/RH11
C9	RH13	G9	TDO/SEG28/RA5
C10	SOSCI/RC13	G10	SEG56/SDA2/PMA20/RA3
C11	SEG16/C3INC/RP12/PMA14/PMCS/PMCS1/RD11	G11	TDI/PMA21//RA4
D1	SEG32/RPI38/OCM1D/RC1	H1	PGEC3/SEG2/AN5/C1INA/ RP18 /ICM3/OCM3A/RB5
D2	LCDBIAS0/SDA3/IC6/PMD7/RE7	H2	PGED3/SEG3/AN4/C1INB/RP28/OCM3B/RB4
D3	LCDBIAS2/IC4/CTED4/PMD5/RE5	H3	COM7/RH4
D4	COM5/RH2	H4	OCM1E/RH5
D5	RJ0	H5	SEG29/CVREF/AN10/SDO4/PMA13/RB10
D6	VDD	H6	VDD
D7	SEG25/C3INB/U5RX/OC4/PMD14/RD6	H7	RH8
D8	SEG45/PMD13/RD13	H8	RF7
D9	SEG17/CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0	H9	RF6
D10	Vss	H10	SCL1/RG2
D11	SEG15/C3IND/RP3/PMA15/PMPCS2/RD10	H11	SEG55/SCL2/RA2
1	d: RPn and RPIn represent remappable pins for Peripheral Pin Sele		l

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.


TABLE 5: COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGA412 (CONTINUED)

Pin	Function	Pin	Function
J1	SEG4/AN3/C2INA/RB3	K7	SEG8/AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14
J2	SEG5/AN2/CTCMP/C2INB/RP13/CTED13/RB2	K8	VDD
J3	PGED2/SEG63/AN7/ RP7 /U6TX/RB7	K9	SEG39/ RP5 /IOCD15/RD15
J4	AVdd	K10	SEG12/ RP16 /RF3
J5	OCM2E/RH7	K11	SEG40/ RP30 /RF2
J6	TCK/RA1	L1	PGEC2/LCDBIAS3/AN6/ RP6 /RB6
J7	SEG18/AN12/U6RX/CTED2/PMA11/RB12	L2	SEG36/VREF-/CVREF-/PMA7/RA9
J8	OCM2F/RH9	L3	AVss
J9	OCM3E/RH10	L4	SEG30/AN9/TMPR/RP9/T1CK/PMA7/RB9
J10	SEG41/ RP15 /RF8	L5	OCM1F/RH6
J11	SDA1/RG3	L6	SEG53/ RP31 /RF13
K1	PGEC1/SEG6/VREF-/CVREF-/AN1/AN1-/RP1/CTED12/RB1	L7	SEG19/AN13/SDI4/CTED1/PMA10/RB13
K2	PGED1/SEG7/VREF+/CVREF+/DVREF+/AN0/ RP0 /RB0	L8	SEG9/AN15/ RP29 /CTED6/PMA0/PMALL/RB15
K3	SEG37/VREF+/CVREF+/DVREF+/PMA6/RA10	L9	SEG38/ RPI43 /RD14
K4	SEG31/AN8/RP8/PWRGT/RB8	L10	SEG10/ RP10 /PMA9/RF4
K5	AN11/REFI1/SS4/FSYNC4/PMA12/RB11	L11	SEG11/ RP17 /PMA8/RF5
K6	SEG54/RPI32/CTED7/PMPA18/RF12		

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

PIC24FJ256GA412/GB412 FAMILY

Pin Diagrams (Continued)

Legend: Shaded balls indicate pins tolerant to up to +5.5 VDC. See Table 6 for a complete description of pin functions.

TABLE 6:	COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGB412
----------	--

Pin	Function	Pin	Function
A1	SEG62/LVDIN/CTED8/PMD4/RE4	E1	SEG52/AN16/RPIN41/OCM3C/PMCS2/RC4
A2	COM0/CTED9/PMD3/RE3	E2	SEG33/RPI40/OCM2D/RC3
A3	SEG61/CTED10/RG13	E3	SEG0/AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6
A4	COM3/PMD0/RE0	E4	SEG51/RPI39/OCM2C/RC2
A5	SEG49/PMD8/RG0	E5	RJ1
A6	SEG47/SCK4/PMD10/RF1	E6	SEG46/PMD9/RG1
A7	VBAT	E7	Vdd
A8	RH14	E8	SEG43/RPI35/SDA1/PMBE1/RA15
A9	SEG44/RPI42/PMD12/RD12	E9	SEG13/CLC4OUT/RP2/RTCC/U6RTS/U6BCLK/ICM5/RD8
A10	SEG21/RP23/PMACK1/RD2	E10	SEG14/RP4/PMPACK2/IOCD9/RD9
A11	SEG20/RP24/U5TX/ICM4/RD1	E11	SEG42/RPI36/SCL1/PMA22/RA14
B1	COM4/RH1	F1	MCLR
B2	SEG50/OCM1C/CTED3/RG15	F2	VLCAP2/AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8
B3	COM1/PMD2/RE2	F3	SEG1/AN20/C1INC/C2INC/C3INC/ RP27 /DAC1/OCM2B/PMA2/ PMALU/RG9
B4	COM2/PMD1/RE1	F4	VLCAP1/AN18/C1INC/ RP26 /OCM1B/PMA4/RG7
B5	SEG58/AN22/OCM1F/PMA17/RA7	F5	Vss
B6	SEG27/U5CTS/OC6/PMD11/RF0	F6	RH15
B7	VCAP	F7	RH12
B8	SEG24/ RP20 /PMRD/PMWR/RD5	F8	VDD
B9	SEG22/RP22/ICM7/PMBE0/RD3	F9	OSCI/CLKI/RC12
B10	Vss	F10	Vss
B11	SOSCO/RPI37/PWRLCLK/RC14	F11	OSCO/CLKO/RC15
C1	LCDBIAS1/SCL3/IC5/PMD6/RE6	G1	SEG34/RPI33/PMCS1/RE8
C2	VDD	G2	SEG35/AN21/ RPI34 /PMA19/RE9
C3	SEG60/RG12	G3	TMS/SEG48/OCM3D/CTED14/RA0
C4	SEG59/CTED11/PMA16/RG14	G4	COM6/RH3
C5	SEG57/AN23/OCM1E/RA6	G5	Vdd
C6	Vss	G6	Vss
C7	SEG26/C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7	G7	Vss
C8	SEG23/RP25/PMWR/PMENB/RD4	G8	OCM3F/RH11
C9	RH13	G9	TDO/SEG28/RA5
C10	SOSCI/RC13	G10	SEG56/SDA2/PMA20/RA3
C11	SEG16/C3INC/RP12/PMA14/PMCS/PMCS1/RD11	G11	TDI/PMA21//RA4
D1	SEG32/RPI38/OCM1D/RC1	H1	PGEC3/SEG2/AN5/C1INA/RP18/ICM3/OCM3A/RB5
D2	LCDBIAS0/SDA3/IC6/PMD7/RE7	H2	PGED3/SEG3/AN4/C1INB/RP28/USBOE/OCM3B/RB4
D3	LCDBIAS2/IC4/CTED4/PMD5/RE5	H3	COM7/RH4
D4	COM5/RH2	H4	OCM1E/RH5
D5	RJO	H5	SEG29/CVREF/AN10/SDO4/PMA13/RB10
D6	VDD	H6	Vdd
D7	SEG25/C3INB/U5RX/OC4/PMD14/RD6	H7	RH8
D8	SEG45/PMD13/RD13	H8	VBUS/RF7
D9	SEG17/CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0	H9	VUSB3V3
D10	Vss	H10	D+/RG2
D11	SEG15/C3IND/RP3/PMA15/PMPCS2/RD10	H11	SEG55/SCL2/RA2

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

TABLE 6: COMPLETE PIN FUNCTION DESCRIPTIONS FOR PIC24FJXXXGB412 (CONTINUED)

Pin	Function	Pin	Function
J1	SEG4/AN3/C2INA/RB3	K7	SEG8/AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14
J2	SEG5/AN2/CTCMP/C2INB/RP13/CTED13/RB2	K8	Vdd
J3	PGED2/SEG63/AN7/ RP7 /U6TX/RB7	K9	SEG39/ RP5 /IOCD15/RD15
J4	AVdd	K10	SEG12/RP16/USBID/RF3
J5	OCM2E/RH7	K11	SEG40/ RP30 /RF2
J6	TCK/RA1	L1	PGEC2/LCDBIAS3/AN6/ RP6 /RB6
J7	SEG18/AN12/U6RX/CTED2/PMA11/RB12	L2	SEG36/VREF-/CVREF-/PMA7/RA9
J8	OCM2F/RH9	L3	AVss
J9	OCM3E/RH10	L4	SEG30/AN9/TMPR/RP9/T1CK/PMA7/RB9
J10	SEG41/ RP15 /RF8	L5	OCM1F/RH6
J11	D-/RG3	L6	SEG53/ RP31 /RF13
K1	PGEC1/SEG6/VREF-/CVREF-/AN1/AN1-/RP1/CTED12/RB1	L7	SEG19/AN13/SDI4/CTED1/PMA10/RB13
K2	PGED1/SEG7/VREF+/CVREF+/DVREF+/AN0/ RP0 /RB0	L8	SEG9/AN15/RP29/CTED6/PMA0/PMALL/RB15
K3	SEG37/VREF+/CVREF+/DVREF+/PMA6/RA10	L9	SEG38/ RPI43 /RD14
K4	SEG31/AN8/ RP8 /PWRGT/RB8	L10	SEG10/ RP10 /PMA9/RF4
K5	AN11/REFI1/SS4/FSYNC4/PMA12/RB11	L11	SEG11/ RP17 /PMA8/RF5
K6	SEG54/RPI32/CTED7/PMPA18/RF12		

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select functions.

Table of Contents

1.0	Device Overview					
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers					
3.0	CPU					
4.0	Memory Organization					
5.0	Direct Memory Access Controller (DMA)					
6.0	Flash Program Memory					
7.0	Resets	101				
8.0	Interrupt Controller	107				
9.0	Oscillator Configuration	177				
10.0	Power-Saving Features	191				
11.0	I/O Ports	209				
	Timer1					
	Timer2/3 and Timer4/5					
14.0	Capture/Compare/PWM/Timer Modules (MCCP and SCCP)	253				
15.0	Input Capture with Dedicated Timers					
16.0	Output Compare with Dedicated Timers					
	Serial Peripheral Interface (SPI)					
	Inter-Integrated Circuit™ (I ² C™)					
	Universal Asynchronous Receiver Transmitter (UART)					
20.0	Universal Serial Bus with On-The-Go Support (USB OTG)	323				
21.0	Enhanced Parallel Master Port (EPMP)					
	Liquid Crystal Display (LCD) Controller					
23.0	Configurable Logic Cell (CLC)					
24.0						
25.0						
	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator					
	12-Bit A/D Converter with Threshold Detect					
29.0	Triple Comparator Module					
30.0						
31.0	Charge Time Measurement Unit (CTMU)					
32.0	High/Low-Voltage Detect (HLVD)					
33.0	•					
	Development Support					
	Instruction Set Summary					
	Electrical Characteristics					
	Packaging Information					
	endix A: Revision History					
	(
	Microchip Web Site					
	omer Change Notification Service					
	ustomer Support					
Prod	uct Identification System	551				

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ64GA406
 - PIC24FJ64GB406
 PIC24FJ128GB406
- PIC24FJ128GA406
 PIC24FJ256GA406
 - PIC24FJ256GB406
- PIC24FJ64GA410 PIC24FJ64GB410
- PIC24FJ128GA410 PIC24FJ128GB410
- PIC24FJ256GA410
 - 0 PIC24FJ256GB410
- PIC24FJ64GA412 PIC24FJ64GB412
- PIC24FJ128GA412
 - PIC24FJ128GB412
- PIC24FJ256GA412 PIC24FJ256GB412

The PIC24FJ256GA412/GB412 family expands the capabilities of the PIC24F family by adding a complete selection of advanced analog peripherals to its existing digital features. This combination, along with its ultra low-power features, Direct Memory Access (DMA) for peripherals, USB On-The-Go (OTG) and a built-in LCD Controller and driver, makes this family the new standard for mixed-signal PIC[®] microcontrollers in one economical and power-saving package.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- A 16-element Working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- Operational performance up to 16 MIPS

1.1.2 XLP POWER-SAVING TECHNOLOGY

The PIC24FJ256GA412/GB412 family of devices incorporates a greatly expanded range of power-saving operating modes for the ultimate in power conservation. The new modes include:

- Retention Sleep, with essential circuits being
 powered from a separate low-voltage regulator
- Deep Sleep without RTCC, for the lowest possible power consumption under software control
- VBAT mode (with or without RTCC), to continue limited operation from a backup battery when VDD is removed

Many of these new low-power modes also support the continuous operation of the low-power, on-chip Real-Time Clock/Calendar (RTCC), making it possible for an application to keep time while the device is otherwise asleep.

Aside from these new features, the PIC24FJ256GA412/ GB412 devices also include all of the legacy power-saving features of previous PIC24F microcontrollers, such as:

- On-the-Fly Clock Switching, allowing the selection of a lower power clock during run time
- Doze Mode Operation, for maintaining peripheral clock speed while slowing the CPU clock
- Instruction-Based Power-Saving Modes, for quick invocation of Idle and the many Sleep modes

1.1.3 DUAL PARTITION FLASH PROGRAM MEMORY

A brand new feature to the PIC24F family is the use of Dual Partition Flash program memory technology. This allows PIC24FJ256GA412/GB412 family devices a range of new operating options not available before:

- Dual Partition Operation, which can store two different applications in their own code partition, and allows for the support of robust bootloader applications and enhanced security
- Live Update Operation, which allows the main application to continue operation while the second Flash partition is being reprogrammed – all without adding Wait states to code execution
- Direct Run-Time Programming from Data RAM, with the option of data compression in the RAM image

PIC24FJ256GA412/GB412 family devices can also operate with their two Flash partitions as one large program memory, providing space for large and complex applications.

1.1.4 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ256GA412/GB412 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes
- Two External Clock modes
- A Phase-Locked Loop (PLL) frequency multiplier, which allows clock speeds of up to 32 MHz
- A Fast Internal Oscillator (FRC) nominal 8 MHz output with multiple frequency divider options and automatic frequency self-calibration during run time
- A separate Low-Power Internal RC Oscillator (LPRC) – 31 kHz nominal for low-power, timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.5 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, while still selecting a Microchip device.

1.2 Cryptographic Engine

The Cryptographic Engine provides a new set of data security options. Using its own free-standing math engine, the module can independently perform NIST standard encryption and decryption of data, independently of the CPU. The Cryptographic Engine supports AES and DES/3DES encryption ciphers in up to 5 modes, and supports key lengths from 128 to 256 bits. Additional features include True Random Number Generation (TRNG) within the engine, multiple encryption/decryption key storage options and secure data handling that prevents data in the engine from being compromised by external reads.

1.3 USB On-The-Go (OTG)

USB On-The-Go provides on-chip functionality as a target device compatible with the USB 2.0 standard, as well as limited stand-alone functionality as a USB embedded host. By implementing USB Host Negotiation Protocol (HNP), the module can also dynamically switch between device and host operation, allowing for a much wider range of versatile USB-enabled applications on a microcontroller platform.

PIC24FJ256GA412/GB412 family devices also incorporate an integrated USB transceiver and precision oscillator, minimizing the required complexity of implementing a complete USB device, embedded host, dual role or On-The-Go application.

1.4 DMA Controller

PIC24FJ256GA412/GB412 family devices also add a Direct Memory Access (DMA) Controller to the existing PIC24F architecture. The DMA acts in concert with the CPU, allowing data to move between data memory and peripherals without the intervention of the CPU, increasing data throughput and decreasing execution time overhead. Six independently programmable channels make it possible to service multiple peripherals at virtually the same time, with each channel peripheral performing a different operation. Many types of data transfer operations are supported.

1.5 LCD Controller

The versatile on-chip LCD Controller includes many features that make the integration of displays in low-power applications easier. These include an integrated voltage regulator with charge pump and an integrated internal resistor ladder that allows contrast control in software, and display operation above device VDD.

1.6 Other Special Features

- Integrated Interrupt-on-Change: All digital I/O ports now feature Interrupt-on-Change (IOC) functionality for convenient Change Notification interrupt generation on any I/O pin. IOC can be individually enabled or disabled on each pin, and configured for both edge detection polarity and the use of pull-ups or pull-downs.
- Peripheral Pin Select (PPS): The Peripheral Pin Select feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- Communications: The PIC24FJ256GA412/GB412 family incorporates multiple serial communication peripherals to handle a range of application requirements. All devices have six independent UARTs with built-in IrDA[®] encoders/decoders. There are also three independent I²C[™] modules that support both Master and Slave modes of operation, and three SPI modules with I²S and variable data width support.
- Analog Features: All members of the PIC24FJ256GA412/GB412 family include a 12-bit A/D Converter module, a triple comparator module and the CTMU interface. The A/D module incorporates a range of features that allow the converter to assess and make decisions on incoming data, reducing CPU overhead for routine A/D conversions.

The comparator module includes three analog comparators that are configurable for a wide range of operations. The CTMU provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.

- Enhanced Parallel Master/Parallel Slave Port: This module allows rapid and transparent access to the microcontroller data bus, and enables the CPU to directly address external data memory. The parallel port can function in Master or Slave mode, accommodating data widths of 4, 8 or 16 bits, and address widths of up to 23 bits in Master modes.
- Real-Time Clock and Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.

1.7 Details on Individual Family Members

Devices in the PIC24FJ256GA412/GB412 family are available in 64-pin, 100-pin and 121-pin packages. General block diagrams for general purpose and USB devices are shown in Figure 1-1 and Figure 1-2, respectively.

The devices are differentiated from each other in five ways:

- 1. USB On-The-Go functionality (present only in PIC24FJXXXGB4XX devices).
- Available I/O pins and ports (up to 53 pins on 6 ports for 64-pin devices, up to 85 pins on 7 ports for 100-pin devices and up to 102 pins on 9 ports for 121-pin devices).
- 3. Available remappable pins (29 pins on 64-pin devices and 44 pins on 100/121-pin devices).
- Maximum available drivable LCD pixels (up to 248 for 64-pin devices and 512 on 100/121-pin devices.)
- Analog input channels for the A/D Converter (16 channels for 64-pin devices and 24 channels for 100/121-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1, Table 1-2 and Table 1-3.

A list of pin features available on the PIC24FJ256GA412/ GB412 family devices, sorted by function, is shown in Table 1-4 (for general purpose devices) or Table 1-5 (for USB devices). Note that these tables show the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ256GA412/GB412 FAMILY: 64-PIN

Factures	PIC24FJXXXGA/GB406									
Features -	64GA	128GA	256GA	64GB	128GB	256GB				
Operating Frequency	DC – 32 MHz									
Program Memory (bytes)	64K	128K	256K	64K	128K	256K				
Program Memory (instructions)	22,016	44,032	88,064	22,016	44,032	88,064				
Data Memory (bytes)	8K	10	6K	8K	16	5K				
Interrupt Sources (soft vectors/ NMI traps)			113 (107/6)						
I/O Ports			Ports B, C	, D, E, F, G						
Total I/O Pins		53			52					
Remappable Pins	30 (2	9 I/Os, 1 inpu	t only)	29 (2	8 I/Os, 1 input	only)				
Timers:										
Total Number (16-bit)			19	(1,2)						
32-Bit (from paired 16-bit timers)				9						
Input Capture w/Timer Channels			6	(2)						
Output Compare/PWM Channels			6	(2)						
Capture/Compare/PWM/Timer:										
Single Output (SCCP)	4(2)									
Multiple Output (MCCP)			3	(2)						
Serial Communications:										
UART			6	(2)						
SPI (3-wire/4-wire)			4	(2)						
I ² C™				3						
USB On-The-Go		No		Yes						
Cryptographic Engine			Y	es						
Parallel Communications (EPMP/PSP)			Y	es						
10/12-Bit Analog-to-Digital Converter (A/D) (input channels)			1	16						
Digital-to-Analog Converter (DAC)				1						
Analog Comparators				3						
CTMU Interface			Y	es						
LCD Controller (available pixels)	248	(35 SEG x 8 0	COM)	240	(34 SEG x 8 C	COM)				
JTAG Boundary Scan			Y	es						
Resets (and delays)	Core POR, VDD POR, VBAT POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)									
Instruction Set	7	7 Base Instru	ctions, Multiple	e Addressing I	Mode Variation	าร				
Packages			64-Pin TQF	P and QFN						

Note 1: Includes the Timer modes of the SCCP and MCCP modules.

2: Some instantiations of these modules are only available through remappable pins.

TABLE 1-2: DEVICE FEATURES FOR THE PIC24FJ256GA412/GB412 FAMILY: 100-PIN

Fraturas	PIC24FJXXXGA/GB410									
Features	64GA	128GA	256GA	64GB	128GB	256GB				
Operating Frequency	DC – 32 MHz									
Program Memory (bytes)	64K	128K	256K	64K	128K	256K				
Program Memory (instructions)	22,016	44,032	88,064	22,016	44,032	88,064				
Data Memory (bytes)	8K	1	δK	8K	16	δK				
Interrupt Sources (soft vectors/ NMI traps)			113 (1	107/6)						
I/O Ports			Ports A, B, 9	C, D, E, F, G						
Total I/O Pins		85			84					
Remappable Pins			44 (32 I/Os,	12 input only)						
Timers:										
Total Number (16-bit)			19	1, 2)						
32-Bit (from paired 16-bit timers)				9						
Input Capture w/Timer Channels			-	(2)						
Output Compare/PWM Channels			6	(2)						
Capture/Compare/PWM/Timer:										
Single Output (SCCP)	4 ⁽²⁾									
Multiple Output (MCCP)			3	(2)						
Serial Communications:										
UART			6	(2)						
SPI (3-wire/4-wire)			4	(2)						
I ² C™			:	3						
USB On-The-Go		No			Yes					
Cryptographic Engine			Y	es						
Parallel Communications (EPMP/PSP)			Y	es						
10/12-Bit Analog-to-Digital Converter (A/D) (input channels)			2	4						
Digital-to-Analog Converter (DAC)				1						
Analog Comparators			;	3						
CTMU Interface			Y	es						
LCD Controller (available pixels)			512 (64 SE	G x 8 COM)						
JTAG Boundary Scan			Y	es						
Resets (and delays)	C	MCLR, WI	POR, VBAT F DT, Illegal Opc Traps, Config (OST, P	ode, REPEAT	Instruction,	n,				
Instruction Set	7	7 Base Instru	ctions, Multiple	e Addressing N	Node Variation	าร				
Packages			100-Pir	n TQFP						

Note 1: Includes the Timer modes of the SCCP and MCCP modules.

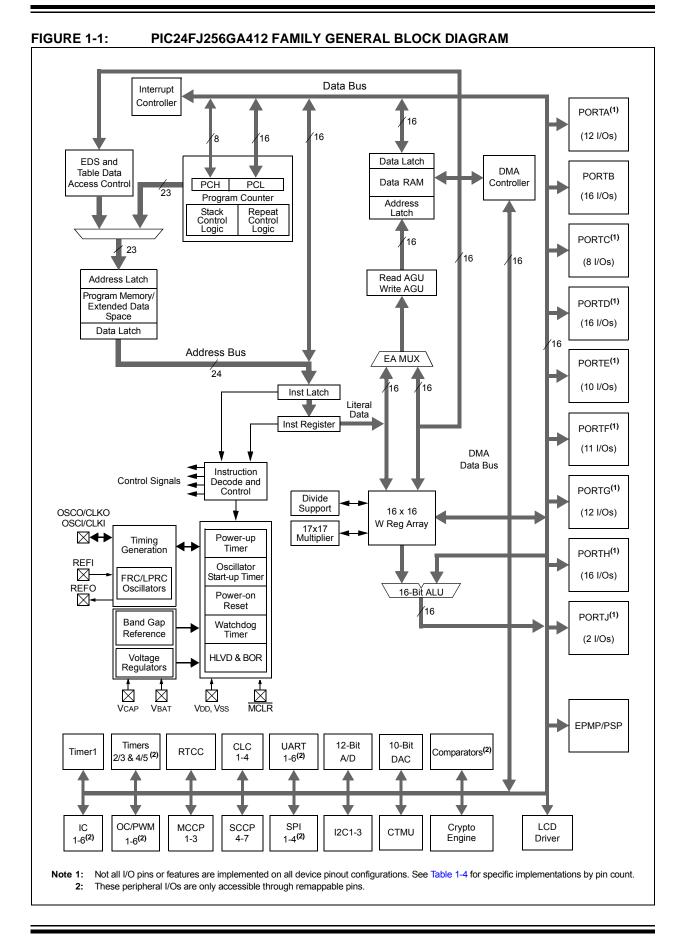
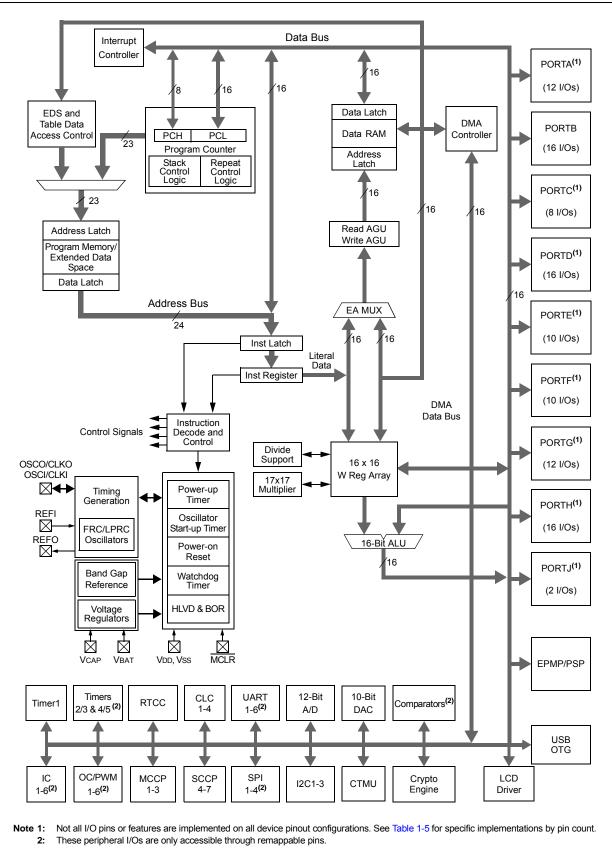

2: Some instantiations of these modules are only available through remappable pins.

TABLE 1-3: DEVICE FEATURES FOR THE PIC24FJ256GA412/GB412 FAMILY: 121-PIN


Frature	PIC24FJXXXGA/GB412									
Features	64GA 128GA 256GA 64GB 128GB 256GB									
Operating Frequency	DC – 32 MHz									
Program Memory (bytes)	64K	128K	256K	64K	128K	256K				
Program Memory (instructions)	22,016	44,032	88,064	22,016	44,032	88,064				
Data Memory (bytes)	8K 16K 8K 1									
Interrupt Sources (soft vectors/ NMI traps)			113 (′	107/6)						
I/O Ports		ł	Ports A, B, C,	D, E, F, G, H, .	J					
Total I/O Pins		102			101					
Remappable Pins			44 (32 I/O, 1	2 input only)						
Timers:										
Total Number (16-bit)			19	[1, 2]						
32-Bit (from paired 16-bit timers)				9						
Input Capture w/Timer Channels			6	(2)						
Output Compare/PWM Channels			6	(2)						
Single Output CCP (SCCP)			4	4						
Multiple Output CCP (MCCP)			:	3						
Serial Communications:										
UART			6	(2)						
SPI (3-wire/4-wire)			4	(2)						
I ² C™			÷	3						
USB On-The-Go		No		Yes						
Cryptographic Engine			Y	es						
Parallel Communications (EPMP/PSP)			Y	es						
10/12-Bit Analog-to-Digital Converter (A/D) (input channels)			2	24						
Digital-to-Analog Converter (DAC)				1						
Analog Comparators			;	3						
CTMU Interface			Y	es						
LCD Controller (available pixels)			512 (64 SE	G x 8 COM)						
JTAG Boundary Scan			Y	es						
Resets (and delays)	Core POR, VDD POR, VBAT POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (OST, PLL Lock)									
Instruction Set	7	7 Base Instru	ctions, Multiple	e Addressing N	Node Variation	าร				
Packages			121-Pi	n BGA						

Note 1: Includes the Timer modes of SCCP and MCCP modules.

2: Some instantiations of these modules are only available through remappable pins.

PIC24FJ256GA412/GB412 FAMILY

FIGURE 1-2: PIC24FJ256GB412 FAMILY GENERAL BLOCK DIAGRAM

Pin	F	Pin/Pad Number			Input	
Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
AN0	16	25	K2	I	ANA	A/D Converter (Unipolar) Inputs.
AN1	15	24	K1	I	ANA	
AN1-	15	24	K1	I	ANA	A/D Channel 1 Negative (VIN-) Input.
AN2	14	23	J2	I	ANA	A/D Converter (Unipolar) Inputs.
AN3	13	22	J1	I	ANA	
AN4	12	21	H2	I	ANA	
AN5	11	20	H1	I	ANA	
AN6	17	26	L1	I	ANA	
AN7	18	27	J3	I	ANA	
AN8	21	32	K4	I	ANA	
AN9	22	33	L4	I	ANA	
AN10	23	34	H5	I	ANA	
AN11	24	35	K5	I	ANA	
AN12	27	41	J7	I	ANA	
AN13	28	42	L7	I	ANA	
AN14	29	43	K7	I	ANA	
AN15	30	44	L8	I	ANA	
AN16	_	9	E1	I	ANA	
AN17		10	E3	I	ANA	
AN18		11	F4	I	ANA	
AN19	_	12	F2	I	ANA	
AN20	_	14	F3	I	ANA	
AN21	_	19	G2	I	ANA	
AN22	_	92	B5	I	ANA	
AN23		91	C5	I	ANA	
AVdd	19	30	J4	Р	_	Power Supply for Analog Modules.
AVss	20	31	L3	Р	_	Ground Reference for Analog Modules.
C1INA	11	20	H1	I	ANA	Comparator 1 Analog Inputs.
C1INB	12	21	H2	I	ANA	
C1INC	5, 8	11, 14	F3, F4	I	ANA	
C1IND	4	10	E3	I	ANA	
C2INA	13	22	J1	I	ANA	Comparator 2 Analog Inputs.
C2INB	14	23	J2	I	ANA	
C2INC	8	14	F3	I	ANA	
C2IND	6	12	F2	I	ANA	
C3INA	55	84	C7	I	ANA	Comparator 3 Analog Inputs.
C3INB	54	83	D7	I	ANA	
C3INC	8, 45	14, 71	F3, C11	I	ANA	
C3IND	44	70	D11	1	ANA	
CLC3OUT	46	72	D9	0	_	CLC Module 3 Output.
CLC4OUT	42	68	E9	0	_	CLC Module 4 Output.
CLKI	39	63	F9		ANA	Main Clock Input.
CLKO	40	64	F11	0	<u> </u>	System Clock Output.

TABLE 1-4: PIC24FJ256GA412 FAMILY PINOUT DESCRIPTION

TTL = TTL input buffer ANA = Analog-level input/output

 $I^2C^{TM} = I^2C/SMBus$ input buffer

Pin	F	Pin/Pad Number			Input	
Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
COM0	63	99	A2	0	_	LCD Driver Common Outputs.
COM1	62	98	B3	0	_	
COM2	61	94	B4	0	_	
COM3	60	93	A4	0	_	
COM4	59	88	B1	0	_	-
COM5	23	34	D4	0	_	-
COM6	22	33	G4	0	_	-
COM7	21	32	H3	0	_	-
CTCMP	14	23	J2	I	ANA	CTMU Comparator Input (Pulse mode).
CTED1	28	42	L7	I	ST	CTMU External Edge Inputs.
CTED2	27	41	J7	I	ST	
CTED3	_	1	B2	I	ST	
CTED4	1	3	D3	I	ST	
CTED5	29	43	K7	I	ST	-
CTED6	30	44	L8	I	ST	-
CTED7	_	40	K6	I	ST	
CTED8	64	100	A1	I	ST	-
CTED9	63	99	A2	I	ST	
CTED10	_	97	A3	I	ST	
CTED11	_	95	C4	I	ST	-
CTED12	15	24	K1	I	ST	-
CTED13	14	23	J2	I	ST	-
CTED14	_	17	G3	I	ST	
CTPLS	29	43	K7	0	_	CTMU Pulse Output.
CVREF	23	34	H5	0	_	Comparator Voltage Reference Output.
CVREF+	16	25, 29	K2, K3	I	ANA	Comparator Voltage Reference Input (High).
CVREF-	15	24, 28	K1, L2	I	ANA	Comparator Voltage Reference Input (Low).
DAC1	8	14	F3	0	_	DAC1 Analog Output.
DVREF+	16	25, 29	K2, K3	I	ANA	DAC Positive Reference Input.
FSYNC4	24	35	K5	I/O	ST	SPI4 Frame Sync Signal.
IC4	1	3	D3	I	ST	Input Capture 4 Input.
IC5	2	4	C1	I	ST	Input Capture 5 Input.
IC6	3	5	D2	I	ST	Input Capture 6 Input.
ICM1	4	10	E3	I	ST	Input Capture 1 Input (MCCP1).
ICM2	6	12	F2	I	ST	Input Capture 2 Input (MCCP2).
ICM3	11	20	H1	I	ST	Input Capture 3 Input (MCCP3).
ICM4	49	76	A11	I	ST	Input Capture 4 Input (SCCP4).
ICM5	42	68	E9	I	ST	Input Capture 5 Input (SCCP5).
ICM6	46	72	D9	I	ST	Input Capture 6 Input (SCCP6).
ICM7	51	78	B9	I	ST	Input Capture 7 Input (SCCP7).
INT0	46	72	D9	1	ST	External Interrupt 0 Input.

Legend: TTL = TTL input buffer ANA = Analog-level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

Pin Function	64-Pin TQFP	in/Pad Numbe		1	1		
LCDBIAS0		100-Pin		1/O	Input	Description	
		TQFP	121-Pin BGA	1/0	Buffer	Description	
	3	5	D2	I	ANA	Bias Inputs for LCD Driver Charge Pump.	
LCDBIAS1	2	4	C1	I	ANA		
LCDBIAS2	1	3	D3	I	ANA		
LCDBIAS3	17	26	L1	I	ANA		
LVDIN	64	100	A1	I	ANA	High/Low-Voltage Detect Input.	
MCLR	7	13	F1	I	ST	Master Clear (Device Reset) Input. This line is brought low to cause a Reset.	
OC4	54	83	D7	0	_	Output Compare/PWM4 Output (SCCP4).	
OC5	55	84	C7	0	—	Output Compare/PWM5 Output (SCCP5).	
OC6	58	87	B6	0	—	Output Compare/PWM6 Output (SCCP6).	
OCM1A	4	10	E3	0	—	Output Compare/PWM1 Outputs (MCCP1).	
OCM1B	5	11	F4	0	—]	
OCM1C	_	1	B2	0	_		
OCM1D	_	6	D1	0	_		
OCM1E	_	91	C5	0	—		
OCM1F	_	92	B5	0	—		
OCM2A	6	12	F2	0	—	Output Compare/PWM2 Outputs (MCCP2).	
OCM2B	8	14	F3	0	—		
OCM2C	_	7	E4	0	—		
OCM2D	_	8	E2	0	—		
OCM2E	—	96	C3	0	—		
OCM2F	_	97	A3	0	—		
OCM3A	11	20	H1	0	—	Output Compare/PWM3 Outputs (MCCP3).	
OCM3B	12	21	H2	0	—		
OCM3C	—	9	E1	0	—		
OCM3D	_	17	G3	0	—		
OCM3E	—	79	A9	0	—		
OCM3F	—	80	D8	0	—		
OSCI	39	63	F9	I	ANA	Primary Oscillator Input.	
OSCO	40	64	F11	0	_	Primary Oscillator Output.	
PGEC1	15	24	K1	I/O	ST	In-Circuit Debugger/Emulator/ICSP™	
PGEC2	17	26	L1	I/O	ST	Programming Clock.	
PGEC3	11	20	H1	I/O	ST		
PGED1	16	25	K2	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming	
PGED2	18	27	J3	I/O	ST	Data.	
PGED3	12	21	H2	I/O	ST		

Legend: TTL = TTL input buffer ANA = Analog-level input/output ST = Schmitt Trigger input buffer

 $I^2C^{TM} = I^2C/SMBus$ input buffer

Dia	Р	in/Pad Numb	er		Innet		
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description	
PMA0	30	44	L8	I/O	ST	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).	
PMA1	29	43	K7	I/O	ST	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).	
PMA2	8	14	F3	0	—	Parallel Master Port Address (bits<10:2>).	
PMA3	6	12	F2	0	_		
PMA4	5	11	F4	0	_		
PMA5	4	10	E3	0	—		
PMA6	16	29	K3	0	_		
PMA7	22	28	L2	0	_		
PMA8	32	50	L11	0	_		
PMA9	31	49	L10	0	_		
PMA10	28	42	L7	0	_		
PMA11	27	41	J7	0	_	Parallel Master Port Address (bits<22:11>).	
PMA12	24	35	K5	0	_		
PMA13	23	34	H5	0	_		
PMA14	45	71	C11	0	_		
PMA15	44	70	D11	0	_		
PMA16		95	C4	0	_		
PMA17	_	92	B5	0	_		
PMA18		40	K6	0	_		
PMA19	_	19	G2	0	_		
PMA20	_	59	G10	0	_		
PMA21		60	G11	0	_		
PMA22	_	66	E11	0	—	1	
PMACK1	50	77	A10	I	ST/TTL	Parallel Master Port Acknowledge Input 1.	
PMACK2	43	69	E10	I	ST/TTL	Parallel Master Port Acknowledge Input 2.	
PMBE0	51	78	B9	0	- I	Parallel Master Port Byte Enable 0 Strobe.	
PMBE1		67	E8	0	_	Parallel Master Port Byte Enable 1 Strobe.	
PMCS1	_	18	G1	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe.	
PMCS2	_	9	E1	0	_	Parallel Master Port Chip Select 2 Strobe.	

TTL = TTL input buffer Legend: ANA = Analog-level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

	FICZ4FJZJ0GA4TZ FAMILT					
Pin	F	in/Pad Numbe	er		I/O Input Buffer	
Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O		Description
PMD0	60	93	A4	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed
PMD1	61	94	B4	I/O	ST/TTL	Master mode) or Address/Data (Multiplexed
PMD2	62	98	B3	I/O	ST/TTL	Master modes).
PMD3	63	99	A2	I/O	ST/TTL	
PMD4	64	100	A1	I/O	ST/TTL	
PMD5	1	3	D3	I/O	ST/TTL	
PMD6	2	4	C1	I/O	ST/TTL	
PMD7	3	5	D2	I/O	ST/TTL	
PMD8	_	90	A5	I/O	ST/TTL	
PMD9	_	89	E6	I/O	ST/TTL	
PMD10	—	88	A6	I/O	ST/TTL	
PMD11	—	87	B6	I/O	ST/TTL	
PMD12	_	79	A9	I/O	ST/TTL	
PMD13	—	80	D8	I/O	ST/TTL	
PMD14	—	83	D7	I/O	ST/TTL	
PMD15	—	84	C7	I/O	ST/TTL	
PMRD	53	82	B8	0	—	Parallel Master Port Read Strobe.
PMWR	52	81	C8	0	—	Parallel Master Port Write Strobe.
PWRGT	21	32	K4	0	—	RTCC Power Control Output.
PWRLCLK	48	74	B11	I	ST	RTCC External Clock Source Input.
RA0	—	17	G3	I/O	ST	PORTA Digital I/Os.
RA1	_	38	J6	I/O	ST	
RA2	_	58	H11	I/O	ST	
RA3	—	59	G10	I/O	ST	
RA4	_	60	G11	I/O	ST	
RA5	—	61	G9	I/O	ST	
RA6	_	91	C5	I/O	ST	
RA7	_	92	B5	I/O	ST	
RA9	_	28	L2	I/O	ST	
RA10	_	29	K3	I/O	ST	
RA14	_	66	E11	I/O	ST	
RA15	_	67	E8	I/O	ST	

Legend: TTL = TTL input buffer ANA = Analog-level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMB$ us input buffer

	F	Pin/Pad Numb	er			
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
RB0	16	25	K2	I/O	ST	PORTB Digital I/Os.
RB1	15	24	K1	I/O	ST	
RB2	14	23	J2	I/O	ST	
RB3	13	22	J1	I/O	ST	
RB4	12	21	H2	I/O	ST	
RB5	11	20	H1	I/O	ST	
RB6	17	26	L1	I/O	ST	
RB7	18	27	J3	I/O	ST	
RB8	21	32	K4	I/O	ST	
RB9	22	33	L4	I/O	ST	
RB10	23	34	H5	I/O	ST	
RB11	24	35	K5	I/O	ST	
RB12	27	41	J7	I/O	ST	
RB13	28	42	L7	I/O	ST	
RB14	29	43	K7	I/O	ST	
RB15	30	44	L8	I/O	ST	
RC1		6	D1	I/O	ST	PORTC Digital I/Os.
RC2	_	7	E4	I/O	ST	
RC3	_	8	E2	I/O	ST	
RC4		9	E1	I/O	ST	
RC12	39	63	F9	I/O	ST	
RC13	47	73	C10	I/O	ST	
RC14	48	74	B11	I/O	ST	
RC15	40	64	F11	I/O	ST	
RD0	46	72	D9	I/O	ST	PORTD Digital I/Os.
RD1	49	76	A11	I/O	ST	
RD2	50	77	A10	I/O	ST	
RD3	51	78	B9	I/O	ST	
RD4	52	81	C8	I/O	ST	
RD5	53	82	B8	I/O	ST	
RD6	54	83	D7	I/O	ST	
RD7	55	84	C7	I/O	ST	
RD8	42	68	E9	I/O	ST	
RD9	43	69	E10	I/O	ST	
RD10	44	70	D11	I/O	ST	
RD11	45	71	C11	I/O	ST	7
RD12	_	79	A9	I/O	ST	
RD13	—	80	D8	I/O	ST	7
RD14	_	47	L9	I/O	ST	
RD15	_	48	K9	I/O	ST	

Legend: TTL = TTL input buffer ANA = Analog-level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

	F	Pin/Pad Numb	er			
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
RE0	60	93	A4	I/O	ST	PORTE Digital I/Os.
RE1	61	94	B4	I/O	ST	
RE2	62	98	B3	I/O	ST	
RE3	63	99	A2	I/O	ST	
RE4	64	100	A1	I/O	ST	
RE5	1	3	D3	I/O	ST	
RE6	2	4	C1	I/O	ST	
RE7	3	5	D2	I/O	ST	
RE8		18	G1	I/O	ST	
RE9		19	G2	I/O	ST	
REFI1	24	35	K5	I	ST	External Reference Clock Input.
RF0	58	87	B6	I/O	ST	PORTF Digital I/Os.
RF1	59	88	A6	I/O	ST	
RF2	34	52	K11	I/O	ST	
RF3	33	51	K10	I/O	ST	
RF4	31	49	L10	I/O	ST	
RF5	32	50	L11	I/O	ST	
RF6	35	55	H9	I/O	ST	
RF7		54	H8	I/O	ST	
RF8		53	J10	I/O	ST	
RF12		40	K6	I/O	ST	
RF13		39	L6	I/O	ST	
RG0		90	A5	I/O	ST	PORTG Digital I/Os.
RG1	_	89	E6	I/O	ST	
RG2	37	57	H10	I/O	ST	
RG3	36	56	J11	I/O	ST	
RG6	4	10	E3	I/O	ST	
RG7	5	11	F4	I/O	ST	
RG8	6	12	F2	I/O	ST]
RG9	8	14	F3	I/O	ST]
RG12		96	C3	I/O	ST	
RG13	_	97	A3	I/O	ST]
RG14	_	95	C4	I/O	ST	
RG15	_	1	B2	I/O	ST]

Legend: TTL = TTL input buffer

ANA = Analog-level input/output

ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

Pin	Pin/Pad Number				Input	
Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
RH1	_	_	B1	I/O	ST	PORTH Digital I/Os.
RH2	_	_	D4	I/O	ST	
RH3	_	_	G4	I/O	ST	
RH4	_	_	H3	I/O	ST	
RH5	_	_	H4	I/O	ST	
RH6	_	_	L5	I/O	ST	
RH7	_	_	J5	I/O	ST	
RH8	_	_	H7	I/O	ST	
RH9	_	_	J8	I/O	ST	
RH10	_	_	J9	I/O	ST	
RH11	_	_	G8	I/O	ST	
RH12	_	_	F7	I/O	ST	
RH13	_	_	C9	I/O	ST	
RH14	_	_	A8	I/O	ST	
RH15	_	_	F6	I/O	ST	
RJ0	_	_	D5	I/O	ST	PORTJ Digital I/Os.
RJ1	_	_	E5	I/O	ST	
RP0	16	25	K2	I/O	ST	Remappable Peripherals (Input or Output).
RP1	15	24	K1	I/O	ST	
RP2	42	68	E9	I/O	ST	
RP3	44	70	D11	I/O	ST	
RP4	43	69	E10	I/O	ST	
RP5	_	48	К9	I/O	ST	
RP6	17	26	L1	I/O	ST	
RP7	18	27	J3	I/O	ST	
RP8	21	32	K4	I/O	ST	
RP9	22	33	L4	I/O	ST	
RP10	31	49	L10	I/O	ST	
RP11	46	72	D9	1	ST	
RP12	45	71	C11	-	ST	
RP13	14	23	J2	-	ST	
RP14	29	43	K7	-	ST	
RP15		53	J10		ST	
RP16	33	51	K10		ST	
RP17	32	50	L11		ST	
RP18	11	20	H1		ST	
RP19	6	12	F2		ST	4
RP20	53	82	B8		ST	
RP21	4	10	E3		ST	
RP22	51	78	B9	1	ST	
RP23	50	70	A10		ST	
RP24	49	76	A10	1	ST	
	52	81	C8	· ·	ST	4

TTL = TTL input buffer ANA = Analog-level input/output

 $I^2C^{TM} = I^2C/SMBus$ input buffer

			Pin/Pad Number	1		
Pin	P	in/Pad Numb	er		Input	
Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
RP26	5	11	F4	I	ST	Remappable Peripherals (Input or Output).
RP27	8	14	F3	I	ST	
RP28	12	21	H2	I	ST	
RP29	30	44	L8	I	ST	
RP30	34	52	K11	I	ST	
RP31	_	39	L6	I	ST	
RPIN32	_	40	K6	I	ST	Remappable Peripherals (Input Only).
RPIN33	_	18	G1	I	ST	
RPIN34	_	19	G2	I	ST	
RPIN35	_	67	E8	I	ST	
RPIN36	_	66	E11	I	ST	
RPIN37	48	74	B11	I	ST	
RPIN38	_	6	D1	I	ST	
RPIN39	_	7	E4	I	ST	
RPIN40	—	8	E2	I	ST	
RPIN41	—	9	E1	Ι	ST	
RPIN42	—	79	A9	I	ST	
RPIN43	_	47	L9	I	ST	
RTCC	42	68	E9	0	—	Real-Time Clock Output.
SCK4	59	88	A6	I/O	ST	SPI4 Serial Clock Input/Output.
SCL1	37	57	H10	I/O	I ² C	I2C1 Synchronous Serial Clock Input/Output.
SCL2	32	58	H11	I/O	I ² C	I2C2 Synchronous Serial Clock Input/Output.
SCL3	2	4	C1	I/O	I ² C	I2C3 Synchronous Serial Clock Input/Output.
SCLKI	48	74	B11	I	ST	Secondary Oscillator Digital Clock Input.
SDA1	36	56	J11	I/O	I ² C	I2C1 Data Input/Output.
SDA2	31	59	G10	I/O	I ² C	I2C2 Data Input/Output.
SDA3	3	5	D2	I/O	I ² C	I2C3 Data Input/Output.
SDI4	28	42	L7	Ι	ST	SPI4 Data Input.
SDO4	23	34	H5	0	—	SPI4 Data Output.

Legend: TTL = TTL input buffer ANA = Analog-level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

Pin Function	P	in/Pad Numb	er	I/O	Input Buffer	Description
	64-Pin TQFP	100-Pin TQFP	121-Pin BGA			
SEG0	4	10	E3	0	_	LCD Driver Segment Outputs.
SEG1	8	14	F3	0	_	
SEG2	11	20	H1	0	_	
SEG3	12	21	H2	0	_	
SEG4	13	22	J1	0	_	-
SEG5	14	23	J2	0	_	-
SEG6	15	24	K1	0	_	-
SEG7	16	25	K2	0	_	
SEG8	29	43	K7	0	_	
SEG9	30	44	L8	0	_	
SEG10	31	49	L10	0	_	
SEG11	32	50	L11	0	_	
SEG12	33	51	K10	0	_	-
SEG13	42	68	E9	0	—	
SEG14	43	69	E10	0	_	
SEG15	44	70	D11	0	_	
SEG16	45	71	C11	0	_	
SEG17	46	72	D9	0	_	
SEG18	27	41	J7	0	_	
SEG19	28	42	L7	0	_	
SEG20	49	76	A11	0	_	
SEG21	50	77	A10	0	—	
SEG22	51	78	B9	0	_	
SEG23	52	81	C8	0	_	
SEG24	53	82	B8	0	—	
SEG25	54	83	D7	0	_	
SEG26	55	84	C7	0	—	
SEG27	58	87	B6	0	_	
SEG28	_	61	G9	0	—	
SEG29	23	34	H5	0	—]
SEG30	22	33	L4	0	—	
SEG31	21	32	K4	0		
SEG32	_	6	D1	0		
SEG33	_	8	E2	0		
SEG34		18	G1	0	—	
SEG35		19	G2	0	—	
SEG36	_	28	L2	0	_	
SEG37	_	29	K3	0		
SEG38	_	47	L9	0		
SEG39	_	48	K9	0		
SEG40	34	52	K11	0	_	

Legend: TTL = TTL input buffer ANA = Analog-level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

D !	P	in/Pad Numb	er		Innut	
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
SEG41	-	53	J10	0	—	LCD Driver Segment Outputs.
SEG42		66	E11	0	_	
SEG43	_	67	E8	0	_	
SEG44		79	A9	0	_	
SEG45		80	D8	0	—	
SEG46		89	E6	0	—	
SEG47	59	88	A6	0	—	
SEG48		17	G3	0	—	
SEG49	_	90	A5	0		
SEG50	_	1	B2	0		
SEG51	_	7	E4	0		
SEG52	_	9	E1	0		
SEG53	—	39	L6	0	—	
SEG54	_	40	K6	0	—	
SEG55	_	58	H11	0	—	
SEG56	—	59	G10	0	—	
SEG57	—	91	C5	0	—	
SEG58		92	B5	0		_
SEG59	—	95	C4	0		
SEG60	—	96	C3	0	—	
SEG61		97	A3	0	—	
SEG62	64	100	A1	0	—	_
SEG63	18	27	J3	0	—	
SOSCI	47	73	C10		ANA	Secondary Oscillator Input.
SOSCO	48	74	B11	0	—	Secondary Oscillator Output.
SS4	24	35	K5	0		SPI4 Slave Select Signal.
T1CK	22	33	L4	I	ST	External Timer1 Clock Input.
TCK	27	38	J6		ST	JTAG Test Clock/Programming Clock Input.
TDI	28	60	G11		ST	JTAG Test Data/Programming Data Input.
TDO	24	61	G9	0	—	JTAG Test Data Output.
TMPR	22	33	L4	 	ST	Anti-Tamper Pin.
TMS	23	17	G3		ST	JTAG Test Mode Select Input.
U5BCLK	55	84	C7	0	-	UART5 Baud Clock Output (IrDA [®] mode).
U5CTS	58	87	B6	I	ST	UART5 Clear-to-Send Input.
U5RTS	55	84	C7	0	<u> </u>	UART5 Request-to-Send Output.
U5RX	54	83	D7		ST	UART5 Receiver Input.
U5TX	49	76	A11	0	—	UART5 Transmitter Output.
U6BCLK	42	68	E9	0	—	UART6 Baud Clock Output (IrDA mode).
U6CTS	46	72	D9		ST	UART6 Clear-to-Send Input.
U6RTS	42	68	E9	0		UART6 Request-to-Send Output.
U6RX	27	41	J7	I	ST	UART6 Receiver Input.
U6TX	18	27	J3	0		UART6 Transmitter Output.

Legend: TTL = TTL input buffer ANA = Analog-level input/output

Din	Р	in/Pad Numb	n/Pad Number		Innut	
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
VBAT	57	86	A7	Р		Backup Battery (B+) Input.
VCAP	56	85	B7	Р	_	External Filter Capacitor Pin.
Vdd	10, 26, 38	2, 16, 37, 46, 62	C2, D6, E7, F8, G5, H6, K8	Р	_	Positive Supply for Digital Logic and I/O Pins.
VLCAP1	5	11	F4	Р	ANA	LCD Driver Charge Pump Capacitor Pins.
VLCAP2	6	12	F2	Р	ANA	
VREF+	16	25, 29	K2, K3	I	ANA	Analog Voltage Reference Input (High).
VREF-	15	24, 28	K1, L2		ANA	Analog Voltage Reference Input (Low).
Vss	9, 25, 41	15, 36, 45, 65, 75	B10, C6, D10, F5, F10, G6, G7	Р	_	Ground Reference for Digital Logic and I/O Pins.

Legend: TTL = TTL input buffer ANA = Analog-level input/output ST = Schmitt Trigger input buffer $l^2 CTM = l^2 C/SMBug input buffer$

Pin	Р	in/Pad Numb	er		Input	
Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
AN0	16	25	K2	I	ANA	A/D Converter (Unipolar) Inputs.
AN1	15	24	K1	I	ANA]
AN1-	15	24	K1	I	ANA	A/D Channel 1 Negative Input.
AN2	14	23	J2	I	ANA	A/D Converter (Unipolar) Inputs.
AN3	13	22	J1	I	ANA	1
AN4	12	21	H2	I	ANA	1
AN5	11	20	H1	I	ANA	1
AN6	17	26	L1	I	ANA	1
AN7	18	27	J3	I	ANA	1
AN8	21	32	K4	I	ANA	1
AN9	22	33	L4	I	ANA]
AN10	23	34	H5	I	ANA	1
AN11	24	35	K5	I	ANA]
AN12	27	41	J7	I	ANA]
AN13	28	42	L7	I	ANA	1
AN14	29	43	K7	I	ANA	1
AN15	30	44	L8	I	ANA	
AN16	_	9	E1	I	ANA	1
AN17	—	10	E3	I	ANA	
AN18	_	11	F4	I	ANA	1
AN19	_	12	F2	I	ANA	1
AN20	_	14	F3	I	ANA	1
AN21	_	19	G2	I	ANA	1
AN22	_	92	B5	I	ANA	
AN23	_	91	C5	I	ANA	
AVDD	19	30	J4	Р	_	Power Supply for Analog Modules.
AVss	20	31	L3	Р	_	Ground Reference for Analog Modules.
C1INA	11	20	H1	I	ANA	Comparator 1 Analog Inputs.
C1INB	12	21	H2	I	ANA	1
C1INC	5, 8	11, 14	F3, F4	I	ANA	1
C1IND	4	10	E3	I	ANA	1
C2INA	13	22	J1	I	ANA	Comparator 2 Analog Inputs.
C2INB	14	23	J2	I	ANA	1
C2INC	8	14	F3	I	ANA	1
C2IND	6	12	F2	I	ANA	1
C3INA	55	84	C7	I	ANA	Comparator 3 Analog Inputs.
C3INB	54	83	D7	I	ANA	1
C3INC	8, 45	14, 71	F3, C11	I	ANA	1
C3IND	44	70	D11	I	ANA	1
CLC3OUT	46	72	D9	0	_	CLC Module 3 Output.
CLC4OUT	42	68	E9	0	_	CLC Module 4 Output.
CLKI	39	63	F9	1	ANA	Main Clock Input.
CLKO	40	64	F11	0	_	System Clock Output.

TABLE 1-5: PIC24FJ256GB412 FAMILY PINOUT DESCRIPTION

TTL = TTL input buffer ANA = Analog-level input/output

Pin	P	in/Pad Numb	er		Input	
Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
COM0	63	99	A2	0	—	LCD Driver Common Outputs.
COM1	62	98	B3	0	_	
COM2	61	94	B4	0		
COM3	60	93	A4	0	—	
COM4	59	88	B1	0	_	
COM5	23	34	D4	0	_	
COM6	22	33	G4	0	_	
COM7	21	32	H3	0	_	
CTCMP	14	23	J2	I	_	CTMU Comparator Input (Pulse mode).
CTED1	28	42	L7	I	ST	CTMU External Edge Inputs.
CTED2	27	41	J7	I	ST	1
CTED3		1	B2	I	ST	1
CTED4	1	3	D3	I	ST	1
CTED5	29	43	K7	I	ST	1
CTED6	30	44	L8	I	ST	1
CTED7	_	40	K6	I	ST	
CTED8	64	100	A1	I	ST	
CTED9	63	99	A2	I	ST	
CTED10	_	97	A3	1	ST	
CTED11	_	95	C4	1	ST	
CTED12	15	24	K1		ST	
CTED13	14	23	J2		ST	
CTED14	_	17	G3		ST	
CTPLS	29	43	K7	0	_	CTMU Pulse Output.
CVREF	23	34	H5	0		Comparator Voltage Reference Output.
CVREF+	16	25, 29	K2, K3		ANA	Comparator Voltage Reference Input (High).
CVREF-	15	24, 28	K1, L2		ANA	Comparator Voltage Reference Input (Low).
D+	37	57	H10	I/O	_	USB Transceiver Differential Plus Line.
D-	36	56	J11	I/O	_	USB Transceiver Differential Minus Line.
DAC1	8	14	F3	0	_	DAC1 Analog Output.
DVREF+	16	25, 29	K2, K3	1	ANA	DAC Positive Reference Input.
FSYNC4	24	35	K5	I/O	ST	SPI4 Frame Sync Signal.
IC4	1	3	D3		ST	Input Capture 4 Input.
IC5	2	4	C1	1	ST	Input Capture 5 Input.
IC6	3	5	D2	1	ST	Input Capture 6 Input.
ICM1	4	10	E3	1	ST	Input Capture 1 Input (MCCP1).
ICM2	6	10	F2		ST	Input Capture 2 Input (MCCP2).
ICM3	11	20	H1	1	ST	Input Capture 3 Input (MCCP3).
ICM4	49	76	A11	1	ST	Input Capture 3 Input (MCCF 3).
ICM5	49	68	E9	1	ST	Input Capture 5 Input (SCCP5).
ICM6	42	68 72	D9	1	ST	Input Capture 5 Input (SCCP5). Input Capture 6 Input (SCCP6).
ICM7	51	78	B9		ST	Input Capture 7 Input (SCCP7).
INT0 Legend: T	46 TL = TTL inpu	72	D9		ST - Sahmit	External Interrupt Input 0. t Trigger input buffer

IIL = IIL input buffer ANA = Analog-level input/output

Dir	Р	in/Pad Numb	Pin/Pad Number		Incut	
Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
LCDBIAS0	3	5	D2	I	ANA	Bias Inputs for LCD Driver.
LCDBIAS1	2	4	C1	I	ANA	
LCDBIAS2	1	3	D3	I	ANA	
LCDBIAS3	17	26	L1	I	ANA	
LVDIN	64	100	A1	I	ANA	High/Low-Voltage Detect Input.
MCLR	7	13	F1	I	ST	Master Clear (Device Reset) Input. This line is brought low to cause a Reset.
OC4	54	83	D7	0		Output Compare/PWM4 Output (SCCP4).
OC5	55	84	C7	0		Output Compare/PWM5 Output (SCCP5).
OC6	58	87	B6	0		Output Compare/PWM6 Output (SCCP6).
OCM1A	4	10	E3	0		Output Compare/PWM1 Outputs (MCCP1).
OCM1B	5	11	F4	0		
OCM1C	_	1	B2	0	_	1
OCM1D	_	6	D1	0	_	1
OCM1E	_	91	C5	0	_	1
OCM1F	_	92	B5	0	_	1
OCM2A	6	12	F2	0		Output Compare/PWM2 Outputs (MCCP2).
OCM2B	8	14	F3	0		
OCM2C	_	7	E4	0	_	
OCM2D	_	8	E2	0	_	
OCM2E	_	96	C3	0		
OCM2F	_	97	A3	0	_	
ОСМЗА	11	20	H1	0	_	Output Compare/PWM3 Outputs (MCCP3).
ОСМЗВ	12	21	H2	0		
OCM3C	_	9	E1	0		
OCM3D	_	17	G3	0		
OCM3E	_	79	A9	0	_	
OCM3F		80	D8	0		
OSCI	39	63	F9	I	ANA	Primary Oscillator Input.
OSCO	40	64	F11	0	_	Primary Oscillator Output.
PGEC1	15	24	K1	I/O	ST	In-Circuit Debugger/Emulator/ICSP™
PGEC2	17	26	L1	I/O	ST	Programming Clock.
PGEC3	11	20	H1	I/O	ST	1
PGED1	16	25	K2	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming
PGED2	18	27	J3	I/O	ST	Data.
PGED3	12	21	H2	I/O	ST	1
PMA0	30	44	L8	I/O	ST	Parallel Master Port Address Bit 0 Input (Bufferer Slave modes) and Output (Master modes).
PMA1	29	43	K7	I/O	ST	Parallel Master Port Address Bit 1 Input (Bufferer Slave modes) and Output (Master modes).
PMA2	8	14	F3	0	_	Parallel Master Port Address (bits<5:2>).
PMA3	6	12	F2	0	_	1
PMA4	5	11	F4	0	_	1
PMA5	4	10	E3	0	_	1

ANA = Analog-level input/output

Dia	Р	in/Pad Numb	er		la cont	
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
PMA6	16	29	K3	0	_	Parallel Master Port Address (bits<22:6>).
PMA7	22	28	L2	0	_	
PMA8	32	50	L11	0	_	
PMA9	31	49	L10	0	_	
PMA10	28	42	L7	0	_	
PMA11	27	41	J7	0	_	
PMA12	24	35	K5	0	_	
PMA13	23	34	H5	0	_	
PMA14	45	71	C11	0	_	
PMA15	44	70	D11	0	_	
PMA16	_	95	C4	0	_	
PMA17	_	92	B5	0	_	
PMA18	_	40	K6	0		1
PMA19	_	19	G2	0	_	
PMA20	_	59	G10	0	_	
PMA21	_	60	G11	0	_	
PMA22	_	66	E11	0	_	
PMACK1	50	77	A10	I	ST/TTL	Parallel Master Port Acknowledge Input 1.
PMACK2	43	69	E10	I	ST/TTL	Parallel Master Port Acknowledge Input 2.
PMBE0	51	78	B9	0	_	Parallel Master Port Byte Enable 0 Strobe.
PMBE1	_	67	E8	0	_	Parallel Master Port Byte Enable 1 Strobe.
PMCS1	_	18	G1	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe.
PMCS2	_	9	E1	0	_	Parallel Master Port Chip Select 1 Strobe.
PMD0	60	93	A4	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master
PMD1	61	94	B4	I/O	ST/TTL	mode) or Address/Data (Multiplexed Master
PMD2	62	98	B3	I/O	ST/TTL	modes).
PMD3	63	99	A2	I/O	ST/TTL	
PMD4	64	100	A1	I/O	ST/TTL	
PMD5	1	3	D3	I/O	ST/TTL	
PMD6	2	4	C1	I/O	ST/TTL	
PMD7	3	5	D2	I/O	ST/TTL	
PMD8	_	90	A5	I/O	ST/TTL	
PMD9	_	89	E6	I/O	ST/TTL	1
PMD10	_	88	A6	I/O	ST/TTL	1
PMD11	_	87	B6	I/O	ST/TTL	1
PMD12	_	79	A9	I/O	ST/TTL	1
PMD13	_	80	D8	I/O	ST/TTL	1
PMD14	_	83	D7	I/O	ST/TTL	1
PMD15	_	84	C7	I/O	ST/TTL	1
PMRD	53	82	B8	I/O	ST/TTL	Parallel Master Port Read Strobe.
PMWR	52	81	C8	I/O	ST/TTL	Parallel Master Port Write Strobe.
PWRGT	21	32	K4	0	_	RTCC Power Control Output.
PWRLCLK	48	74	B11	I	ST	RTCC External Clock Source Input.
	TL = TTL inpu					t Trigger input buffer

Legend: TTL = TTL input buffer ANA = Analog-level input/output ST = Schmitt Trigger input buffer

TABLE 1-5:				JI DESCRIPTION (CONTINUED)		
Pin -	P	in/Pad Numb	er		Input	
Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
RA0	_	17	G3	I/O	ST	PORTA Digital I/Os.
RA1	_	38	J6	I/O	ST	7
RA2	_	58	H11	I/O	ST	7
RA3	_	59	G10	I/O	ST	7
RA4	_	60	G11	I/O	ST	
RA5	_	61	G9	I/O	ST	7
RA6		91	C5	I/O	ST	
RA7	_	92	B5	I/O	ST	7
RA9	_	28	L2	I/O	ST	7
RA10	_	29	K3	I/O	ST	
RA14	_	66	E11	I/O	ST	7
RA15	_	67	E8	I/O	ST	1
RB0	16	25	K2	I/O	ST	PORTB Digital I/Os.
RB1	15	24	K1	I/O	ST	
RB2	14	23	J2	I/O	ST	1
RB3	13	22	J1	I/O	ST	1
RB4	12	21	H2	I/O	ST	1
RB5	11	20	H1	I/O	ST	1
RB6	17	26	L1	I/O	ST	1
RB7	18	27	J3	I/O	ST	1
RB8	21	32	K4	I/O	ST	1
RB9	22	33	L4	I/O	ST	
RB10	23	34	H5	I/O	ST	1
RB11	24	35	K5	I/O	ST	1
RB12	27	41	J7	I/O	ST	1
RB13	28	42	L7	I/O	ST	7
RB14	29	43	K7	I/O	ST	1
RB15	30	44	L8	I/O	ST	1
RC1	_	6	D1	I/O	ST	PORTC Digital I/Os.
RC2	_	7	E4	I/O	ST	1
RC3	_	8	E2	I/O	ST	1
RC4	_	9	E1	I/O	ST	1
RC12	39	63	F9	I/O	ST	1
RC13	47	73	C10	I/O	ST	1
RC14	48	74	B11	I/O	ST	1
RC15	40	64	F11	I/O	ST	1
				-		l t Trigger ipput buffer

Legend: TTL = TTL input buffer ANA = Analog-level input/output

Pin	Р	in/Pad Numb	er		Innut	
Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
RD0	46	72	D9	I/O	ST	PORTD Digital I/Os.
RD1	49	76	A11	I/O	ST	
RD2	50	77	A10	I/O	ST	
RD3	51	78	B9	I/O	ST	
RD4	52	81	C8	I/O	ST	
RD5	53	82	B8	I/O	ST	
RD6	54	83	D7	I/O	ST	-
RD7	55	84	C7	I/O	ST	-
RD8	42	68	E9	I/O	ST	-
RD9	43	69	E10	I/O	ST	
RD10	44	70	D11	I/O	ST	
RD11	45	71	C11	I/O	ST	
RD12		79	A9	I/O	ST	1
RD13		80	D8	I/O	ST	-
RD14		47	L9	I/O	ST	
RD15		48	K9	I/O	ST	
RE0	60	93	A4	I/O	ST	PORTE Digital I/Os.
RE1	61	94	B4	I/O	ST	
RE2	62	98	B3	I/O	ST	
RE3	63	99	A2	I/O	ST	-
RE4	64	100	A1	I/O	ST	-
RE5	1	3	D3	I/O	ST	-
RE6	2	4	C1	I/O	ST	
RE7	3	5	D2	I/O	ST	-
RE8		18	G1	I/O	ST	-
RE9	_	19	G2	I/O	ST	
REFI1	24	35	K5	I	ST	External Reference Clock Input.
RF0	58	87	B6	I/O	ST	PORTF Digital I/Os.
RF1	59	88	A6	I/O	ST	
RF2	_	52	K11	I/O	ST	
RF3	33	51	K10	I/O	ST	
RF4	31	49	L10	I/O	ST	7
RF5	32	50	L11	I/O	ST	
RF7	34	54	H8	I/O	ST	1
RF8	_	53	J10	I/O	ST	
RF12	_	40	K6	I/O	ST	1
RF13	_	39	L6	I/O	ST	1

ANA = Analog-level input/output

TABLE 1-5:		in/Pad Numb				
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
RG0	_	90	A5	I/O	ST	PORTG Digital I/Os.
RG1	_	89	E6	I/O	ST	
RG2	37	57	H10	I/O	ST	
RG3	36	56	J11	I/O	ST	
RG6	4	10	E3	I/O	ST	
RG7	5	11	F4	I/O	ST	
RG8	6	12	F2	I/O	ST	
RG9	8	14	F3	I/O	ST	
RG12	_	96	C3	I/O	ST	
RG13	_	97	A3	I/O	ST	
RG14	_	95	C4	I/O	ST	
RG15	_	1	B2	I/O	ST	
RH1	_	_	B1	I/O	ST	PORTH Digital I/Os.
RH2	—	_	D4	I/O	ST	
RH3	_	_	G4	I/O	ST	
RH4	_	_	H3	I/O	ST	
RH5	_	_	H4	I/O	ST	
RH6	_	_	L5	I/O	ST	
RH7	_	_	J5	I/O	ST	
RH8	_	_	H7	I/O	ST	
RH9	_	_	J8	I/O	ST	
RH10	_	—	J9	I/O	ST	
RH11	_	—	G8	I/O	ST	
RH12	_	—	F7	I/O	ST	
RH13	_	—	C9	I/O	ST	
RH14	_	_	A8	I/O	ST	
RH15	_	—	F6	I/O	ST	7
RJ0		_	D5	I/O	ST	PORTJ Digital I/Os.
RJ1	_	_	E5	I/O	ST	
RP0	16	25	K2	I/O	ST	Remappable Peripherals (Input or Output).
RP1	15	24	K1	I/O	ST	
RP2	42	68	E9	I/O	ST]
RP3	44	70	D11	I/O	ST]
RP4	43	69	E10	I/O	ST]
RP5	_	48	K9	I/O	ST]
RP6	17	26	L1	I/O	ST	1
RP7	18	27	J3	I/O	ST	1
RP8	21	32	K4	I/O	ST	1
RP9	22	33	L4	I/O	ST	1
RP10	31	49	L10	I/O	ST	1

Legend: TTL = TTL input buffer

ANA = Analog-level input/output

Pin/Pad Number Pin Input I/O Description 64-Pin 100-Pin 121-Pin Buffer Function TQFP TQFP BGA **RP11** 46 72 D9 T ST Remappable Peripherals (Input or Output). RP12 45 71 C11 I ST **RP13** 14 23 J2 I ST RP14 ST 29 43 K7 I **RP15** _____ 53 J10 I ST RP16 51 K10 I 33 ST RP17 32 ST 50 L11 T **RP18** H1 ST 11 20 I **RP19** 12 F2 ST 6 I **RP20** 82 53 B8 T ST RP21 4 10 E3 I ST RP22 51 78 B9 ST T RP23 50 77 A10 I ST RP24 49 76 A11 I ST RP25 52 81 C8 T ST RP26 5 11 F4 T ST RP27 8 14 F3 ST I RP28 12 21 H2 I ST RP29 ST 30 44 L8 T **RP30** 52 K11 ST ____ 1 **RP31** 39 L6 I ST RPIN32 40 K6 I ST Remappable Peripherals (Input Only). RPIN33 18 G1 T ST RPIN34 19 G2 I ST RPIN35 67 E8 I ST RPIN36 66 E11 I ST RPIN37 48 74 B11 I ST RPIN38 6 D1 T ST RPIN39 ____ 7 E4 I ST RPIN40 8 E2 I ST RPIN41 9 E1 T ST ____ RPIN42 79 A9 I ST _____ RPIN43 47 L9 I ST RTCC 42 68 E9 0 Real-Time Clock Output. _ SCK4 59 88 A6 I/O SPI4 Serial Clock Input/Output. ST 1²C SCL1 44 66 E11 I/O I2C1 Synchronous Serial Clock Input/Output. 1²C SCL2 32 58 H11 I/O I2C2 Synchronous Serial Clock Input/Output. SCL3 4 C1 I/O l²C I2C3 Synchronous Serial Clock Input/Output. 2 SCLKI 48 74 B11 ST Secondary Oscillator Digital Clock Input. I l²C SDA1 43 67 E8 I/O I2C1 Data Input/Output. 1²C SDA2 31 59 G10 I/O I2C2 Data Input/Output. SDA3 I/O 1²C 3 5 D2 I2C3 Data Input/Output. SDI4 28 42 L7 ST SPI4 Data Input. I SDO4 23 H5 SPI4 Data Output. 34 0 ____ TTL = TTL input buffer Legend:

TABLE 1-5: PIC24FJ256GB412 FAMILY PINOUT DESCRIPTION (CONTINUED)

ANA = Analog-level input/output

ST = Schmitt Trigger input buffer

Dire	Р	in/Pad Numb	er		Input	
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
SEG0	4	10	E3	0		LCD Driver Segment Outputs.
SEG1	8	14	F3	0	_	
SEG2	11	20	H1	0		
SEG3	12	21	H2	0		
SEG4	13	22	J1	0		
SEG5	14	23	J2	0		
SEG6	15	24	K1	0	_	
SEG7	16	25	K2	0		
SEG8	29	43	K7	0	_	
SEG9	30	44	L8	0	_	-
SEG10	31	49	L10	0	_	-
SEG11	32	50	L11	0	_	-
SEG12	33	51	K10	0	_	-
SEG13	42	68	E9	0	_	-
SEG14	43	69	E10	0	_	-
SEG15	44	70	D11	0	_	-
SEG16	45	71	C11	0	_	-
SEG17	46	72	D9	0	_	-
SEG18	27	41	J7	0	_	-
SEG19	28	42	L7	0	_	-
SEG20	49	76	A11	0	_	-
SEG21	50	77	A10	0	_	-
SEG22	51	78	B9	0	_	-
SEG23	52	81	C8	0	_	-
SEG24	53	82	B8	0	_	-
SEG25	54	83	D7	0	_	-
SEG26	55	84	C7	0	_	-
SEG27	58	87	B6	0	_	-
SEG28	_	61	G9	0	_	-
SEG29	23	34	H5	0	_	-
SEG30	22	33	L4	0	_	1
SEG31	21	32	K4	0	_	1
SEG32	_	6	D1	0	_	1
SEG33	_	8	E2	0	_	1
SEG34	_	18	G1	0		
SEG35	_	19	G2	0		
SEG36	_	28	L2	0	_	1
SEG37	_	29	K3	0	_	1
SEG38	_	47	L9	0	_	1
SEG39	_	48	K9	0		1
SEG40	_	52	K11	0		1

Legend: TTL = TTL input buffer

ANA = Analog-level input/output

	Р	in/Pad Numb	er		_	
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
SEG41	_	53	J10	0	_	LCD Driver Segment Outputs.
SEG42	_	66	E11	0	_	
SEG43	_	67	E8	0	_	
SEG44	_	79	A9	0	—	
SEG45	_	80	D8	0	—	
SEG46	_	89	E6	0	—	
SEG47	59	88	A6	0	—	
SEG48	_	17	G3	0	—	
SEG49	—	90	A5	0	—	
SEG50		1	B2	0	—	
SEG51	_	7	E4	0	—	
SEG52	_	9	E1	0	—	
SEG53	—	39	L6	0	—	
SEG54	_	40	K6	0	—	
SEG55	_	58	H11	0	—	
SEG56	_	59	G10	0	—	
SEG57	_	91	C5	0	—	
SEG58	_	92	B5	0	—	
SEG59	_	95	C4	0	—	
SEG60	_	96	C3	0	—	
SEG61	_	97	A3	0	—	
SEG62	64	100	A1	0	—	
SEG63	18	27	J3	0	—	
SOSCI	47	73	C10	I	ANA	Secondary Oscillator Input.
SOSCO	48	74	B11	0	—	Secondary Oscillator Output.
SS4	24	35	K5	0	—	SPI4 Slave Select Signal.
T1CK	22	33	L4	I	ST	External Timer1 Clock Input.
ТСК	27	38	J6	I	ST	JTAG Test Clock Input.
TDI	28	60	G11	I	ST	JTAG Test Data Input.
TDO	24	61	G9	0	—	JTAG Test Data Output.
TMPR	22	33	L4	I	ST	Anti-Tamper Pin.
TMS	23	17	G3	I	ST	JTAG Test Mode Select Input.
U5BCLK	55	84	C7	0	—	UART5 Baud Clock Output (IrDA [®] mode).
U5CTS	58	87	B6	I	ST	UART5 Clear-to-Send Input.
U5RTS	55	84	C7	0	_	UART5 Request-to-Send Output.
U5RX	54	83	D7	I	ST	UART5 Receiver Input.
U5TX	49	76	A11	0	—	UART5 Transmitter Output.
U6BCLK	42	68	E9	0	—	UART6 Baud Clock Output (IrDA mode).
U6CTS	46	72	D9	I	ST	UART6 Clear-to-Send Input.
U6RTS	42	68	E9	0	_	UART6 Request-to-Send Output.
	07	41	J7	1	ST	UART6 Receiver Input.
U6RX	27	41	01		• •	

Legend: TTL = TTL input buffer

ANA = Analog-level input/output

Dia	Р	in/Pad Numb	er		Innet	
Pin Function	64-Pin TQFP	100-Pin TQFP	121-Pin BGA	I/O Input Buffer	Description	
USBID	33	51	K10	I	ST	USB OTG ID (OTG mode only).
USBOE	12	21	H2	0	_	USB Transceiver Output Enable Flag.
VBAT	57	86	A7	Р	_	Backup Battery (B+) Input.
VBUS	34	54	H8	Р	_	USB VBUS Connection (5V Nominal).
VCAP	56	85	B7	Р	_	External Filter Capacitor Pin.
Vdd	10, 26, 38	2, 16, 37, 46, 62	C2, G5, H6, K8, F8, E7, D6	Р	_	Positive Supply for Digital Logic and I/O Pins.
VLCAP1	5	11	F4	Р	ANA	LCD Driver Charge Pump Capacitor Pins.
VLCAP2	6	12	F2	Р	ANA	
VREF+	16	25, 29	K2, K3	Ι	ANA	Analog Voltage Reference Input (High).
VREF-	15	24, 28	K1, L2	I	ANA	Analog Voltage Reference Input (Low).
Vss	9, 25, 41	15, 36, 45, 65, 75	F5, G6, G7, F10, D10, B10, C6	Р	_	Ground Reference for Digital Logic and I/O Pins.
VUSB3V3	35	55	H9	Р	—	USB Transceiver Power Input (3.3V Nominal).

TTL = TTL input buffer Legend:

ANA = Analog-level input/output

PIC24FJ256GA412/GB412 FAMILY

NOTES:

FIGURE 2-1:

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FJ256GA412/GB412 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and VSS pins (see Section 2.2 "Power Supply Pins")
- All analog power pins (AVDD and AVss), regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- The USB transceiver supply, VUSB3V3, regardless of whether or not the USB module is used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")

```
    VCAP pin
(see Section 2.4 "Voltage Regulator Pin (VCAP)")
```

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

 Any voltage reference pins used when external voltage reference for analog modules is implemented (AVREF+/AVREF-, CVREF+/CVREFand DVREF+)

Note:	All analog power supply and return pins
	must always be connected, regardless of
	whether any of the analog modules are
	being used.

The minimum mandatory connections are shown in Figure 2-1.

MINIMUM CONNECTIONS C2⁽²⁾ Vdd ┥┝ ۷D /ss ŹR1 R2 MCLR VCAF C1⁽⁴⁾ C7(1) PIC24FJXXXXX VUSB3V3 Vss C6^{(2)⊥} C3(3) Vdd Vss AVDD AVSS

C5⁽²⁾

RECOMMENDED

Key (all values are recommendations):

C1 through C6: 0.1 µF, 20V ceramic

C7: 10 μ F, 6.3V or greater, tantalum or ceramic

R1: 10 kΩ

R2: 100 Ω to 470 Ω

- Note 1: See Section 2.4 "Voltage Regulator Pin (VCAP)" for details on selecting the proper capacitor for VCAP.
 - 2: The example shown is for a PIC24F device with five power and ground pairs (including analog and USB). Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.
 - 3: Implemented on PIC24FJXXXGB4XX devices only. See Section 20.1 "Hardware Configuration" for details on connecting the pins for USB operation.
 - 4: C1 is optional, see Section 2.3 "Master Clear (MCLR) Pin" and Section 2.5 "ICSP Pins" for more information.

2.2 Power Supply Pins

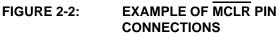
2.2.1 DECOUPLING CAPACITORS

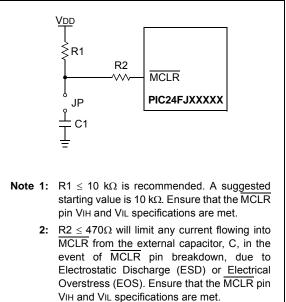
The use of decoupling capacitors on every pair of power supply pins is required. This includes digital supply (VDD and VSS) and all analog supplies (AVDD and AVSS).

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 BULK CAPACITORS

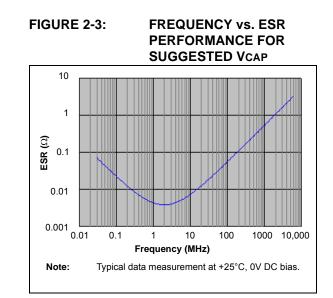

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.


2.4 Voltage Regulator Pin (VCAP)

A low-ESR (< 5 Ω) capacitor is required on the VCAP pin to stabilize the output voltage of the on-chip voltage regulator. The VCAP pin must not be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specification can be used.

The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 36.0** "**Electrical Characteristics**" for additional information.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

Refer to **Section 33.2** "**On-Chip Voltage Regulator**" for details on connecting and using the on-chip regulator.

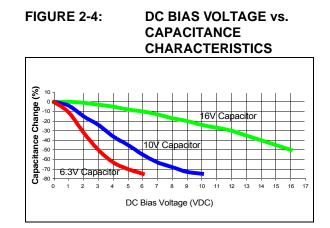
TABLE 2-1: SUITABLE CAPACITOR EQUIVAL	ENTS.
---------------------------------------	-------

Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to +125°C
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to +85°C
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to +125°C
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to +85°C
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to +125°C
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to +85°C

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.


Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (i.e., $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

Typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V or 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

The $\overline{\text{MCLR}}$ connection from the ICSP header should connect directly to the $\overline{\text{MCLR}}$ pin on the device. A capacitor to ground (C1 in Figure 2-2) is optional, but if used, may interfere with ICSP operation if the value exceeds 0.01 μ F. In most cases, this capacitor is not required.

For more information on available Microchip development tools connection requirements, refer to **Section 34.0 "Development Support"**.

2.6 External Oscillator Pins

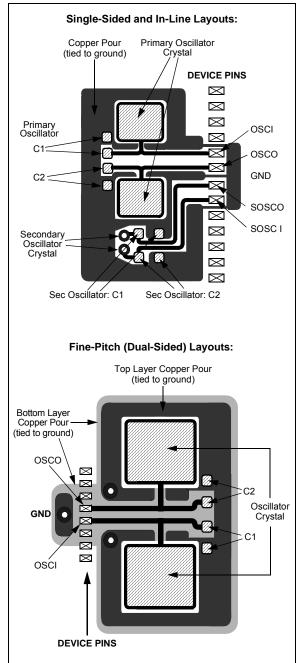
Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).


For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"
- AN1798, "Crystal Selection for Low-Power Secondary Oscillator"

FIGURE 2-5:

PLACEMENT OF THE OSCILLATOR CIRCUIT

SUGGESTED

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. This is done by clearing all bits in the ANSx registers. Refer to **Section 11.2 "Configuring Analog Port Pins (ANSx)**" for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, it must set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time. When a Microchip debugger/emulator is used as a programmer, the user application must correctly configure the ANSx registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU with Extended Data Space (EDS)" (DS39732). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The lower 32 Kbytes of the Data Space (DS) can be accessed linearly. The upper 32 Kbytes of the Data Space are referred to as Extended Data Space to which the extended data RAM, EPMP memory space or program memory can be mapped.

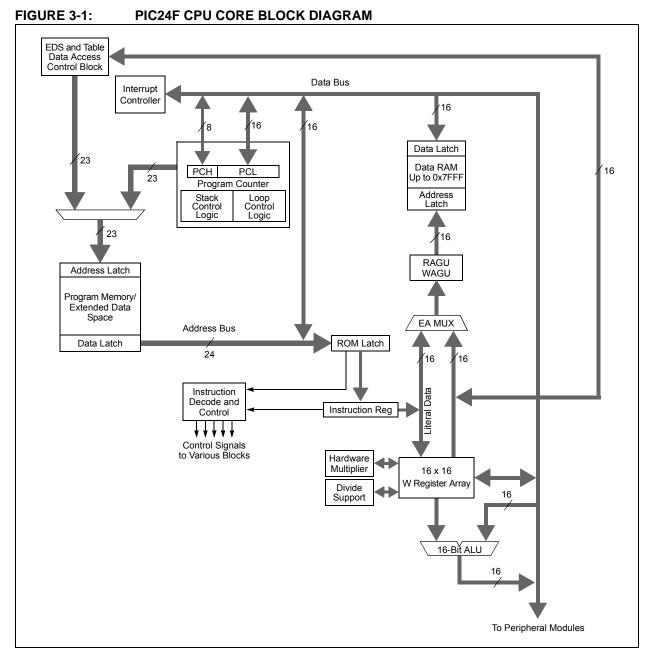
The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs. The core supports Inherent (no operand), Relative, Literal and Memory Direct Addressing modes, along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.


A block diagram of the CPU is shown in Figure 3-1.

3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions.

A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory-mapped.

PIC24FJ256GA412/GB412 FAMILY

TABLE 3-1:	CPU CORE REGISTERS
IADLL J-I.	

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
RCOUNT	REPEAT Loop Counter Register
CORCON	CPU Control Register
DISICNT	Disable Interrupt Count Register
DSRPAG	Data Space Read Page Register
DSWPAG	Data Space Write Page Register

PIC24FJ256GA412/GB412 FAMILY

FIGURE 3-2: PROGRAMMER'S MODEL

		15			0	
Г	W0 (WREG)	10				
Divider Working Registers -	W1					
<u> </u>	W2					
Multiplier Registers	W3					
L	W4				~~~	
	W5					
	W6					
	W7					∠Working/Address
	W8					Registers
	W9					
	W10					
	W11					
	W12					
	W13				_	
	W14		ame Pointer		_	
	W15	S	tack Pointer		0)	
			SPLIM		0	Stack Pointer Limit Value Register
22					0	-
		PC			0	Program Counter
			7		0	Table Memory Page
				TBLPAG	_	Address Register
			9		0	Data Space Dead Daga Desistar
				SRPAG		Data Space Read Page Register
			8	DSWPAG	0	Data Space Write Dage Degister
		15		JSWPAG	0	Data Space Write Page Register
		15	RCOUNT		0	REPEAT Loop Counter
		15 SRH		SRL	0	Register
						
					8888	ALU STATUS Register (SR)
	1	5			0	
				— IPL3 ——	-	CPU Control Register (CORCON)
			13		0	
				DISICNT		Disable Interrupt Count Register
Registers or bits are	shadowed f	or PUSH.S an	d POP.S in:	structions.		

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
		_					DC
bit 15							bita
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	C
bit 7		11 20	101			_	bit
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
		tad. Daad oo (o)					
bit 15-9	-	ted: Read as '0					
oit 8		f Carry/Borrow b			() oth (
	•	out from the 4 th lo	ow-order bit ((for byte-sized da	ata) or 8" low-	order bit (for wo	ord-sized data
		sult occurred out from the 4 th	or eth low of	dor hit of the rea		od	
	-				suit has occurre	eu	
oit 7-5		PU Interrupt Prio	•				
		nterrupt Priority			s are disabled		
		nterrupt Priority	· ·	,			
		nterrupt Priority					
		nterrupt Priority nterrupt Priority					
		nterrupt Priority					
		nterrupt Priority					
		nterrupt Priority					
oit 4		Loop Active bit					
		oop is in progres					
		oop is not in pro	gress				
bit 3	N: ALU Nega 1 = Result wa						
		as not negative (zero or posit	ive)			
bit 2	OV: ALU Ove	erflow bit					
		occurred for sig		plement) arithm	etic in this arith	nmetic operation	n
h:+ 1		ow has occurred					
bit 1	Z: ALU Zero		to the 7 hit 4		o timo in the m	aat	
		tion, which affec t recent operation					sult)
oit 0	C: ALU Carry	/Borrow bit					
	1 = A carry o	ut from the Most	Significant b	oit (MSb) of the r	esult occurred		
		out from the Mos					
Note 1: Th	e IPI x Statue I	bits are read-only	when NST		15>) = 1		
				e IPI 3 Status (C	-	ait to form the C	

2: The IPLx Status bits are concatenated with the IPL3 Status (CORCON<3>) bit to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

REGISTER 3-2: CORCON: CPU CORE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	-						bit 8
U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	—		—
bit 7							bit 0
Legend:		C = Clearable	bit	r = Reserved	bit		

Legend:	C = Clearable bit	r = Reserved bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 Reserved: Read as '1'

- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-1 for bit description.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTIBIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multibit arithmetic and logic shifts. Multibit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multibit shift instructions only support Register Direct Addressing for both the operand source and result destination.

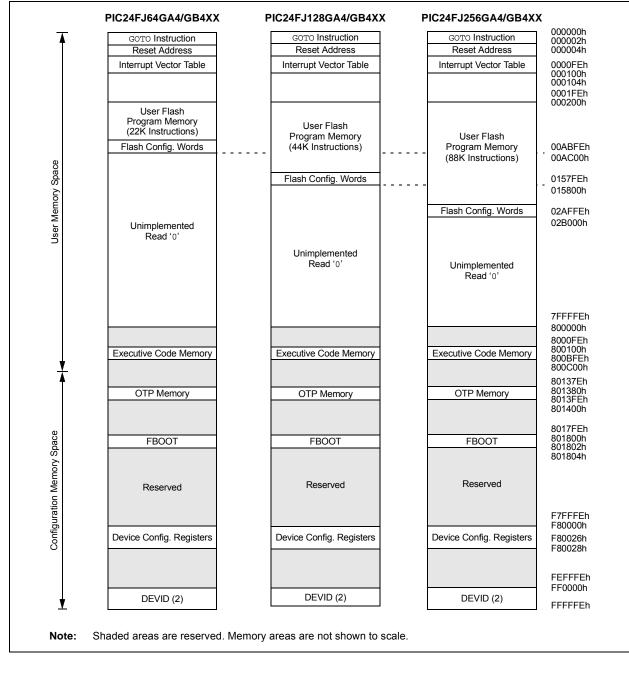
A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTIBIT SHIFT OPERATION

Instruction	Description	
ASR	Arithmetic Shift Right Source register by one or more bits.	
SL	Shift Left Source register by one or more bits.	
LSR	Logical Shift Right Source register by one or more bits.	

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and buses. This architecture also allows direct access of program memory from the Data Space (DS) during code execution.


4.1 **Program Memory Space**

The program address memory space of the PIC24FJ256GA412/GB412 family devices is 4M instructions. The space is addressable by a 24-bit value

derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or Data Space remapping, as described in Section 4.5 "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for PIC24FJ256GA412/GB412 family devices are shown in Figure 4-1.

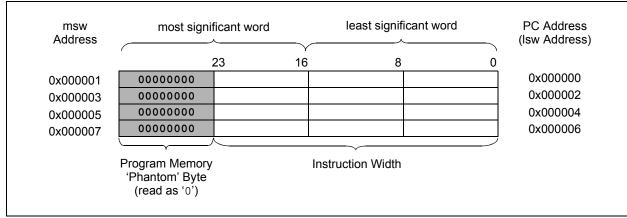
4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

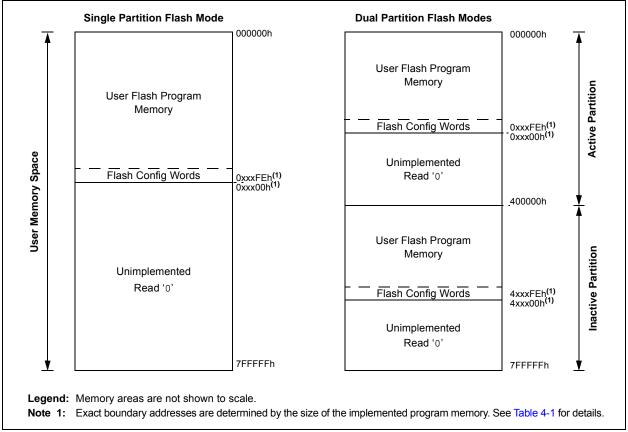
4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 000000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.


PIC24F devices also have two Interrupt Vector Tables (IVTs). The main IVT has a static location, from 000004h to 0000FFh. The Alternate IVT has a configurable location and is optionally enabled. A more detailed discussion of the Interrupt Vector Tables is provided in Section 8.0 "Interrupt Controller".

4.1.3 SINGLE AND DUAL PARTITION MEMORY ORGANIZATION

The PIC24FJ256GA412/GB412 family of devices supports a Single Partition Flash mode and two Dual Partition Flash modes. The Dual Partition modes allow the device to be programmed with two separate applications to facilitate bootloading or to allow an application to be programmed at run-time without stalling the CPU.


In the Dual Partition modes, the device's memory is divided evenly into two physical sections, known as Partition 1 and Partition 2. Each of these partitions contains its own program memory and Configuration Words. During program execution, the code on only one of these panels is executed; this is the Active Partition. The other partition, or the Inactive Partition, is not used, but can be programmed.

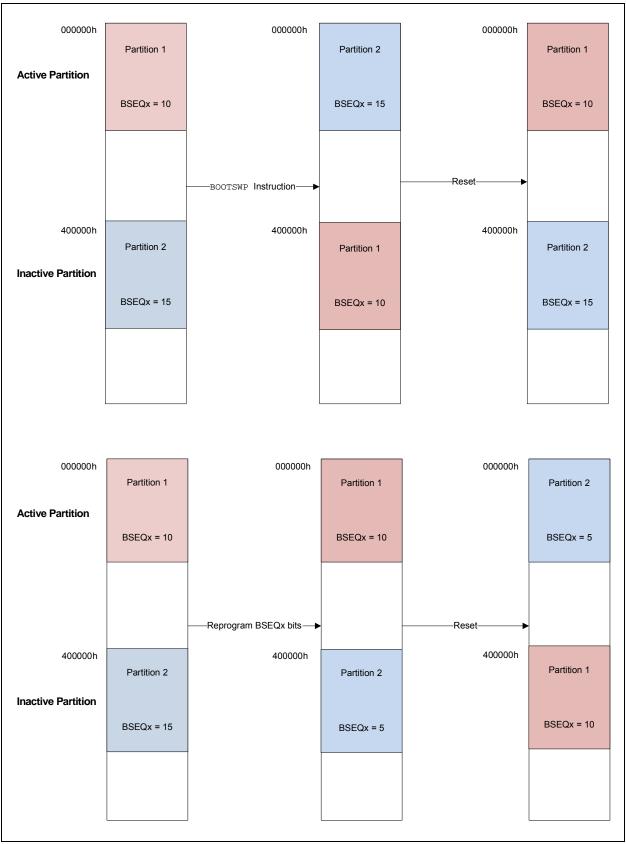
The Active Partition is always mapped to logical address, 000000h, while the Inactive Partition will always be mapped to logical address, 400000h. Note that even when the code partitions are switched between active and inactive by the user, the address of the Active Partition will still be 000000h and the address of the Inactive Partition will still be at 400000h. Figure 4-3 compares the mapping of the user memory space in Single and Dual Partition devices.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-1: F	PROGRAM MEMORY SIZES AND BOUNDARIES
--------------	-------------------------------------

	Program Memory	/ Upper Boundary (I	nstruction Words)				
Device	Single Partition	Dual Partition	n Flash Mode	Write Blocks ⁽¹⁾	Erase Blocks ⁽¹⁾		
	Flash Mode	Active Partition	Inactive Partition				
PIC24FJ256GX4XX	02AFFEh (88K)	0157FEh(44K)	0157FEh(44K)	1376	172		
PIC24FJ128GX4XX	0157FEh(44K)	00ABFEh (22K)	00ABFEh (22K)	688	86		
PIC24FJ64GX4XX	00AFFEh (22K)	0057FEh (11K)	0057FEh (11K)	352	44		

Note 1: One Write Block = 64 Instruction Words; One Erase Block = 512 Instruction Words.


The Boot Sequence Configuration Words (FBTSEQ) determine whether Partition 1 or Partition 2 will be active after Reset. If the part is operating in Dual Partition mode, the partition with the lower boot sequence number will operate as the Active Panel (FBTSEQ is unused in Single Partition mode). The partitions can be switched between Active and Inactive by reprogramming their boot sequence numbers, but the Active Partition will not change until a device Reset is performed. If both boot sequence numbers are the same, or if both are corrupted, the part will use Partition 1 as the Active Partition. If only one boot sequence number is corrupted, the device will use the partition without a corrupted boot sequence number as the Active Partition.

The user can also change which partition is active at run time using the BOOTSWP instruction. Issuing a BOOTSWP instruction does not affect which partition will be the Active Partition after a Reset. Figure 4-4 demonstrates how the relationship between Partitions 1 and 2, shown in red and blue respectively, and the Active and Inactive Partitions are affected by reprogramming the boot sequence number or issuing a BOOTSWP instruction.

The P2ACTIV bit (NVMCON<10>) can be used to determine which physical partition is the Active Partition. If P2ACTIV = 1, Partition 2 is active; if P2ACTIV = 0, Partition 1 is active.

PIC24FJ256GA412/GB412 FAMILY

FIGURE 4-4: RELATIONSHIP BETWEEN PARTITIONS 1 AND 2 AND ACTIVE/INACTIVE PARTITIONS

4.1.4 FLASH CONFIGURATION WORDS

In PIC24FJ256GA412/GB412 family devices, the top nine words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the actual Configuration registers, located in configuration space.

The address range of the Flash Configuration Words for devices in the PIC24FJ256GA412/GB412 family are shown in Table 4-2. Their location in the memory map is shown with the other memory vectors in Figure 4-1. Additional details on the device Configuration Words are provided in Section 33.0 "Special Features".

4.1.4.1 Dual Partition Configuration Words

In Dual Partition Flash modes, each partition has its own set of Flash Configuration Words. The full set of Configuration registers in the Active Partition is used to determine the device's configuration; the Configuration Words in the Inactive Partition are used to determine the device's configuration when that partition becomes active. However, some of the Configuration registers in the Inactive Partition (FSEC, FBSLIM and FSIGN) may be used to determine how the Active Partition is able or allowed to access the Inactive Partition.

4.1.5 ONE-TIME-PROGRAMMABLE (OTP) MEMORY

PIC24FJ256GA412/GB412 family devices provide 384 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801380h through 8013FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- Application checksums
- Code revision information
- Product information
- Serial numbers
- System manufacturing dates
- · Manufacturing lot numbers

OTP memory may be programmed in any mode, including user RTSP mode, but it cannot be erased. Data is not cleared by a Chip Erase. Once programmed, it cannot be rewritten.

Do not perform repeated write operations on the OTP.

	Program	Configuration Word Address Range					
Device Family	Memory (Words)	Single Partition	Dual Partition ⁽¹⁾				
PIC24FJ64GA4XX/GB4XX	22,016	00AB80h:00ABB0h	005580h:0055FCh				
PIC24FJ128GA4XX/GB4XX	44,032	015780h:0157B0h	00AB80h:00ABFCh				
PIC24FJ256GA4XX/GB4XX	88,065	02AF80h:02AFB0h	015780h:0157FCh				

TABLE 4-2: FLASH CONFIGURATION WORDS FOR PIC24FJ256GA412/GB412 FAMILY DEVICES

Note 1: Addresses for the Active Partition are shown. For the Inactive Partitions, add 400000h.

4.2 Unique Device Identifier (UDID)

All (16-bit devices) family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- · Tracking the device
- Unique serial number
- · Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 800F04h and 800F0Ch in the device configuration space. Table 4-3 lists the addresses of the identifier words and shows their contents.

Name	Address	Bits 23-16	Bits 15-8	Bits 7-0				
UDID1	800F04		UDID Word 1					
UDID2	800F06	UDID Word 2						
UDID3	800F08	UDID Word 3						
UDID4	800F0A	UDID Word 4						
UDID5	800F0C	UDID Word 5						

TABLE 4-3: UDID ADDRESSES

4.3 Unique Device Identifier (UDID) (TQAH Variant)

All (16-bit devices) family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- Tracking the device
- Unique serial number
- Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 801308h and 80130Eh in the device configuration space. Table 4-4 lists the addresses of the identifier words and shows their contents.

Name	Address	Bits 23-16	Bits 15-8	Bits 7-0			
UDID1	801308		UDID Word 1				
UDID2	80130A	UDID Word 2					
UDID3	80130C	UDID Word 3					
UDID4	80130E	UDID Word 4					

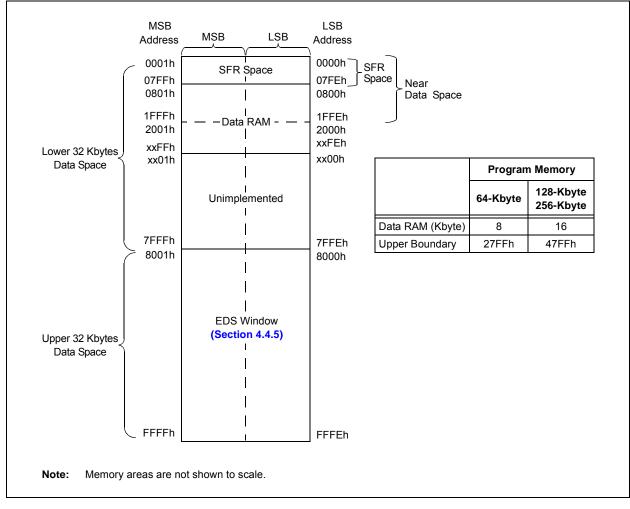
TABLE 4-4: UDID ADDRESSES (TQAH VARIANT)

4.4 Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Data Memory with Extended Data Space (EDS)" (DS39733). The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range. The Data Space (DS) is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is shown in Figure 4-5.

The 16-bit wide data addresses in the data memory space point to bytes within the Data Space. This gives a DS address range of 64 Kbytes or 32K words. The lower half (0000h to 7FFFh) is used for implemented (on-chip) memory addresses.


The upper half of data memory address space (8000h to FFFFh) is used as a window into the Extended Data Space (EDS). This allows the microcontroller to directly access a greater range of data beyond the standard 16-bit address range. EDS is discussed in detail in **Section 4.4.5 "Extended Data Space (EDS)**".

Devices with 64 Kbytes of program memory implement 8 Kbytes of data RAM in the lower half of the DS, from 0800h to 27FFh. All other devices in this family implement 16 Kbytes of data RAM, from 0800h to 47FFh. The lower half of the DS is compatible with previous PIC24F microcontrollers without EDS.

4.4.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space Effective Addresses (EAs) resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.4.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCUs and improve Data Space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.4.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the Data Space is addressable indirectly. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.4.4 SPECIAL FUNCTION REGISTER (SFR) SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. A diagram of the SFR space, showing where the SFRs are actually implemented, is shown in Table 4-5. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete list of implemented SFRs, including their addresses, is shown in Tables 4-6 through 4-13.

	SFR Space Address															
	xx	00	xx	20	хх	40 xx6		60	хх	80	xxA0		xxC0		xx	E0
000h	Core —							lı	nterrup	ts			_			
100h	Syst	tem		EPMP	EPMP CRC		C ⁽¹⁾	PN	1D	Timers			CTM		RTCC	
200h	Capture Compare							MCCP					CMP/	DAC		
300h				ç	SCCP				UART UAR					UAR	r/SPI	
400h	SPI						CLC	LC I ² C™ DMA				MA				
500h	DMA Crypto Engine								USB ⁽²⁾				LC	D		
600h	LCD —						I/O									
700h	I/O A/D					NVM		-			PF	۶			_	

 TABLE 4-5:
 IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = Block is largely or entirely unimplemented.

Note 1: This region includes system control registers (Reference Oscillator).

2: Implemented in PIC24FJXXXGBXXX devices only.

TABLE 4-												
Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets				
Core		Interrupt Cor	ntroller		IPC6	0B4	-100-100-100-100					
WREG0	000	000000000000000000000000000000000000000	INTCON1	080	000000000000000000000000000000000000000	IPC7	0B6	1100110011001100				
WREG1	002	000000000000000000000000000000000000000	INTCON2	082	1001111011100000	IPC8	0B8	1100110011001100				
WREG2	004	000000000000000000000000000000000000000	INTCON3	084	0111111000000000	IPC9	0BA	1100110011001100				
WREG3	006	000000000000000000000000000000000000000	INTCON4	086	111111111111100	IPC10	0BC	1100110011001100				
WREG4	008	000000000000000000000000000000000000000	IFS0	088	000000000000000000000000000000000000000	IPC11	0BE	1xxx110011001100				
WREG5	00A	000000000000000000000000000000000000000	IFS1	08A	000000000100000	IPC12	0C0	1xxx110011001xxx				
WREG6	00C	000000000000000000000000000000000000000	IFS2	08C	x00000000000000000	IPC13	0C2	1100110011001111				
WREG7	00E	000000000000000000000000000000000000000	IFS3	08E	00000000001x00x	IPC14	0C4	1100110011001100				
WREG8	010	000000000000000000000000000000000000000	IFS4	090	1x0111100011000x	IPC15	0C6	1xxx110011001100				
WREG9	012	000000000000000000000000000000000000000	IFS5	092	xx00000000000001	IPC16	0C8	1100110011001xxx				
WREG10	014	000000000000000000000000000000000000000	IFS6	094	000110111xx00000	IPC17	0CA	1100110011111111				
WREG11	016	000000000000000000000000000000000000000	IFS7	096	111111111000000	IPC18	000	1111111111xxx1100				
WREG12	018	000000000000000000000000000000000000000	IEC0	098	000000000000000000000000000000000000000	IPC19	0CE	111111xxx11001111				
WREG13	01A	000000000000000000000000000000000000000	IEC1	09A	000000000100000	IPC20	0D0	1100110011001111				
WREG14	01C	000000000000000000000000000000000000000	IEC2	09C	x00000000000000000	IPC21	0D2	1100110011001100				
WREG15	01E	000000000000000000000000000000000000000	IEC3	09E	x0000000001x00x	IPC22	0D4	1100110011001100				
SPLIM	020	xxxxxxxxxxxxxx0	IEC4	0A0	1x0111100011000x	IPC23	0D6	1xxx1xxx11001100				
PCL	02E	000000000000000000000000000000000000000	IEC5	0A2	xx0000000000000	IPC24	0D8	1100110011001100				
PCH	030	1111111100000000	IEC6	0A4	000110111xx00000	IPC25	0DA	111111xxx1xxx1100				
DSRPAG	032	1111110000000000	IEC7	0A6	111111111000000	IPC26	0DC	1111110011111111				
DSWPAG	034	1111111000000000	IPC0	0A8	1100110011001100	IPC27	0DE	1100110011001111				
RCOUNT	036	*****	IPC1	0AA	1100110011001100	IPC28	0E0	1100110011001100				
SR	042	111111100000000	IPC2	0AC	1100110011001100	IPC29	0E2	111111111001100				
CORCON	044	1111111111110111	IPC3	0AE	1100110011001100	INTTREG	0E4	0101000000000000				
DISICNT	052	11xxxxxxxxxxxxxx	IPC4	0B0	1100110011001100							
TBLPAG	054	111111110000000	IPC5	0B2	1100110011111100							

TABLE 4-6: SFR BLOCK 000h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets	
Clock/System Control		CRCDATL	160	*****	T4CON	1AE	010111xx10000101		
OSCCON	100	Note 1	CRCDATH	162	*****	T5CON	1B0	010111xx10001101	
CLKDIV	102	0000000100q11111	CRCWDATL	164	*****	СТМИ			
CLKDIV2	104	11111111111111111	CRCWDATH	166	*****	CTMUCON1L	1C0	01000000000000000	
OSCTUN	106	0100000011000000	REFOCONL	168	0100010011110000	CTMUCON1H	1C2	0000000000000011	
RCON	10C	001010000000011 ⁽²⁾	REFOCONH	16A	100000000000000000	CTMUCON2L	1C4	111111111101000	
RCON2	10E	111111111111xxxx ⁽²⁾	REFOTRIML	16Ch	000000000000000000	CTMUCON2H	1C6	111111111111111111	
HLVDCON	110	0101111100010000	REFOTRIMH	16E	11111111111111111	RTCC			
DSCON	112	011xx1111111000 ⁽²⁾	Peripheral Mo	odule Disa	able	RTCCON1L	1CC	x111xxxxxxx11xx	
DSWAKE	114	1111111001100011 ⁽²⁾	PMD1	178	0000011100000110	RTCCON1H	1CE	xx11xxxxxxxxxxxx	
DSGPRO	116	0000000000000000000(²⁾	PMD2	17A	110000011000000	RTCCON2L	1D0	xxxxx111xxxx11xx	
DSGPR1	118	0000000000000000000(²⁾	PMD3	17C	1111101000010x01	RTCCON2H	1D2	*****	
Parallel Mas	ster Port		PMD4	17E	111111111010000	RTCCON3L	1D4	*****	
PMCON1	128	0100010000001000	PMD5	180	1111111111xxxxxxx	RTCCON3H	1D6	111111111111111111	
PMCON2	12A	0100111100000000	PMD6	182	11111110111111x0	RTCSTATL	1D8	111111111x1xxxxxx	
PMCON3	12C	0000100010000000	PMD7	184	111111111001111	RTCSTATH	1DA	111111111111111111	
PMCON4	12E	000000000000000000000000000000000000000	PMD8	186	111111111xxxxxx10	TIMEL	1DC	1xxxxxx11111111	
PMCS1CF	130	0000100000011111	Timer			TIMEH	1DE	11xxxxxx1xxxxxxx	
PMCS1BS	132	000000001110111	TMR1	190	000000000000000000	DATEL	1E0	11xxxxxx11111xxx	
PMCS1MD	134	0000011100000000	PR1	192	111111111111111111	DATEH	1E2	xxxxxxx111xxxxx	
PMCS2CF	136	0000100000011111	T1CON	194	0101110010001001	ALMTIMEL	1E4	1xxxxxx11111111	
PMCS2BS	138	000000001110111	TMR2	196	000000000000000000	ALMTIMEH	1E6	11xxxxxx1xxxxxxx	
PMCS2MD	13A	0000011100000000	TMR3HLD	198	000000000000000000	ALMDATEL	1E8	11xxxxxx11111xxx	
PMDOUT1	13C	*****	TMR3	19A	000000000000000000	ALMDATEH	1EA	xxxxxxx111xxxxx	
PMDOUT2	13E	*****	PR2	19C	11111111111111111	TSATIMEL	1EC	1xxxxxx11111111	
PMDIN1	140	*****	PR3	19E	11111111111111111	TSATIMEH	1EE	11xxxxxx1xxxxxxx	
PMDIN2	142	*****	T2CON	1A0	010111xx10000101	TSADATEL	1F0	11xxxxxx11111xxx	
PMSTAT	144	0011000010111111	T3CON	1A2	010111xx10001101	TSADATEH	1F2	xxxxxxx111xxxxx	
CRC Genera	ator/REFO		TMR4	1A4	000000000000000000	TSBTIMEL	1F4	1xxxxxx11111111	
CRCCON1	158	010000001x00111	TMR5H	1A6	000000000000000000	TSBTIMEH	1F6	11xxxxxx1xxxxxxx	
CRCCON2	15A	1110000011100000	TMR5	1A8	000000000000000000	TSBDATEL	1F8	11xxxxxx11111xxx	
CRCXORL	15C	000000000000000000000000000000000000000	PR4	1AA	11111111111111111	TSBDATEH	1FA	xxxxxxx111xxxxx	
CRCXORH	15E	000000000000000000000000000000000000000	PR5	1AC	11111111111111111				

TABLE 4-7: SFR BLOCK 100h

 $\label{eq:legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.$

Note 1: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 9.0 "Oscillator Configuration" for more information.

2: The Reset value of these registers is dependent on the type of Reset event. See Section 7.0 "Resets" for more information.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Input Captu	ire		OC4CON2	250	0000100000001100	CCP2TMRH	2A2	000000000000000000000000000000000000000
IC1CON1	200	1100001110000000	OC4RS	252	*****	CCP2PRL	2A4	111111111111111111
IC1CON2	202	1111111000101101	OC4R	254	*****	CCP2PRH	2A6	111111111111111111
IC1BUF	204	000000000000000000000000000000000000000	OC4TMR	256	*****	CCP2RAL	2A8	000000000000000000000000000000000000000
IC1TMR	206	000000000000000000	OC5CON1	258	11000000000000000	CCP2RAH	2AA	111111111111111111
IC2CON1	208	1100001110000000	OC5CON2	25A	000010000001100	CCP2RBL	2AC	000000000000000000000000000000000000000
IC2CON2	20A	1111111000101101	OC5RS	25C	*****	CCP2RBH	2AE	111111111111111111
IC2BUF	20C	000000000000000000	OC5R	25E	*****	CCP2BUFL	2B0	000000000000000000000000000000000000000
IC2TMR	20E	000000000000000000	OC5TMR	260	****	CCP2BUFH	2B2	000000000000000000000000000000000000000
IC3CON1	210	1100001110000000	OC6CON1	262	11000000000000000	CCP3CON1L	2B4	01000000000000000
IC3CON2	212	1111111000101101	OC6CON2	264	0000100000001100	CCP3CON1H	2B6	00110000000000000
IC3BUF	214	000000000000000000000000000000000000000	OC6RS	266	****	CCP3CON2L	2B8	0010111100000000
IC3TMR	216	000000000000000000000000000000000000000	OC6R	268	****	CCP3CON2H	2BA	0100000100100000
IC4CON1	218	1100001110000000	OC6TMR	26A	****	CCP3CON3L	2BC	111111111000000
IC4CON2	21A	1111111000101101	CCP/Timer (M	CCP)		CCP3CON3H	2BE	0000100011000000
IC4BUF	21C	000000000000000000000000000000000000000	CCP1CON1L	26C	01000000000000000	CCP3STATL	2C0	1111101100xx0000
IC4TMR	21E	000000000000000000000000000000000000000	CCP1CON1H	26E	0011000000000000	CCP3STATH	2C2	1111111111100000
IC5CON1	220	1100001110000000	CCP1CON2L	270	0010111100000000	CCP3TMRL	2C4	000000000000000000000000000000000000000
IC5CON2	222	1111111000101101	CCP1CON2H	272	0100000100100000	CCP3TMRH	2C6	000000000000000000000000000000000000000
IC5BUF	224	000000000000000000000000000000000000000	CCP1CON3L	274	111111111000000	CCP3PRL	2C8	111111111111111111
IC5TMR	226	000000000000000000000000000000000000000	CCP1CON3H	276	0000100011000000	CCP3PRH	2CA	111111111111111111
IC6CON1	228	1100001110000000	CCP1STATL	278	1111101100xx0000	CCP3RAL	2CC	000000000000000000000000000000000000000
IC6CON2	22A	1111111000101101	CCP1STATH	27A	111111111100000	CCP3RAH	2CE	111111111111111111
IC6BUF	22C	000000000000000000000000000000000000000	CCP1TMRL	27C	111111111100000	CCP3RBL	2D0	000000000000000000000000000000000000000
IC6TMR	22E	000000000000000000000000000000000000000	CCP1TMRH	27E	000000000000000000000000000000000000000	CCP3RBH	2D2	111111111111111111
Output Con	npare/PWN	Λ	CCP1PRL	280	000000000000000000000000000000000000000	CCP3BUFL	2D4	000000000000000000000000000000000000000
OC1CON1	230	110000000000000000	CCP1PRH	282	11111111111111111	CCP3BUFH	2D6	000000000000000000000000000000000000000
OC1CON2	232	0000100000001100	CCP1RAL	284	11111111111111111	Comparator/DA	C/Analog	Pin Control
OC1RS	234	*****	CCP1RAH	286	11111111111111111	CMSTAT	2E6	0111110011111100
OC1R	236	*****	CCP1RBL	288	000000000000000000000000000000000000000	CVRCON	2E8	11111000000xxxxx
OC1TMR	238	*****	CCP1RBH	28A	11111111111111111	CM1CON	2EA	0001110000101100
OC2CON1	23A	11000000000000000	CCP1BUFL	28C	000000000000000000000000000000000000000	CM2CON	2EC	0001110000101100
OC2CON2	23C	0000100000001100	CCP1BUFH	28E	000000000000000000000000000000000000000	CM3CON	2EE	0001110000101100
OC2RS	23E	*****	CCP2CON1L	290	01000000000000000	ANCFG	2F4	11111111111xxxxxx
OC2R	240	*****	CCP2CON1H	292	0011000000000000	DAC1CON	2F8	x1xxx11xxxxxxxxx
OC2TMR	242	*****	CCP2CON2L	294	0010111100000000	DAC1DAT	2FA	*****
OC3CON1	244	110000000000000000	CCP2CON2H	296	0100000100100000			
OC3CON2	246	0000100000001100	CCP2CON3L	298	111111111000000			
OC3RS	248	*****	CCP2CON3H	29A	0000100011000000			
OC3R	24A	*****	CCP2STATL	29C	1111101100xx0000			
	2AC	*****	CCP2STATL	29E	1111111111100000			
OC3TMR						1		

TABLE 4-8: SFR BLOCK 200h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

TADLE 4-	-							
Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
CCP/Timer (S	CCP)		CCP6TMRH	35A	000000000000000000000000000000000000000	U2SCINT	3BC	1100110010001100
CCP4CON1L	300	01000000000000000	CCP6PRL	35C	111111111111111111	U2GTC	3BE	111111100000000
CCP4CON1H	302	00110000000000000	CCP6PRH	35E	111111111111111111	U2WTCH	3C0	1111111100000000
CCP4CON2L	304	0010111100000000	CCP6RAL	360	000000000000000000000000000000000000000	U2WTCL	3C2	000000000000000000000000000000000000000
CCP4CON2H	306	0111111100100000	CCP6RAH	362	111111111111111111	U3MODE	3C4	010001000000000
CCP4CON3L	308	111111111111111111	CCP6RBL	364	000000000000000000000000000000000000000	U3STA	3C6	000000100010000
CCP4CON3H	30A	0000100011010011	CCP6RBH	366	111111111111111111	U3TXREG	3C8	x111111xxxxxxxxx
CCP4STATL	30C	1111101100xx0000	CCP6BUFL	368	000000000000000000000000000000000000000	U3RXREG	3CA	111111100000000
CCP4STATH	30E	111111111100000	CCP6BUFH	36A	000000000000000000000000000000000000000	U3BRG	3CC	000000000000000000000000000000000000000
CCP4TMRL	310	000000000000000000000000000000000000000	CCP7CON1L	36C	0100000000000000	U3ADMD	3CE	000000000000000000000000000000000000000
CCP4TMRH	312	000000000000000000000000000000000000000	CCP7CON1H	36E	0011000000000000	U4MODE	3D0	010001000000000
CCP4PRL	314	111111111111111111	CCP7CON2L	370	0010111100000000	U4STA	3D2	000000100010000
CCP4PRH	316	111111111111111111	CCP7CON2H	372	0111111100100000	U4TXREG	3D4	x111111xxxxxxxxx
CCP4RAL	318	000000000000000000	CCP7CON3L	374	111111111000000	U4RXREG	3D6	111111100000000
CCP4RAH	31A	111111111111111111	CCP7CON3H	376	0000100011010011	U4BRG	3D8	000000000000000000000000000000000000000
CCP4RBL	31C	000000000000000000	CCP7STATL	378	1111101100xx0000	U4ADMD	3DA	000000000000000000000000000000000000000
CCP4RBH	31E	111111111111111111	CCP7STATH	37A	111111111100000	U5MODE	3DC	010001000000000
CCP4BUFL	320	000000000000000000	CCP7TMRL	37C	000000000000000000000000000000000000000	U5STA	3DE	000000100010000
CCP4BUFH	322	000000000000000000	CCP7TMRH	37E	000000000000000000000000000000000000000	U5TXREG	3E0	x111111xxxxxxxxx
CCP5CON1L	324	01000000000000000	CCP7PRL	380	111111111111111111	U5RXREG	3E2	111111100000000
CCP5CON1H	326	0011000000000000	CCP7PRH	382	111111111111111111	U5BRG	3E4	000000000000000000000000000000000000000
CCP5CON2L	328	0010111100000000	CCP7RAL	384	000000000000000000000000000000000000000	U5ADMD	3E6	000000000000000000000000000000000000000
CCP5CON2H	32A	0111111100100000	CCP7RAH	386	111111111111111111	U6MODE	3E8	010001000000000
CCP5CON3L	32C	111111111000000	CCP7RBL	388	000000000000000000000000000000000000000	U6STAL	3EA	000000100010000
CCP5CON3H	32E	0000100011010011	CCP7RBH	38A	111111111111111111	U6TXREG	3EC	x111111xxxxxxxxx
CCP5STATL	330	1111101100xx0000	CCP7BUFL	38C	000000000000000000000000000000000000000	U6RXREG	3EE	111111100000000
CCP5STATH	332	111111111100000	CCP7BUFH	38E	000000000000000000000000000000000000000	U6BRG	3F0	000000000000000000000000000000000000000
CCP5TMRL	334	000000000000000000000000000000000000000	UART			U6ADMD	3F2	000000000000000000000000000000000000000
CCP5TMRH	336	000000000000000000000000000000000000000	U1MODE	398	010001000000000	SPI	r	
CCP5PRL	338	111111111111111111	U1STA	39A	000000100010000	SPI1CON1L	3F4	0100000000000000
CCP5PRH	33A	111111111111111111	U1TXREG	39C	x111111xxxxxxxxx	SPI1CON1H	3F6	000000000000000000000000000000000000000
CCP5RAL	33C	000000000000000000000000000000000000000	U1RXREG	39E	111111100000000	SPI1CON2L	3F8	111111111100000
CCP5RAH	33E	111111111111111111	U1BRG	3A0	000000000000000000000000000000000000000	SPI1CON2H	3FA	111111111111111111
CCP5RBL	340	000000000000000000000000000000000000000	U1ADMD	3A2	000000000000000000000000000000000000000	SPI1STATL	3FC	1110011000111100
CCP5RBH	342	1111111111111111111	U1SCCON	3A4	111111111000000	SPI1STATH	3FE	110000011000000
CCP5BUFL	344	000000000000000000000000000000000000000	U1SCINT	3A6	1100110010001100			
CCP5BUFH	346	000000000000000000000000000000000000000	U1GTC	3A8	111111100000000			
CCP6CON1L	348	01000000000000000	U1WTCH	3AA	11111110000000			
CCP6CON1H	34A	00110000000000000	U1WTCL	3AC	00000000000000000			
CCP6CON2L	34C	0010111100000000	U2MODE	3AE	010001000000000			
CCP6CON2H	34E	0111111100100000	U2STA	3B0	000000100010000			
CCP6CON3L	350	111111111000000	U2TXREG	3B2	x111111xxxxxxxxx			
CCP6CON3H	352	0000100011010011	U2RXREG	3B4	111111100000000			
CCP6STATL	354	1111101100xx0000	U2BRG	3B6	000000000000000000000000000000000000000			
CCP6STATH	356	111111111100000	U2ADMD	3B8	000000000000000000000000000000000000000			
CCP6TMRL	358	000000000000000000	U2SCCON	3BA	111111111000000			

TABLE 4-9:SFR BLOCK 300h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
SPI (Continue	d)		SPI4BRGH	45A	11111111111111111	I2C2MSK	4B2	1111110000000000
SPI1BUFL	400	000000000000000000	SPI4IMSKL	45C	1110011000010100	I2C3RCV	4B4	111111110000000
SPI1BUFH	402	000000000000000000	SPI4IMSKH	45E	010000001000000	I2C3TRN	4B6	11111111111111111
SPI1BRGL	404	111xxxxxxxxxxxx	SPI4URDTL	460	000000000000000000	I2C3BRG	4B8	000000000000000000000000000000000000000
SPI1BRGH	406	11111111111111111	SPI4URDTH	462	000000000000000000	I2C3CONL	4BA	01010000000000000
SPI1IMSKL	408	1110011000010100	CLC			I2C3CONH	4BC	111111110000000
SPI1IMSKH	40A	010000001000000	CLC1CONL	464	0101001100011000	I2C3STAT	4BE	0001100000000000
SPI1URDTL	40C	000000000000000000000000000000000000000	CLC1CONH	466	111111111110000	I2C3ADD	4C0	1111110000000000
SPI1URDTH	40E	000000000000000000000000000000000000000	CLC1SELL	468	1000100010001000	I2C3MSK	4C2	1111110000000000
SPI2CON1L	410	0100000000000000	CLC1SELH	46A	111111111111111111	DMA		
SPI2CON1H	412	000000000000000000000000000000000000000	CLC1GLSL	46C	000000000000000000	DMACON	4C4	0101111111111110
SPI2CON2L	414	111111111100000	CLC1GLSH	46E	00000000000000000	DMABUF	4C6	000000000000000000
SPI2CON2H	416	11111111111111111	CLC2CONL	470	0101001100011000	DMAL	4C8	000000000000000000000000000000000000000
SPI2STATL	418	1110011000111100	CLC2CONH	472	111111111110000	DMAH	4CA	000000000000000000000000000000000000000
SPI2STATH	41A	110000011000000	CLC2SELL	474	1000100010001000	DMACH0	4CC	1110100000000000
SPI2BUFL	41C	000000000000000000000000000000000000000	CLC2SELH	476	111111111111111111	DMAINT0	4CE	010000000000110
SPI2BUFH	41E	000000000000000000000000000000000000000	CLC2GLSL	478	00000000000000000	DMASRC0	4D0	000000000000000000000000000000000000000
SPI2BRGL	420	111xxxxxxxxxxxxx	CLC2GLSH	47A	00000000000000000	DMADST0	4D2	000000000000000000000000000000000000000
SPI2BRGH	422	111111111111111111	CLC3CONL	47C	0101001100011000	DMACNT0	4D4	000000000000000000000000000000000000000
SPI2IMSKL	424	1110011000010100	CLC3CONH	47E	111111111110000	DMACH1	4D6	1110100000000000
SPI2IMSKH	426	010000001000000	CLC3SELL	480	1000100010001000	DMAINT1	4D8	010000000000110
SPI2URDTL	428	000000000000000000000000000000000000000	CLC3SELH	482	111111111111111111	DMASRC1	4DA	000000000000000000000000000000000000000
SPI2URDTH	42A	000000000000000000000000000000000000000	CLC3GLSL	484	00000000000000000	DMADST1	4DC	000000000000000000000000000000000000000
SPI3CON1L	42C	0100000000000000	CLC3GLSH	486	00000000000000000	DMACNT1	4DE	000000000000000000000000000000000000000
SPI3CON1H	42E	000000000000000000000000000000000000000	CLC4CONL	488	0101001100011000	DMACH2	4E0	1110100000000000
SPI3CON2L	430	111111111100000	CLC4CONH	48A	111111111110000	DMAINT2	4E2	010000000000110
SPI3CON2H	432	11111111111111111	CLC4SELL	48C	1000100010001000	DMASRC2	4E4	000000000000000000000000000000000000000
SPI3STATL	434	1110011000111100	CLC4SELH	48E	111111111111111111	DMADST2	4E6	000000000000000000000000000000000000000
SPI3STATH	436	110000011000000	CLC4GLSL	490	000000000000000000000000000000000000000	DMACNT2	4E8	000000000000000000000000000000000000000
SPI3BUFL	438	000000000000000000000000000000000000000	CLC4GLSH	492	000000000000000000000000000000000000000	DMACH3	4EA	1110100000000000
SPI3BUFH	43A	000000000000000000000000000000000000000	l²C™			DMAINT3	4EC	010000000000110
SPI3BRGL	43C	111xxxxxxxxxxxxx	I2C1RCV	494	111111100000000	DMASRC3	4EE	000000000000000000000000000000000000000
SPI3BRGH	43E	11111111111111111	I2C1TRN	496	111111111111111111	DMADST3	4F0	000000000000000000000000000000000000000
SPI3IMSKL	440	1110011000010100	I2C1BRG	498	000000000000000000000000000000000000000	DMACNT3	4F2	000000000000000000000000000000000000000
SPI3IMSKH	442	010000001000000	I2C1CONL	49A	0101000000000000	DMACH4	4F4	1110100000000000
SPI3URDTL	444	000000000000000000000000000000000000000	I2C1CONH	49C	111111110000000	DMAINT4	4F6	010000000000110
SPI3URDTH	446	000000000000000000000000000000000000000	I2C1STAT	49E	0001100000000000	DMASRC4	4F8	000000000000000000000000000000000000000
SPI4CON1L	448	01000000000000000	I2C1ADD	4A0	1111110000000000	DMADST4	4FA	000000000000000000000000000000000000000
SPI4CON1H	44A	000000000000000000000000000000000000000	I2C1MSK	4A2	1111110000000000	DMACNT4	4FC	000000000000000000000000000000000000000
SPI4CON2L	44C	111111111100000	I2C2RCV	4A4	111111100000000	DMACH5	4FE	1110100000000000
SPI4CON2H	44E	11111111111111111	I2C2TRN	4A6	111111111111111111			
SPI4STATL	450	1110011000111100	I2C2BRG	4A8	000000000000000000000000000000000000000			
SPI4STATH	452	110000011000000	I2C2CONL	4AA	01010000000000000			
SPI4BUFL	454	000000000000000000000000000000000000000	I2C2CONH	4AC	111111110000000			
SPI4BUFH	456	000000000000000000000000000000000000000	I2C2STAT	4AE	0001100000000000			
SPI4BRGL	458	111xxxxxxxxxxxxx	I2C2ADD	4B0	111111000000000			

TABLE 4-10: SFR BLOCK 400h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
DMA (Continu	ued)		CRYTXTB6	564	*****	U1EP8 ⁽¹⁾	5B2	111111111100000
DMAINT5	500	010000000000110	CRYTXTB7	566	*****	U1EP9 ⁽¹⁾	5B4	111111111100000
DMASRC5	502	000000000000000000000000000000000000000	CRYTXTC0	558	*****	U1EP10 ⁽¹⁾	5B6	111111111100000
DMADST5	504	000000000000000000000000000000000000000	CRYTXTC1	56A	*****	U1EP11 ⁽¹⁾	5B8	111111111100000
DMACNT5	506	000000000000000000000000000000000000000	CRYTXTC2	56C	*****	U1EP12 ⁽¹⁾	5BA	111111111100000
Cryptographi	c Engine		CRYTXTC3	56E	*****	U1EP13 ⁽¹⁾	5BC	111111111100000
CRYCONL	51C	xlxxxxlxxxxxxxx	CRYTXTC4	570	*****	U1EP14 ⁽¹⁾	5BE	111111111100000
CRYCONH	51E	1xxxxxxxxxx1xxxx	CRYTXTC5	572	*****	U1EP15 ⁽¹⁾	5C0	111111111100000
CRYSTAT	520	111111111xxxx1xxx	CRYTXTC6	574	*****	LCD Controll	er	
CRYOTP	524	111111111xxxxxxxx	CRYTXTC7	576	*****	LCDCON	5C2	0101111110000000(2)
CRYKEY0	528	*****	USB			LCDREF	5C4	010000000001000(2)
CRYKEY1	52A	*****	U1OTGIR ⁽¹⁾	578	111111110000010	LCDPS	5C6	111111110000000(²⁾
CRYKEY2	52C	*****	U1OTGIE ⁽¹⁾	57A	111111110000010	LCDDATA0	5C8	00000000000000000(2)
CRYKEY3	52E	*****	U1OTGSTAT ⁽¹⁾	57C	1111111101010010	LCDDATA1	5CA	000000000000000000(2)
CRYKEY4	530	*****	U1OTGCON ⁽¹⁾	57E	1111111100000000	LCDDATA2	5CC	000000000000000000(2)
CRYKEY5	532	*****	U1PWRC ⁽¹⁾	580	111111111x1101100	LCDDATA3	5CE	000000000000000000000(2)
CRYKEY6	534	*****	U1IR ⁽¹⁾	582	1111111100000000	LCDDATA4	5D0	0000000000000000000(2)
CRYKEY7	536	*****	U1IE ⁽¹⁾	584	1111111100000000	LCDDATA5	5D2	000000000000000000000(2)
CRYKEY8	538	*****	U1EIR ⁽¹⁾	586	111111110100000	LCDDATA6	5D4	000000000000000000000(2)
CRYKEY9	53A	****	U1EIE ⁽¹⁾	588	1111111101000000	LCDDATA7	5D6	0000000000000000000(2)
CRYKEY10	53C	****	U1STAT ⁽¹⁾	58A	1111111100000011	LCDDATA8	5D8	000000000000000000000(2)
CRYKEY11	53E	****	U1CON ⁽¹⁾	58C	111111111xx000000	LCDDATA9	5DA	0000000000000000000(2)
CRYKEY12	540	****	U1ADDR ⁽¹⁾	58E	111111110xxxxxxx	LCDDATA10	5DC	000000000000000000000(2)
CRYKEY13	542	*****	U1BDTP1 ⁽¹⁾	590	111111110000001	LCDDATA11	5DE	000000000000000000000000000000000000000
CRYKEY14	544	*****	U1FRML ⁽¹⁾	592	1111111100000000	LCDDATA12	5E0	0000000000000000000(2)
CRYKEY15	546	*****	U1FRMH ⁽¹⁾	594	1111111111111000	LCDDATA13	5E2	00000000000000000000(2)
CRYTXTA0	548	****	U1TOK ⁽¹⁾	596	1111111100000000	LCDDATA14	5E4	000000000000000000000(2)
CRYTXTA1	54A	****	U1SOF ⁽¹⁾	598	1111111100000000	LCDDATA15	5E6	000000000000000000000(2)
CRYTXTA2	54C	****	U1BDTP2 ⁽¹⁾	59A	1111111100000000	LCDDATA16	5E8	000000000000000000000(2)
CRYTXTA3	54E	****	U1BDTP3 ⁽¹⁾	59C	1111111100000000	LCDDATA17	5EA	000000000000000000(2)
CRYTXTA4	550	****	U1CNFG1 ⁽¹⁾	59E	1111111100101100	LCDDATA18	5EC	0000000000000000000(2)
CRYTXTA5	552	****	U1CNFG2 ⁽¹⁾	5A0	111111111000000	LCDDATA19	5EE	0000000000000000000(2)
CRYTXTA6	554	****	U1EP0 ⁽¹⁾	5A2	111111100100000	LCDDATA20	5F0	000000000000000000000(2)
CRYTXTA7	556	****	U1EP1 ⁽¹⁾	5A4	111111111100000	LCDDATA21	5F2	00000000000000000000(2)
CRYTXTB0	558	*****	U1EP2 ⁽¹⁾	5A6	111111111100000	LCDDATA22	5F4	00000000000000000000(2)
CRYTXTB1	55A	*****	U1EP3 ⁽¹⁾	5A8	111111111100000	LCDDATA23	5F6	00000000000000000000(2)
CRYTXTB2	55C	*****	U1EP4 ⁽¹⁾	5AA	111111111100000	LCDDATA24	5F8	00000000000000000000(2)
CRYTXTB3	55E	*****	U1EP5 ⁽¹⁾	5AC	111111111100000	LCDDATA25	5FA	00000000000000000000(2)
CRYTXTB4	560	*****	U1EP6 ⁽¹⁾	5AE	111111111100000	LCDDATA26	5FC	00000000000000000000(2)
CRYTXTB5	562	*****	U1EP7 ⁽¹⁾	5B0	111111111100000	LCDDATA27	5FE	000000000000000000(2)

TABLE 4-11:SFR BLOCK 500h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

Note 1: Implemented in PIC24FJXXXGB4XX devices only.

2: LCD registers are only reset on a device POR.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
LCD Controlle	er (Continu	ied)	IOCPDB	684	000000000000000000000000000000000000000	PORTF	6C4	1100111000000000
LCDDATA28	600	0000000000000000000(¹)	TRISC	686	0000111111100001	LATF	6C6	1100111000000000
LCDDATA29	602	0000000000000000000(¹⁾	PORTC	688	0000111111100001	ODCF	6C8	1100111000000000
LCDDATA30	604	0000000000000000000(¹⁾	LATC	68A	0110111111100001	ANSF	6CA	1100111011000000
LCDDATA31	606	0000000000000000000(¹⁾	ODCC	68C	0110111111100001	IOCPF	6CC	1100111000000000
LCDSE0	608	0000000000000000000(¹)	ANSC	68E	111111111100001	IOCNF	6CE	1100111000000000
LCDSE1	60A	0000000000000000000(¹)	IOCPC	690	0000111111100001	IOCFF	6D0	1100111000000000
LCDSE2	60C	0000000000000000000(¹⁾	IOCNC	692	0000111111100001	IOCPUF	6D2	1100111000000000
LCDSE3	60E	0000000000000000000(¹)	IOCFC	694	0000111111100001	IOCPDF	6D4	1100111000000000
LCDREG	610	x111111111111xx ⁽¹⁾	IOCPUC	696	0110111111100001	TRISG	6D6	0000110000110000
I/O			IOCPDC	698	0110111111100001	PORTG	6D8	0000110000110000
PADCON	65A	x11111111111111	TRISD	69A	000000000000000000000000000000000000000	LATG	6DA	0000110000110000
IOCSTAT	65C	1111111xxxxxxxxx	PORTD	69C	000000000000000000000000000000000000000	ODCG	6DC	0000110000110000
TRISA	65E	0011100100000000	LATD	69E	000000000000000000000000000000000000000	ANSG	6DE	0000110000111100
PORTA	660	0011100100000000	ODCD	6A0	000000000000000000000000000000000000000	IOCPG	6E0	0000110000110000
LATA	662	0011100100000000	ANSD	6A2	000000000000000000000000000000000000000	IOCNG	6E2	0000110000110000
ODCA	664	0011100100000000	IOCPD	6A4	000000000000000000000000000000000000000	IOCFG	6E4	0000110000110000
ANSA	666	0011100100010010	IOCND	6A6	000000000000000000000000000000000000000	IOCPUG	6E6	0000110000110000
IOCPA	668	0011100100000000	IOCFD	6A8	000000000000000000000000000000000000000	IOCPDG	6E8	0000110000110000
IOCNA	66A	0011100100000000	IOCPUD	6AA	000000000000000000000000000000000000000	TRISH	6EA	000000000000000000000000000000000000000
IOCFA	66C	0011100100000000	IOCPDD	6AC	000000000000000000000000000000000000000	PORTH	6EC	000000000000000000000000000000000000000
IOCPUA	66E	0011100100000000	TRISE	6AE	111111000000000	LATH	6EE	000000000000000000000000000000000000000
IOCPDA	670	0011100100000000	PORTE	6B0	111111000000000	ODCH	6F0	000000000000000000000000000000000000000
TRISB	672	000000000000000000	LATE	6B2	111111000000000	ANSH	6F2	111111111100000
PORTB	674	000000000000000000	ODCE	6B4	111111000000000	IOCPH	6F4	000000000000000000000000000000000000000
LATB	676	000000000000000000	ANSE	6B6	111111000000000	IOCNH	6F6	000000000000000000000000000000000000000
ODCB	678	000000000000000000	IOCPE	6B8	111111000000000	IOCFH	6F8	000000000000000000000000000000000000000
ANSB	67A	000000000000000000	IOCNE	6BA	111111000000000	IOCPUH	6FA	000000000000000000000000000000000000000
IOCPB	67C	000000000000000000	IOCFE	6BC	111111000000000	IOCPDH	6FC	000000000000000000000000000000000000000
IOCNB	67E	000000000000000000	IOCPUE	6BE	111111000000000	TRISJ	6FE	1111111111111100
IOCFB	680	000000000000000000	IOCPDE	6C0	111111000000000			
IOCPUB	682	000000000000000000	TRISF	6C2	1100111000000000			

TABLE 4-12: SFR BLOCK 600h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

Note 1: LCD registers are only reset on a device POR.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
I/O (Continu	ied)		AD1CON1	746	0100000000001000	RPINR14	7AC	111111111111111111
PORTJ	700	1111111111111100	AD1CON2	748	0000001100000000	RPINR15	7AE	111111111111111111
LATJ	702	1111111111111100	AD1CON3	74A	000000000000000000000000000000000000000	RPINR16	7B0	111111111111111111
ODCJ	704	1111111111111100	AD1CHS	74C	000000000000000000000000000000000000000	RPINR17	7B2	111111111111111111
ANSJ	706	111111111111111111	AD1CSSH	74E	000000000000000000000000000000000000000	RPINR18	7B4	111111111111111111
IOCPJ	708	1111111111111100	AD1CSSL	750	1000110000000000	RPINR19	7B6	111111111111111111
IOCNJ	70A	1111111111111100	AD1CON4	752	111111111111000	RPINR20	7B8	111111111111111111
IOCFJ	70C	1111111111111100	AD1CON5	754	0000110011110000	RPINR21	7BA	111111111111111111
IOCPUJ	70E	1111111111111100	AD1CHITH	756	000000000000000000000000000000000000000	RPINR22	7BC	111111111111111111
IOCPDJ	710	1111111111111100	AD1CHITL	758	1111110000000000	RPINR23	7BE	11111111111111111
A/D			ADC1CTMENH	75A	000000000000000000000000000000000000000	RPINR24	7C0	111111111111111111
AD1BUF0	712	*****	ADC1CTMENL	75C	1000110000000000	RPINR25	7C2	111111111111111111
AD1BUF1	714	*****	ADC1RESDMA	75E	000000000000000000000000000000000000000	RPINR26	7C4	111111111111111111
AD1BUF2	716	*****	NVM Controller	•		RPINR27	7C6	111111111111111111
AD1BUF3	718	*****	NVMCON	760	0000000011110000 ⁽¹⁾	RPINR28	7C8	11111111111111111
AD1BUF4	71A	*****	NVMADRL	762	000000000000000000000000000000000000000	RPINR29	7CA	111111111111111111
AD1BUF5	71C	*****	NVMADRH	764	1111111100000000	RPINR30	7CC	111111111111111111
AD1BUF6	71E	*****	NVMKEY	766	111111100000000	RPINR31	7CE	11111111111111111
AD1BUF7	720	*****	NVMSRCADRL	768	000000000000000000000000000000000000000	RPOR0	7D4	1100000011000000
AD1BUF8	722	*****	NVMSRCADRH	76A	111111100000000	RPOR1	7D6	1100000011000000
AD1BUF9	724	*****	JDATAL	77C	*****	RPOR2	7D8	1100000011000000
AD1BUF10	726	*****	JDATAH	77E	*****	RPOR3	7DA	1100000011000000
AD1BUF11	728	*****	Peripheral Pin S	elect		RPOR4	7DC	1100000011000000
AD1BUF12	72A	*****	RPINR0	790	11111111111111111	RPOR5	7DE	1100000011000000
AD1BUF13	72C	*****	RPINR1	792	11111111111111111	RPOR6	7E0	1100000011000000
AD1BUF14	72E	*****	RPINR2	794	11111111111111111	RPOR7	7E2	1100000011000000
AD1BUF15	730	*****	RPINR3	796	11111111111111111	RPOR8	7E4	110000011000000
AD1BUF16	732	*****	RPINR4	798	11111111111111111	RPOR9	7E6	110000011000000
AD1BUF17	734	*****	RPINR5	79A	11111111111111111	RPOR10	7E8	110000011000000
AD1BUF18	736	*****	RPINR6	79C	11111111111111111	RPOR11	7EA	110000011000000
AD1BUF19	738	*****	RPINR7	7A2	111111111111111111	RPOR12	7EC	110000011000000
AD1BUF20	73A	*****	RPINR8	7A0	11111111111111111	RPOR13	7EE	110000011000000
AD1BUF21	73C	*****	RPINR9	7A2	11111111111111111	RPOR14	7F0	110000011000000
AD1BUF22	73E	*****	RPINR10	7A4	11111111111111111	RPOR15	7F2	110000011000000
AD1BUF23	740	*****	RPINR11	7A6	11111111111111111			
AD1BUF24	742	*****	RPINR12	7A8	11111111111111111			
AD1BUF25	744	*****	RPINR13	7AA	11111111111111111			

TABLE 4-13: SFR BLOCK 700h

Legend: x = unknown or indeterminate value. Reset and address values are in hexadecimal.

Note 1: The Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write/erase operations or partition swap at the time of Reset.

4.4.5 EXTENDED DATA SPACE (EDS)

The Extended Data Space (EDS) allows PIC24F devices to address a much larger range of data than would otherwise be possible with a 16-bit address range. EDS includes any additional internal data memory not directly accessible by the lower 32-Kbyte data address space and any external memory through the Enhanced Parallel Master Port (EPMP).

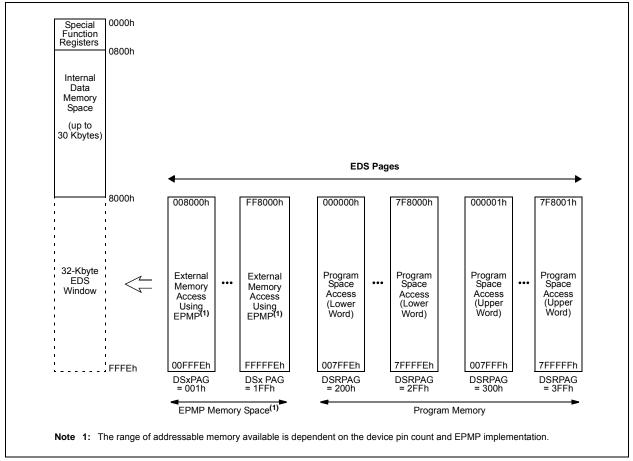

In addition, EDS also allows read access to the program memory space. This feature is called Program Space Visibility (PSV) and is discussed in detail in Section 4.5.3 "Reading Data from Program Memory Using EDS".

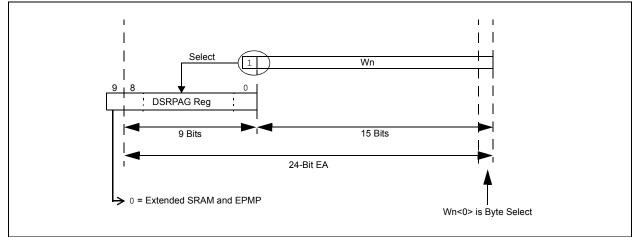
Figure 4-6 displays the entire EDS space. The EDS is organized as pages, called EDS pages, with one page equal to the size of the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read Page register (DSRPAG) or Data Space Write Page register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA). The data addressing range of PIC24FJ256GA412/ GB412 family devices depends on the version of the Enhanced Parallel Master Port (EPMP) implemented on a particular device; this is, in turn, a function of the device pin count. Table 4-14 lists the total memory accessible by each of the devices in this family. For more details on accessing external memory using EPMP, refer to the "dsPIC33/PIC24 Family Reference Manual", "Enhanced Parallel Master Port (EPMP)" (DS39730).

TABLE 4-14:	TOTAL ACCESSIBLE DATA
	MEMORY

Family	Internal RAM	External RAM Access Using EPMP
PIC24FJXXXGX406	8 Kbytes	Up to 64 Kbytes
PIC24FJXXXGX410	16 Kbytes	Up to 16 Mbytes
PIC24FJXXXGX412	16 Kbytes	Up to 16 Mbytes

Note: Accessing Page 0 in the EDS window will generate an address error trap as Page 0 is the base data memory (data locations, 0800h to 7FFFh, in the lower Data Space).

FIGURE 4-6: EXTENDED DATA SPACE


4.4.5.1 Data Read from EDS

In order to read the data from the EDS space, first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the Working register assigned with the offset address; then, the contents of the pointed EDS location can be read.

Figure 4-7 illustrates how the EDS space address is generated for read operations.

When the Most Significant bit (MSb) of EA is '1' and DSRPAG<9> = 0, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of the EA to form a 24-bit EDS space address for read operations. Example 4-1 shows how to read a byte, word and double-word from EDS.

Note: All read operations from EDS space have an overhead of one instruction cycle. Therefore, a minimum of two instruction cycles is required to complete an EDS read. EDS reads under the REPEAT instruction; the first two accesses take three cycles and the subsequent accesses take one cycle.

FIGURE 4-7: EDS ADDRESS GENERATION FOR READ OPERATIONS

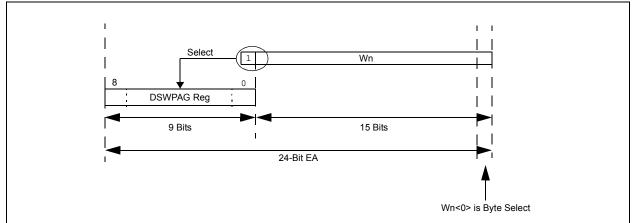
EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY

```
; Set the EDS page from where the data to be read
              #0x0002, w0
   mov
              w0, DSRPAG
                           ;page 2 is selected for read
   mov
   mov
              #0x0800, w1 ;select the location (0x800) to be read
   bset
              w1, #15
                           ;set the MSB of the base address, enable EDS mode
;Read a byte from the selected location
   mov.b
          [w1++], w2 ;read Low byte
   mov.b
              [w1++], w3
                            ;read High byte
;Read a word from the selected location
              [w1], w2
                           ;
   mov
;Read Double - word from the selected location
   mov.d
              [w1], w2
                           ;two word read, stored in w2 and w3
```

4.4.5.2 Data Write into EDS

In order to write data to EDS space, such as in EDS reads, an Address Pointer is set up by loading the required EDS page number into the DSWPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, then the EDS window is enabled by setting bit 15 of the Working register assigned with the offset address and the accessed location can be written.

Figure 4-8 illustrates how the EDS space address is generated for write operations.


When the MSb of EA is '1', the lower 9 bits of DSWPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS address for write operations. Example 4-2 shows how to write a byte, word and double-word to EDS.

The DS Page registers (DSRPAG/DSWPAG) do not update automatically while crossing a page boundary when the rollover happens from 0xFFFF to 0x8000.

While developing code in assembly, care must be taken to update the DS Page registers when an Address Pointer crosses the page boundary. The 'C' compiler keeps track of the addressing, and increments or decrements the DS Page registers accordingly, while accessing contiguous data memory locations.

- **Note 1:** All write operations to EDS are executed in a single cycle.
 - 2: Use of Read/Modify/Write operation on any EDS location under a REPEAT instruction is not supported. For example, BCLR, BSW, BTG, RLC f, RLNC f, RRC f, RRNC f, ADD f, SUB f, SUBR f, AND f, IOR f, XOR f, ASR f, ASL f.
 - **3:** Use the DSRPAG register while performing Read/Modify/Write operations.

EXAMPLE 4-2: EDS WRITE CODE IN ASSEMBLY

```
; Set the EDS page where the data to be written
   mov
          #0x0002, w0
   mov
          w0, DSWPAG
                         ;page 2 is selected for write
                       ;select the location (0x800) to be written
          #0x0800, w1
   mov
   bset
          wl, #15
                         ;set the MSB of the base address, enable EDS mode
;Write a byte to the selected location
          #0x00A5, w2
   mov
   mov
          #0x003C, w3
   mov.b
          w2, [w1++]
                         ;write Low byte
   mov.b w3, [w1++]
                         ;write High byte
;Write a word to the selected location
   mov #0x1234, w2 ;
          w2, [w1]
   mov
                         ;
;Write a Double - word to the selected location
   mov
          #0x1122, w2
   mov
          #0x4455, w3
   mov.d w2, [w1]
                         ;2 EDS writes
```

DSRPAG (Data Space Read Register)	DSWPAG (Data Space Write Register)	Source/Destination Address While Indirect Addressing	24-Bit EA Pointing to EDS	Comment
x ⁽¹⁾	x ⁽¹⁾	0000h to 1FFFh	000000h to 001FFFh	Near Data Space ⁽²⁾
		2000h to 7FFFh	002000h to 007FFFh	
001h	001h		008000h to 00FFFEh	
002h	002h		010000h to 017FFEh	
003h •	003h •		018000h to 0187FEh	
•	•	8000h to FFFFh	•	EPMP Memory Space
•	•		•	
•	•		•	
•	•		•	
1FFh	1FFh		FF8000h to FFFFFEh	
000h	000h		Invalid Address	Address Error Trap ⁽³⁾

TABLE 4-15: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

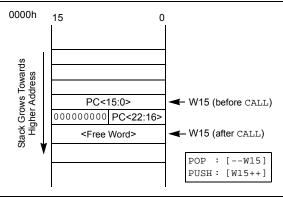
Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.

2: This Data Space can also be accessed by Direct Addressing.

3: When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

4.4.6 SOFTWARE STACK

Apart from its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-9. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.


Note:	A PC push during exception processing
	will concatenate the SRL register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value register (SPLIM), associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-9: CALL STACK FRAME

4.5 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24F architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the Data Space (Program Space Visibility)

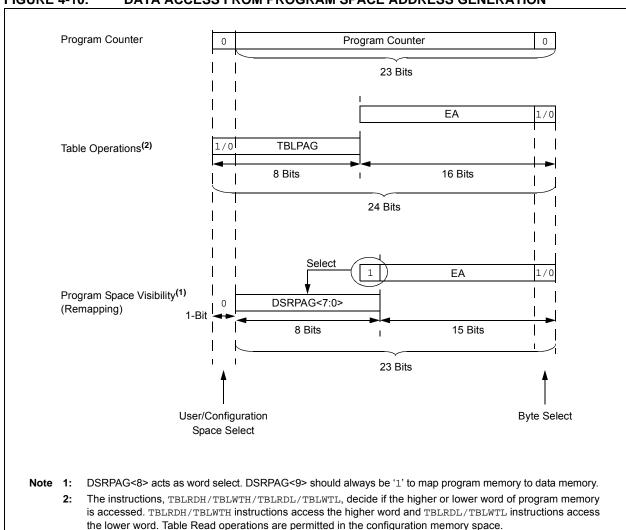
Table instructions allow an application to read or write to small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. It can only access the least significant word of the program word.

4.5.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address (TBLPAG) register is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSBs of TBLPAG are used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 10-bit Extended Data Space Read (DSRPAG) register is used to define a 16K word page in the program space. When the Most Significant bit (MSb) of the EA is '1', and the MSb (bit 9) of DSRPAG is '1', the lower 8 bits of DSRPAG are concatenated with the lower 15 bits of the EA to form a 23-bit program space address. The DSRPAG<8> bit decides whether the lower word (when the bit is '0') or the higher word (when the bit is '1') of program memory is mapped. Unlike table operations, this strictly limits remapping operations to the user memory area.


Table 4-16 and Figure 4-10 show how the program EA is created for table operations, and remapping accesses from the data EA. Here, P<23:0> refer to a program space word, whereas D<15:0> refer to a Data Space word.

	Access	Program Space Address						
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>		
Instruction Access	User	0 PC<22:1> 0				0		
(Code Execution)			0xx xxxx x	xxx xxxx	x xxxx xxx0			
TBLRD/TBLWT	User	TBLPAG<7:0>		Data EA<15:0>				
(Byte/Word Read/Write)		0xxx xxxx		XXXX XXXX XXXX XXXX		xxx		
	Configuration	TB	LPAG<7:0>	Data EA<15:0>				
		1xxx xxxx		xxxx xxxx xxxx xxxx		xxx		
Program Space Visibility	User	0	DSRPAG<7:	:0> ⁽²⁾ Data EA<14:0> ⁽¹⁾		:0>(1)		
(Block Remap/Read)		0	XXXX XXXX		xxx xxxx xxxx xxxx			

TABLE 4-16: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is DSRPAG<0>.

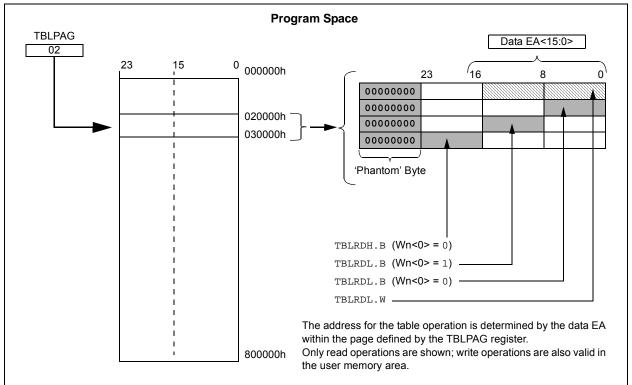
2: DSRPAG<9> is always '1' in this case. DSRPAG<8> decides whether the lower word or higher word of program memory is read. When DSRPAG<8> is '0', the lower word is read and when it is '1', the higher word is read.

FIGURE 4-10: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

4.5.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).
 In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are described in Section 6.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address (TBLPAG) register. TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space where Device IDs are located. Table Write operations are not allowed.

FIGURE 4-11: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

4.5.3 READING DATA FROM PROGRAM MEMORY USING EDS

The upper 32 Kbytes of Data Space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the Data Space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the Data Space occurs when the MSb of EA is '1' and the DSRPAG<9> is also '1'. The lower 8 bits of DSRPAG are concatenated to the Wn<14:0> bits to form a 23-bit EA to access program memory. The DSRPAG<8> decides which word should be addressed; when the bit is '0', the lower word and when '1', the upper word of the program memory is accessed.

The entire program memory is divided into 512 EDS pages, from 200h to 3FFh, each consisting of 16K words of data. Pages, 200h to 2FFh, correspond to the lower words of the program memory, while 300h to 3FFh correspond to the upper words of the program memory.

Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported. Table 4-17 provides the corresponding 23-bit EDSaddress for program memory with EDS page andsource addresses.

For operations that use PSV, and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

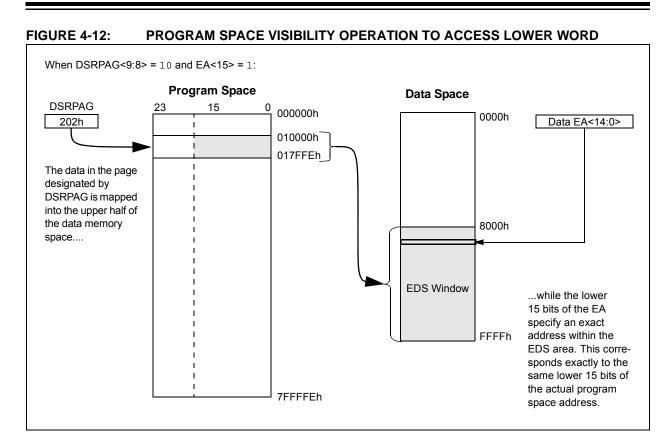
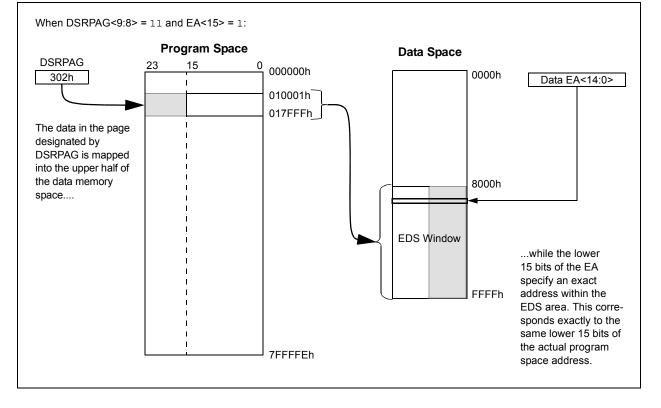

DSRPAG (Data Space Read Register)	Source Address While Indirect Addressing	23-Bit EA Pointing to EDS	Comment
200h		000000h to 007FFEh	Lower words of 4M program
•		•	instructions; (8 Mbytes) for
•		•	read operations only
•		•	
2FFh		7F8000h to 7FFFFEh	
300h	8000h to FFFFh	000001h to 007FFFh	Upper words of 4M program
•		•	instructions (4 Mbytes remaining,
•		•	4 Mbytes are phantom bytes); for
•		•	read operations only
3FFh		7F8001h to 7FFFFFh	
000h		Invalid Address	Address error trap ⁽¹⁾

TABLE 4-17: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES


Note 1: When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

EXAMPLE 4-3: EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY

; Set the H	EDS page from where the dat	a to be read
mov	#0x0202, w0	
mov	w0, DSRPAG	;page 0x202, consisting lower words, is selected for read
mov	#0x000A, w1	;select the location (0x0A) to be read
bset	w1, #15	;set the MSB of the base address, enable EDS mode
;Read a byt	te from the selected locati	on
mov.b	[w1++], w2	;read Low byte
mov.b	[w1++], w3	;read High byte
;Read a wor	rd from the selected locati	on
mov	[w1], w2	i
;Read Doub	le - word from the selected	location
mov.d	[w1], w2	;two word read, stored in w2 and w3

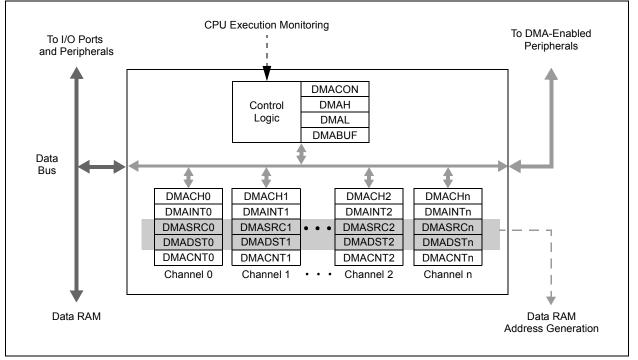
FIGURE 4-13: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS UPPER WORD

NOTES:

5.0 DIRECT MEMORY ACCESS CONTROLLER (DMA)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Direct Memory Access Controller (DMA)" (DS39742). The information in this data sheet supersedes the information in the FRM.

The Direct Memory Access Controller (DMA) is designed to service high data throughput peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU intensive management. By allowing these data intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.


The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus between the CPU and DMA-enabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA-capable peripherals located on the new DMA SFR bus. The controller serves as a master device on the DMA SFR bus, controlling data flow from DMA-capable peripherals. The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations causing a processor stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- Six Multiple Independent and Independently Programmable Channels
- Concurrent Operation with the CPU (no DMA caused Wait states)
- DMA Bus Arbitration
- Five Programmable Address modes
- · Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- · Byte or Word Support for Data Transfer
- 16-Bit Source and Destination Address Register for Each Channel, Dynamically Updated and Reloadable
- 16-Bit Transaction Count Register, Dynamically Updated and Reloadable
- · Upper and Lower Address Limit Registers
- Counter Half-Full Level Interrupt
- · Software Triggered Transfer
- Null Write mode for Symmetric Buffer Operations

A simplified block diagram of the DMA Controller is shown if Figure 5-1.

FIGURE 5-1: DMA FUNCTIONAL BLOCK DIAGRAM

5.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction. In addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- Source and destination (SFRs and data RAM)
- · Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (Fixed Address or Address Blocks with or without Address Increment/Decrement)

In addition, the DMA Controller provides channel priority arbitration for all channels.

5.1.1 SOURCE AND DESTINATION

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 07FFh) or the data RAM space (0800h to FFFFh) can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 5-2.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

5.1.2 DATA SIZE

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn<1>). By default, each channel is configured for word-size transactions. When byte-size transactions are chosen, the LSb of the source and/or destination address determines if the data represents the upper or lower byte of the data RAM location.

5.1.3 TRIGGER SOURCE

The DMA Controller can use 63 of the device's interrupt sources to initiate a transaction. The DMA trigger sources occur in reverse order than their natural interrupt priority and are shown in Table 5-1.

Since the source and destination addresses for any transaction can be programmed independently of the trigger source, the DMA Controller can use any trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

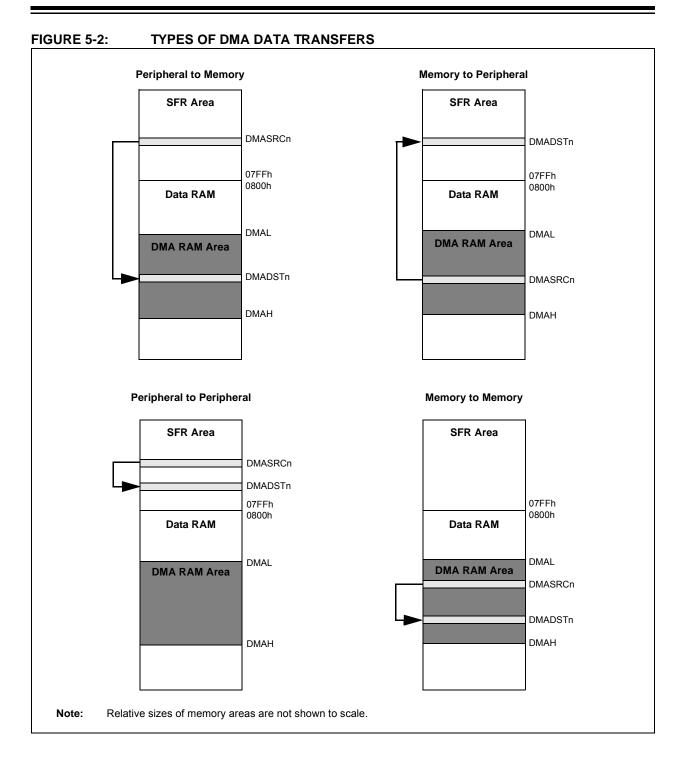
5.1.4 TRANSFER MODE

The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each trigger.

- One-Shot: A single transaction occurs for each trigger.
- Continuous: A series of back-to-back transactions occur for each trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per trigger, until the DMA channel is disabled.
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per trigger, until the DMA channel is disabled.

All transfer modes allow the option to have the source and destination addresses, and counter value, automatically reloaded after the completion of a transaction; Repeated mode transfers do this automatically.

5.1.5 ADDRESSING MODES


The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:

- · Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- Block-to-Fixed: From a range of source addresses to a single, constant destination address
- Block-to-Block: From a range of source addresses to a range of destination addresses

The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.

In addition to the four basic modes, the DMA Controller also supports Peripheral Indirect Addressing (PIA) mode, where the source or destination address is generated jointly by the DMA Controller and a PIA-capable peripheral. When enabled, the DMA channel provides a base source and/or destination address, while the peripheral provides a fixed range offset address.

For PIC24FJ256GA412/GB412 family devices, the 12-bit A/D Converter module is the only PIA-capable peripheral. Details for its use in PIA mode are provided in **Section 27.0 "12-Bit A/D Converter with Threshold Detect**".

5.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority based on their channel number.
- Fixed: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history; however, any channel being actively processed is not available for an immediate retrigger. If a higher priority channel is continually requesting service, it will be scheduled for service after the next lower priority channel with a pending request.

5.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- 2. Program DMAH and DMAL with appropriate upper and lower address boundaries for data RAM operations.
- 3. Select the DMA channel to be used and disable its operation (CHEN = 0).
- Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers. For PIA Addressing mode, use the base address value.
- 5. Program the DMACNTn register for the number of triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE<1:0> bits to select the Data Transfer mode.
- 8. Program the SAMODE<1:0> and DAMODE<1:0> bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the trigger source interrupt.

5.3 Peripheral Module Disable

Unlike other peripheral modules, the channels of the DMA Controller cannot be individually powered down using the Peripheral Module Disable (PMD) registers. Instead, the channels are controlled as two groups. The DMA0MD bit (PMD7<4>) selectively controls DMACH0 through DMACH3. The DMA1MD bit (PMD7<5>) controls DMACH4 and DMACH5. Setting both bits effectively disables the DMA Controller.

5.4 Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Engine Control Register (Register 5-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- DMABUF: DMA Transfer Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 5-2)
- DMAINTn: DMA Channel n Interrupt Register (Register 5-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n Register
- DMADSTn: DMA Data Destination Source for Channel n Register
- DMACNTn: DMA Transaction Counter for Channel n Register

For PIC24FJ256GA412/GB412 family devices, there are a total of 34 registers.

REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

R/W-0	U-0						
DMAEN	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	_	PRSSEL
bit 7							bit 0

Legend:

Ecgena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 DMAEN: DMA Module Enable bit

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round robin scheme

0 = Fixed priority scheme

REGISTER	5-2: DMAC	CHn: DMA Cl	HANNEL n C	ONTROL RE	GISTER		
U-0	U-0	U-0	r-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	_	NULLW	RELOAD ⁽¹⁾	CHREQ ⁽³⁾
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN
bit 7							bit
Legend:		r = Reserved	bit				
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
			.1				
bit 15-13	-	ted: Read as ').				
bit 12	Reserved: Ma		.,				
bit 11	-	ted: Read as '					
bit 10		Write Mode bit write is initiate		for over write			
		write is initiate		rior every write			
bit 9		dress and Cou)			
					reloaded to th	eir previous va	lues upon th
	start of th	ne next operation	n	-		-	-
					led on the star	t of the next ope	eration ⁽²⁾
bit 8		A Channel Soft	•				
		equest is initiate request is pend		automatically of	cleared upon c	ompletion of a [DMA transfer
bit 7-6	SAMODE<1:0	0>: Source Add	lress Mode Se	lection bits			
		Cn is used in F					
		Cn is decreme					
		Cn remains un				mpletion	
bit 5-4		0>: Destination	-	-			
	11 = DMADS	Tn is used in P	eripheral Indire	ect Addressing	and remains u	nchanged	
	10 = DMADS	Tn is decremer	nted based on t	the SIZE bit aft	er a transfer co	ompletion	
		Tn is incremen				mpletion	
hit 2 2		Tn remains une	-	-	bletion		
bit 3-2		0>: Transfer Mo		nis			
	11 = Repeate 10 = Continuo	ed Continuous ı ous mode	noue				
		ed One-Shot me	ode				
	00 = One-Sho	ot mode					
bit 1	SIZE: Data Si	ize Selection bi	t				
	1 = Byte (8-bi 0 = Word (16-						
bit 0	CHEN: DMA	Channel Enabl	e bit				
	1 = The corre	sponding chan	nel is enabled				
	0 = The corre	sponding chan	nel is disabled				
Note 1: 0	nly the original D	MACNTn is rec	uired to be stor	red to recover th	ne original DMA	SRCn and DM	ADSTn value
	MACNTn will alv		-		-		
	he number of tra	-	-		-		

REGISTER 5-2: DMACHn: DMA CHANNEL n CONTROL REGISTER

REGISTER 5-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

REGISTER \$	5-3: DMAI	NTn: DMA C	HANNEL n I	NTERRUPT R	REGISTER					
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DBUFWF ⁽¹⁾	CHSEL6	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0			
HIGHIF ^(1,2)	LOWIF ^(1,2)	DONEIF ⁽¹⁾	HALFIF ⁽¹⁾	OVRUNIF ⁽¹⁾		_	HALFEN			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	DBUFWF: DI	VA Buffered Da	ta Write Flag	bit ⁽¹⁾						
	1 = The cont	ent of the DM	A buffer has r	not been writter	n to the location	on specified in	DMADSTn or			
	0 = The cont	Cn in Null Write tent of the DM Cn in Null Write	1A buffer has	been written	to the location	n specified in	DMADSTn or			
bit 14-8	CHSEL<6:0>	: DMA Channe	I Trigger Seled	ction bits						
	See Table 5-1	for a complete	e list.							
bit 7	HIGHIF: DMA	A High Address	Limit Interrupt	t Flag bit ^(1,2)						
	1 = The DMA	channel has a	ttempted to ac	cess an addres	s higher than D	MAH or the up	per limit of the			
	data RAN	•								
				e high address li	mit interrupt					
bit 6		Low Address L	•	•						
	the SFR	range (07FFh)	-	ccess the DMA e low address lin		lower than DM	IAL, but above			
bit 5		A Complete Op			int interrupt					
bit 5	If CHEN = 1:	A complete Op		ipt hag bit?						
		ous DMA sessi	on has ended	with completion	I					
	 1 = The previous DMA session has ended with completion 0 = The current DMA session has not yet completed 									
	If CHEN = 0:									
				with completion without completion						
L :1 4					lion					
bit 4		A 50% Waterma n has reached								
		in has not reach								
bit 3		MA Channel Ov								
	1 = The DMA		ered while it is	s still completing	the operation	based on the p	revious trigger			
bit 2-1	Unimplemen	ted: Read as '0)'							
bit 0	-	Ifway Completio		bit						
	1 = Interrupts	are invoked wh	nen DMACNT	n has reached it pletion of the tra		t and at comple	etion			
			-	ate an interrupt.						
2: Te	sting for addres	ss limit violation	s (DMASRCn	or DMADSTn is	s either greate	r than DMAH o	r less than			

2: Testing for address limit violations (DMASRCn or DMADSTn is either greater than DMAH or less than DMAL) is NOT done before the actual access.

TABLE 5-1: DMA CHANNEL T		RIGGER	SOU	RCES				
CHSEL<	6:0>	Trigger (Interrupt)	CHSEL<	6:0>	Trigger (Interrupt)	CHSEL<	6:0>	Trigger (Interrupt)
0000000	00h	(Unimplemented)	0100110	26h	SPI1 Receive Event	1001100	4Ch	DMA Channel 4
0000001	01h	SCCP7 IC/OC Event	0100111	27h	SPI1 Transmit Event	1001101	4Dh	DMA Channel 3
0000010	02h	SCCP7 Timer	0101000	28h	SPI1 General Event	1001110	4Eh	DMA Channel 2
0000011	03h	SCCP6 IC/OC Event	0101001	29h	(Reserved, do not use)	1001111	4Fh	DMA Channel 1
0000100	04h	SCCP6 Timer	0101010	2Ah	(Reserved, do not use)	1010000	50h	DMA Channel 0
0000101	05h	SCCP5 IC/OC Event	0101011	2Bh	(Reserved, do not use)	1010001	51h	A/D Converter
0000110	06h	SCCP5 Timer	0101100	2Ch	I2C3 Slave Event	1010010	52h	USB
0000111	07h	SCCP4 IC/OC Event	0101101	2Dh	I2C3 Master Event	1010011	53h	EPMP
0001000	08h	SCCP4 Timer	0101110	2Eh	I2C3 Collision Event	1010100	54h	HLVD
0001001	09h	(Reserved, do not use)	0101111	2Fh	I2C2 Slave Event	1010101	55h	CRC Done
0001010	0Ah	(Reserved, do not use)	0110000	30h	I2C2 Master Event	1010110	56h	LCD
0001011	0Bh	MCCP3 IC/OC Event	0110001	31h	I2C2 Collision Event	1010111	57h	Crypto Done
0001100	0Ch	MCCP3 Timer	0110010	32h	I2C1 Slave Event	1011000	58h	Crypto OTP Done
0001101	0Dh	MCCP2 IC/OC Event	0110011	33h	I2C1 Master Event	1011001	59h	CLC4 Output
0001110	0Eh	MCCP2 Timer	0110100	34h	I2C1 Collision Event	1011010	5Ah	CLC3 Output
0001111	0Fh	MCCP1 IC/OC Event	0110101	35h	UART6 Transmit	1011011	5Bh	CLC2 Output
0010000	10h	MCCP1 Timer	0110110	36h	UART6 Receive	1011100	5Ch	CLC1 Output
0010001	11h	Output Compare 6	0110111	37h	UART6 Error	1011101	5Dh	(Reserved, do not use)
0010010	12h	Output Compare 5	0111000	38h	UART5 Transmit	1011110	5Eh	RTCC
0010011	13h	Output Compare 4	0111001	39h	UART5 Receive	1011111	5Fh	Timer5
0010100	14h	Output Compare 3	0111010	3Ah	UART5 Error	1100000	60h	Timer4
0010101	15h	Output Compare 2	0111011	3Bh	UART4 Transmit	1100001	61h	Timer3
0010110	16h	Output Compare 1	0111100	3Ch	UART4 Receive	1100010	62h	Timer2
0010111	17h	Input Capture 6	0111101	3Dh	UART4 Error	1100011	63h	Timer1
0011000	18h	Input Capture 5	0111110	3Eh	UART3 Transmit	1100100	64h	(Reserved, do not use)
0011001	19h	Input Capture 4	0111111	3Fh	UART3 Receive	1100101	65h	DAC
0011010	1Ah	Input Capture 3	1000000	40h	UART3 Error	1100110	66h	CTMU
0011011	1Bh	Input Capture 2	1000001	41h	UART2 Transmit	1100111	67h	Comparators Event
0011100	1Ch	Input Capture 1	1000010	42h	UART2 Receive	1101000	68h	External Interrupt 4
0011101	1Dh	SPI4 Receive Event	1000011	43h	UART2 Error	1101001	69h	External Interrupt 3
0011110	1Eh	SPI4 Transmit Event	1000100	44h	UART1 Transmit	1101010	6Ah	External Interrupt 2
0011111	1Fh	SPI4 General Event	1000101	45h	UART1 Receive	1101011	6Bh	External Interrupt 1
0100000	20h	SPI3 Receive Event	1000110	46h	UART1 Error	1101100	6Ch	External Interrupt 0
0100001	21h	SPI3 Transmit Event	1000111	47h	(Reserved, do not use)	1101101	6Dh	Interrupt-on-Change
0100010	22h	SPI3 General Event	1001000	48h	(Reserved, do not use)	1101110	6Eh	
0100011	23h	SPI2 Receive Event	1001001	49h	(Reserved, do not use)	•	•	
0100100	24h	SPI2 Transmit Event	1001010	4Ah	(Reserved, do not use)	•	•	(Unimplemented)
0100101	25h	SPI2 General Event	1001011	4Bh	DMA Channel 5	1111111	7Fh	

TABLE 5-1: DMA CHANNEL TRIGGER SOURCES

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24F Family Reference Manual", "Dual Partition Flash Program Memory" (DS70005156). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ256GA412/GB412 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ256GA412/GB412 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.

6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

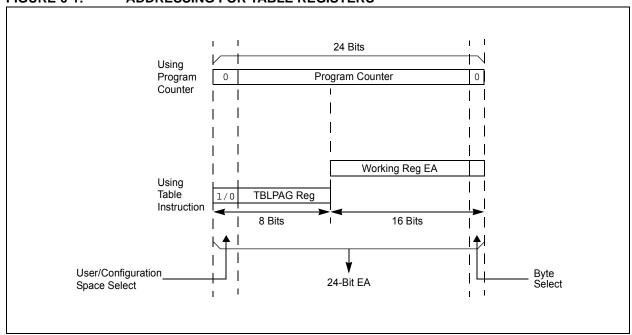


FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS

6.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program two words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused address should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is:

- Set up a Table Pointer to point to the programming latches
- Perform a series of TBLWT instructions to load the buffers
- Set the NVM Address registers to point to the destination

Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the Table Write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

6.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

6.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

6.5 Control Registers

There are four SFRs used to read and write the program Flash memory:

- NVMCON
- NVMKEY
- NVMADRL
- NVMADRH

The NVMCON register (Register 6-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. For more information, refer to **Section 6.6 "Programming Operations"**.

The NVMADRL and NVMADRH registers contain the lower word and upper byte of the destination address of the NVM write or erase operation. Some operations (e.g., chip erase, Inactive Partition erase) operate on fixed locations and do not require an address value.

REGISTER 6-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/S-0, HC ⁽¹⁾	R/W-0 ⁽¹⁾	R-0, HSC ⁽¹⁾	R/W-0	R/C-0, HSC ⁽²⁾	R-0	U-0	U-0
WR	WREN	WRERR	NVMPIDL	SFTSWP	P2ACTIV	—	—
bit 15							bit 8

U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	ERASE	—	—	NVMOP3 ⁽³⁾	NVMOP2 ⁽³⁾	NVMOP1 ⁽³⁾	NVMOP0 ⁽³⁾
bit 7							bit 0

Legend:	S = Settable bit	U = Unimplemented, rea	d as '0'	
R = Readable bit	W = Writable bit	HSC = Hardware Settable	e/Clearable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
C = Clearable bit	HC = Hardware Clearable bit			

	 1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is cleared by hardware once the operation is complete 0 = Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit ⁽¹⁾
	 1 = Enables Flash program/erase operations 0 = Inhibits Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit ⁽¹⁾
	 1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally
bit 12	NVMPIDL: NVM Power-Down in Idle Enable bit
	 1 = Removes power from program memory when device enters Idle mode 0 = Keeps program memory powered in Standby mode when device enters Idle mode
bit 11	SFTSWP: Soft Swap Status bit ⁽²⁾
	In Dual Partition Flash Modes (BTMOD<1:0> = 10 or 0x):

- 1 = Partitions have been successfully swapped using the BOOTSWP instruction
- 0 = Awaiting successful partition swap using the BOOTSWP instruction
- In Single Partition Flash Mode (BTMOD<1:0> = 11):
- Unimplemented, read as '0'.

WR: Write Control bit⁽¹⁾

bit 15

bit 10	P2ACTIV: Dual Active Partition Status bit				
	In Dual Partition Flash Modes (BTMOD<1:0> = $10 \text{ or } 0x$):				
	1 = Partition 2 Flash is the Active Partition				
	0 = Partition 1 Flash is the Active Partition				
	In Single Partition Flash Mode (BTMOD<1:0> = 11):				
	Unimplemented, read as '0'.				

- bit 9-7 **Unimplemented:** Read as '0'
- bit 6 ERASE: Erase/Program Enable bit⁽¹⁾
 - 1 = Performs the erase operation specified by the NVMOP<3:0> bits on the next WR command
 - 0 = Performs the program operation specified by the NVMOP<3:0> bits on the next WR command

Note 1: These bits can only be reset on a Power-on Reset.

- 2: Clearable in software, as well as on device Resets.
- 3: All other combinations of NVMOP<3:0> are unimplemented in this device family.
- 4: Available only in Dual Partition modes (BTMOD<1:0> = 10 or 0x).

REGISTER 6-1: NVMCON: FLASH MEMORY CONTROL REGISTER (CONTINUED)

- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 NVMOP<3:0>: NVM Operation Select bits^(1,3)
 - 1110 = Chip erase operation, ERASE = 1 (does not erase Device ID, OTP or Program Executive)
 - 0100 = Erase Inactive Partition, ERASE = 1 (user memory and Configuration Words)⁽⁴⁾
 - 0011 = Memory page erase operation, ERASE = 1 (program or executive memory)
 - 0010 = Memory row program operation, ERASE = 0
 - 0001 = Memory double-word program operation, ERASE = 0
- Note 1: These bits can only be reset on a Power-on Reset.
 - **2:** Clearable in software, as well as on device Resets.
 - 3: All other combinations of NVMOP<3:0> are unimplemented in this device family.
 - 4: Available only in Dual Partition modes (BTMOD<1:0> = 10 or 0x).

6.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished. In Dual Partition modes, programming or

erasing the Inactive Partition does not stall the processor; the code in the Active Partition continues to execute during the programming operation.

For more information on programming the device, please refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Dual Partition Flash Program Memory"** (DS70005156).

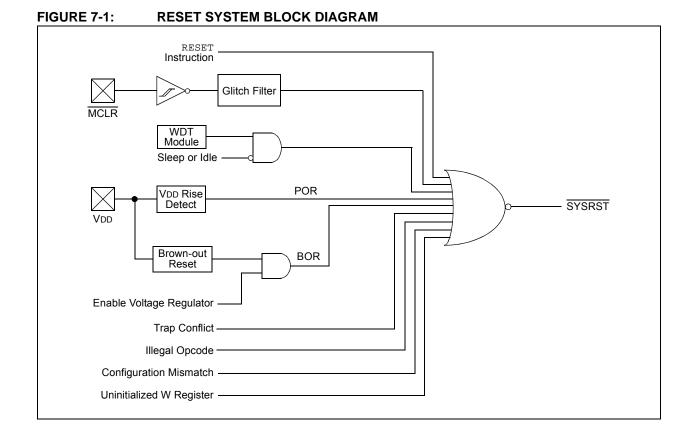
7.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset" (DS39712). The information in this data sheet supersedes the information in the FRM.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- · UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.


Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this data sheet for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). In addition, Reset events occurring while an extreme power-saving feature is in use (such as VBAT) will set one or more status bits in the RCON2 register (Register 7-2). A POR will clear all bits, except for the BOR and POR (RCON<1:0>) bits, which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON registers should be cleared after they are read so that the next RCON register values after a device Reset will be meaningful.

R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
TRAPR ⁽¹) IOPUWR ⁽¹⁾	—	RETEN ⁽²⁾		DPSLP ⁽¹⁾	CM ⁽¹⁾	PMSLP ⁽³⁾
bit 15				·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR ⁽¹⁾	SWR ⁽¹⁾	SWDTEN ⁽⁴⁾	WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ⁽¹⁾	BOR ⁽¹⁾	POR ⁽¹⁾
bit 7							bit (
Legend:							
R = Readal	ole bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	TDADD. Tran	Reset Flag bit	1)				
DIL 15		onflict Reset has					
		onflict Reset has					
bit 14	IOPUWR: Ille	gal Opcode or I	Jninitialized W	Access Reset	Flag bit ⁽¹⁾		
	Ų			address mod	e or Uninitialize	ed W register	is used as a
		Pointer and cau					
L:1 4 0	-	-		gister Reset na	as not occurred		
bit 13	-	ted: Read as '0 Intion Mode Ena					
bit 12				in in Sloop m	odes (1.2V regu	lator gunnling	to the core)
		mode is disable				iator supplies	to the core)
bit 11	Unimplemen	ted: Read as 'o	3				
bit 10	DPSLP: Deep	o Sleep Flag bit	(1)				
		is been in Deep is not been in D		de			
bit 9	CM: Configura	ation Word Misi	match Reset F	lag bit ⁽¹⁾			
		 1 = A Configuration Word Mismatch Reset has occurred 0 = A Configuration Word Mismatch Reset has not occurred 					
bit 8	PMSLP: Prog	ram Memory P	ower During S	leep bit ⁽³⁾			
		memory bias vo memory bias vo					
bit 7		al Reset (MCLI	-				
	1 = A Master	1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred					
bit 6	SWR: Software Reset (Instruction) Flag bit ⁽¹⁾						
	1 = A RESET instruction has been executed						
	0 = A reset i	instruction has	not been exec	uted			
	All of the Reset st cause a device Re		e set or cleare	d in software. S	Setting one of th	ese bits in sof	tware does no
	f the LPCFG Con bit has no effect.	the LPCFG Configuration bit is '1' (unprogrammed), the retention regulator is disabled and the RETEN					
\$		e-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from eep. Applications that do not use the voltage regulator should set this bit to prevent this delay from					
	the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the WDTEN bit setting.						

REGISTER 7-1: RCON: RESET CONTROL REGISTER

REGISTER 7-1: RCON: RESET CONTROL REGISTER (CONTINUED)

bit 5	SWDTEN: Software Enable/Disable of WDT bit ⁽⁴⁾ 1 = WDT is enabled 0 = WDT is disabled
bit 4	WDTO: Watchdog Timer Time-out Flag bit ⁽¹⁾
	1 = WDT time-out has occurred0 = WDT time-out has not occurred
bit 3	SLEEP: Wake from Sleep Flag bit ⁽¹⁾
	 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit ⁽¹⁾
	 1 = Device has been in Idle mode 0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾
	 1 = A Brown-out Reset has occurred (also set after a Power-on Reset). 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred
Note 1:	All of the Reset status bits may be set or cleared in software. Setting one of

- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the LPCFG Configuration bit is '1' (unprogrammed), the retention regulator is disabled and the RETEN bit has no effect.
 - **3:** Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.
 - 4: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—		—		—	
bit 15							bit 8
U-0	U-0	U-0	r-0	R/CO-1	R/CO-1	R/CO-1	R/CO-0
_	—			VDDBOR ⁽¹⁾	VDDPOR ^(1,2)	VBPOR ^(1,3)	VBAT ⁽¹⁾
oit 7							bit 0
_egend:		CO = Clearab	-	r = Reserved			
R = Readabl		W = Writable I	oit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 15-5	Unimplem	ented: Read as 'o	۱'				
bit 4	-	Maintain as '0')				
oit 3			eset Elag hit(1)			
	VDDBOR: VDD Brown-out Reset Flag bit ⁽¹⁾ 1 = A VDD Brown-out Reset has occurred (set by hardware) 0 = A VDD Brown-out Reset has not occurred						
pit 2	VDDPOR: VDD Power-on Reset Flag bit ^(1,2)						
	 1 = A VDD Power-on Reset has occurred (set by hardware) 0 = A VDD Power-on Reset has not occurred 						
oit 1	VBPOR: VBPOR Flag bit ^(1,3)						
	 1 = A VBAT POR has occurred (no battery connected to VBAT pin or VBAT power below Deep Sleep Semaphore register retention level is set by hardware) 0 = A VBAT POR has not occurred 						
bit 0	VBAT: VBAT Flag bit ⁽¹⁾						
	 1 = A POR exit has occurred while power was applied to VBAT pin (set by hardware) 0 = A POR exit from VBAT has not occurred 						
Note 1: T	his bit is set ir	n hardware only; if	can only be o	cleared in softwa	are.		

REGISTER 7-2: RCON2: RESET AND SYSTEM CONTROL REGISTER 2

- 2: This bit indicates a VDD Power-on Reset. Setting the POR bit (RCON<0>) indicates a VCORE Power-on Reset.
- 3: This bit is set when the device is originally powered up, even if power is present on VBAT.

Flag Bit	Setting Event	Clearing Event	
TRAPR (RCON<15>)	Trap Conflict Event	POR	
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR	
CM (RCON<9>)	Configuration Mismatch Reset	POR	
EXTR (RCON<7>)	MCLR Reset	POR	
SWR (RCON<6>)	RESET Instruction	POR	
WDTO (RCON<4>)	WDT Time-out	CLRWDT, PWRSAV Instruction, POR	
SLEEP (RCON<3>)	PWRSAV #0 Instruction	POR	
DPSLP (RCON<10>)	PWRSAV #0 Instruction while DSEN bit is set	POR	
IDLE (RCON<2>)	PWRSAV #1 Instruction	POR	
BOR (RCON<1>)	POR, BOR	—	
POR (RCON<0>)	POR	_	

TABLE 7-1: **RESET FLAG BIT OPERATION**

Note: All Reset flag bits may be set or cleared by the user software.

7.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC<2:0> bits in the Oscillator Select Configuration Word (FOSCSEL) (see Table 7-2). The NVMCON register is only affected by a POR.

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the Master Reset Signal, SYSRST, is released after the POR delay time expires.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

7.3 Brown-out Reset (BOR)

PIC24FJ256GA412/GB412 family devices implement a BOR circuit that provides the user with several configuration and power-saving options. The BOR is controlled by the BOREN (FPOR<0>) Configuration bit. When BOR is enabled, any drop of VDD below the BOR trip point results in a device BOR. The BOR trip point, VBOR, is characterized (Parameter DC17B) in Section 36.1 "DC Characteristics".

7.4 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator"** (DS39700).

TABLE 7-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant		
POR	FNOSC<2:0> Configuration bits		
BOR	(FOSCSEL<2:0>)		
MCLR			
WDTO	COSC<2:0> Control bits (OSCCON<14:12>)		
SWR			

Reset Type	Clock Source SYSRST Delay		System Clock Delay	Notes
POR	EC	TPOR + TSTARTUP + TRST		1, 2, 3
	ECPLL	TPOR + TSTARTUP + TRST	Тьоск	1, 2, 3, 5
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Тоѕт	1, 2, 3, 4
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	TOST + TLOCK	1, 2, 3, 4, 5
	FRC, FRCDIV	TPOR + TSTARTUP + TRST	TFRC	1, 2, 3, 6, 7
	FRCPLL	TPOR + TSTARTUP + TRST	TFRC + TLOCK	1, 2, 3, 5, 6
	LPRC	TPOR + TSTARTUP + TRST	Tlprc	1, 2, 3, 6
BOR	EC	TSTARTUP + TRST	—	2, 3
	ECPLL	TSTARTUP + TRST	Тьоск	2, 3, 5
	XT, HS, SOSC	TSTARTUP + TRST	STARTUP + TRST TOST	
	XTPLL, HSPLL	TSTARTUP + TRST	TOST + TLOCK	2, 3, 4, 5
	FRC, FRCDIV	TSTARTUP + TRST	TFRC	2, 3, 6, 7
	FRCPLL	TSTARTUP + TRST	TFRC + TLOCK	2, 3, 5, 6
	LPRC	TSTARTUP + TRST	Tlprc	2, 3, 6
MCLR	Any Clock	Trst	_	3
WDT	Any Clock	Trst	_	3
Software	Any clock	Trst	_	3
Illegal Opcode	Any Clock	Trst	_	3
Uninitialized W	Any Clock	Trst	_	3
Trap Conflict	Any Clock	Trst		3

TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset Delay (10 μ s nominal).

- **2:** TSTARTUP = TVREG.
- **3:** TRST = Internal State Reset Time (2 μs nominal).
- **4:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5:** TLOCK = PLL Lock Time.
- 6: TFRC and TLPRC = RC Oscillator Start-up Times.
- 7: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC so the system clock delay is just TFRC, and in such cases, FRC start-up time is valid; it switches to the Primary Oscillator after its respective clock delay.

7.4.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.4.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Interrupts" (DS70000600). The information in this data sheet supersedes the information in the FRM.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with up to 118 Vectors
- Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Alternate Interrupt Vector Table (AIVT) for Debug Support
- Fixed Interrupt Entry and Return Latencies

8.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 8-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 source interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ256GA412/GB412 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 8-1 and Table 8-2.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The ALTIVT (INTCON2<8>) control bit provides access to the AIVT. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application, and a support environment, without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the PC to zero. The micro-controller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

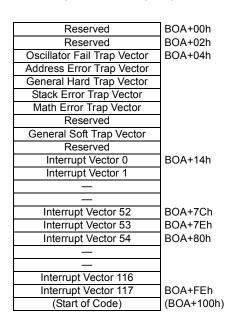

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLES

Interrupt Vector Table (IVT)⁽¹⁾

Reset - GOTO Instruction 000000h Reset - GOTO Address 000002h Oscillator Fail Trap Vector 000004h Address Error Trap Vector 000004h	
Oscillator Fail Trap Vector 000004h Address Error Trap Vector	
Address Error Trap Vector	
· · · · · · · · · · · · · · · · · · ·	
General Hard Trap Vector	
€ Stack Error Trap Vector	
은 Math Error Trap Vector	
Reserved	
B General Soft Trap Vector	
Ō Reserved	
ऌ Interrupt Vector 0 000014h	
Stack Error Trap Vector Math Error Trap Vector Reserved General Soft Trap Vector General Soft Trap Vector Interrupt Vector 0 Interrupt Vector 1 Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54	
Z _	
Interrupt Vector 52 00007Ch	
B Interrupt Vector 53 00007Eh	
Interrupt Vector 54 000080h	
—	
—	
Interrupt Vector 116 0000FCh	
Interrupt Vector 117 0000FEh	
▼	

Alternate Interrupt Vector Table (AIVT)^(1,2)

Legend: BOA: Base Offset Address for AIVT, which is the starting address of the last page of the Boot Segment. All addresses are in hexadecimal.

Note 1: See Table 8-2 for the interrupt vector list.

2: AIVT is only available when a Boot Segment is implemented.

TABLE 8-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	BOA+04h	Oscillator Failure
1	000006h	BOA+06h	Address Error
2	000008h	BOA+08h	General Hardware Error
3	00000Ah	BOA+0Ah	Stack Error
4	00000Ch	BOA+0Ch	Math Error
5	00000Eh	BOA+0Eh	Reserved
6	000010h	BOA+10h	General Software Error
7	000012h	BOA+12h	Reserved

Legend: BOA = Base Offset Address for AIVT segment, which is the starting address of the last page of the Boot Segment.

TABLE 8-2: IMPLEMENTED IN	Vector		IVT	Interrupt Bit Locations			
Interrupt Source	Number	IRQ #	Address	Flag	Enable	Priority	
ADC1 Interrupt	21	13	00002Eh	IFS0<13>	IEC0<13>	IPC3<6:4>	
CLC1	104	96	0000D4h	IFS6<0>	IEC6<0>	IPC24<2:0>	
CLC2	105	97	0000D6h	IFS6<1>	IEC6<1>	IPC24<6:4>	
CLC3	106	98	0000D8h	IFS6<2>	IEC6<2>	IPC24<10:8>	
CLC4	107	99	0000DAh	IFS6<3>	IEC6<3>	IPC24<14:12>	
Comparator Event	26	18	000038h	IFS1<2>	IEC1<2>	IPC4<10:8>	
CRC Generator	75	67	00009Ah	IFS4<3>	IEC4<3>	IPC16<14:12>	
Crypto Buffer Ready	42	34	000058h	IFS2<2>	IEC2<2>	IPC8<10:8>	
Crypto Operation Done	63	55	000082h	IFS3<7>	IEC3<7>	IPC13<14:12>	
Crypto Key Store Program Done	64	56	000084h	IFS3<8>	IEC3<8>	IPC14<2:0>	
Crypto Rollover	43	35	00005Ah	IFS2<3>	IEC2<3>	IPC8<14:12>	
CTMU Event	85	77	0000AEh	IFS4<13>	IEC4<13>	IPC19<6:4>	
DAC	86	78	0000B0h	IFS4<14>	IEC4<14>	IPC19<10:8>	
DMA Channel 0	12	4	00001Ch	IFS0<4>	IEC0<4>	IPC1<2:0>	
DMA Channel 1	22	14	000030h	IFS0<14>	IEC0<14>	IPC3<10:8>	
DMA Channel 2	32	24	000044h	IFS1<8>	IEC1<8>	IPC6<2:0>	
DMA Channel 3	44	36	00005Ch	IFS2<4>	IEC2<4>	IPC9<2:0>	
DMA Channel 4	54	46	000070h	IFS2<14>	IEC2<14>	IPC11<10:8>	
DMA Channel 5	69	61	00008Eh	IFS3<13>	IEC3<13>	IPC15<6:4>	
Enhanced Parallel Master Port (EPMP)	53	45	00006Eh	IFS2<13>	IEC2<13>	IPC11<6:4>	
External Interrupt 0	8	0	000014h	IFS0<0>	IEC0<0>	IPC0<2:0>	
External Interrupt 1	28	20	00003Ch	IFS1<4>	IEC1<4>	IPC5<2:0>	
External Interrupt 2	37	29	00004Eh	IFS1<13>	IEC1<13>	IPC7<6:4>	
External Interrupt 3	61	53	00007Eh	IFS3<5>	IEC3<5>	IPC13<6:4>	
External Interrupt 4	62	54	000080h	IFS3<6>	IEC3<6>	IPC13<10:8>	
Flash Write/Program Done	23	15	000032h	IFS0<15>	IEC0<15>	IPC3<14:12>	
FRC Self-Tune	114	106	0000E8h	IFS6<10>	IEC6<10>	IPC26<10:8>	
High/Low-Voltage Detect (HLVD)	80	72	0000A4h	IFS4<8>	IEC4<8>	IPC18<2:0>	
I2C1 Bus Collision	92	84	0000BCh	IFS5<4>	IEC5<4>	IPC21<2:0>	
I2C1 Master Event	25	17	000036h	IFS1<1>	IEC1<1>	IPC4<6:4>	
I2C1 Slave Event	24	16	000034h	IFS1<0>	IEC1<0>	IPC4<2:0>	
I2C2 Bus Collision	93	85	0000BEh	IFS5<5>	IEC5<5>	IPC21<6:4>	
I2C2 Master Event	58	50	000078h	IFS3<2>	IEC3<2>	IPC12<10:8>	
I2C2 Slave Event	57	49	000076h	IFS3<1>	IEC3<1>	IPC12<6:4>	
I2C3 Master Event	79	71	0000A2h	IFS4<7>	IEC4<7>	IPC17<14:12>	
I2C3 Slave Event	78	70	0000A0h	IFS4<6>	IEC4<6>	IPC17<10:8>	
IC23 Collision	117	109	0000EEh	IFS6<13>	IEC6<13>	IPC27<6:4>	
Input Capture 1	9	1	000016h	IFS0<1>	IEC0<1>	IPC0<6:4>	
Input Capture 2	13	5	00001Eh	IFS0<5>	IEC0<5>	IPC1<6:4>	
Input Capture 3	45	37	00005Eh	IFS2<5>	IEC2<5>	IPC9<6:4>	
Input Capture 4	46	38	000060h	IFS2<6>	IEC2<6>	IPC9<10:8>	
Input Capture 5	47	39	000062h	IFS2<7>	IEC2<7>	IPC9<14:12>	
Input Capture 6	48	40	000064h	IFS2<8>	IEC2<8>	IPC10<2:0>	
Interrupt-on-Change (IOC)	27	19	00003Ah	IFS1<3>	IEC1<3>	IPC4<14:12>	
JTAG	125	117	0000FEh	IFS7<5>	IEC7<5>	IPC29<6:4>	
LCD	108	100	0000DCh	IFS6<4>	IEC6<4>	IPC25<2:0>	

TABLE 8-2:IMPLEMENTED INTERRUPT VECTORS

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

	Vector	100 #	IVT	Inte	Interrupt Bit Locations			
Interrupt Source	Number	IRQ #	Address	Flag	Enable	Priority		
MCCP1 Capture/Compare	71	63	000092h	IFS3<15>	IEC3<15>	IPC15<14:12>		
MCCP1 Timer	109	101	0000DEh	IFS6<5>	IEC6<5>	IPC25<6:4>		
MCCP2 Capture/Compare	72	64	000094h	IFS4<0>	IEC4<0>	IPC16<2:0>		
MCCP2 Timer	110	102	0000E0h	IFS6<6>	IEC6<6>	IPC25<10:8>		
MCCP3 Capture/Compare	102	94	0000D0h	IFS5<14>	IEC5<14>	IPC23<10:8>		
MCCP3 Timer	51	43	00006Ah	IFS2<11>	IEC2<11>	IPC10<14:12>		
MCCP4 Capture/Compare	103	95	0000D2h	IFS5<15>	IEC5<15>	IPC23<14:12>		
MCCP4 Timer	52	44	00006Ch	IFS2<12>	IEC2<12>	IPC11<2:0>		
Output Compare 1	10	2	000018h	IFS0<2>	IEC0<2>	IPC0<10:8>		
Output Compare 2	14	6	000020h	IFS0<6>	IEC0<6>	IPC1<10:8>		
Output Compare 3	33	25	000046h	IFS1<9>	IEC1<9>	IPC6<6:4>		
Output Compare 4	34	26	000048h	IFS1<10>	IEC1<10>	IPC6<10:8>		
Output Compare 5	49	41	000066h	IFS2<9>	IEC2<9>	IPC10<6:4>		
Output Compare 6	50	42	000068h	IFS2<10>	IEC2<10>	IPC10<10:8>		
Real-Time Clock and Calendar (RTCC)	70	62	000090h	IFS3<14>	IEC3<14>	IPC15<10:8>		
RTCC Timestamp	118	110	0000F0h	IFS6<14>	IEC6<14>	IPC27<10:8>		
SCCP5 Capture/Compare	30	22	000040h	IFS1<6>	IEC1<6>	IPC5<10:8>		
SCCP6 Capture/Compare	31	23	000042h	IFS1<7>	IEC1<7>	IPC5<14:12>		
SCCP7 Capture/Compare	81	73	0000A6h	IFS4<9>	IEC4<9>	IPC18<6:4>		
SCCP5 Timer	55	47	000072h	IFS2<15>	IEC2<15>	IPC11<14:12>		
SCCP6 Timer	56	48	000074h	IFS3<0>	IEC3<0>	IPC12<2:0>		
SCCP7 Timer	59	51	00007Ah	IFS3<3>	IEC3<3>	IPC12<14:12>		
SPI1 General	17	9	000026h	IFS0<9>	IEC0<9>	IPC2<6:4>		
SPI1 Receive	66	58	000088h	IFS3<10>	IEC3<10>	IPC14<10:8>		
SPI1 Transmit	18	10	000028h	IFS0<10>	IEC0<10>	IPC2<10:8>		
SPI2 General	40	32	000054h	IFS2<0>	IEC2<0>	IPC8<2:0>		
SPI2 Receive	67	59	00008Ah	IFS3<11>	IEC3<11>	IPC14<14:12>		
SPI2 Transmit	41	33	000056h	IFS2<1>	IEC2<1>	IPC8<6:4>		
SPI3 General	98	90	0000C8h	IFS5<10>	IEC5<10>	IPC22<10:8>		
SPI3 Receive	68	60	00008Ch	IFS3<12>	IEC3<12>	IPC15<2:0>		
SPI3 Transmit	99	91	0000CAh	IFS5<11>	IEC5<11>	IPC22<14:12>		
SPI3 Transmit	101	93	0000CEh	IFS5<13>	IEC5<13>	IPC23<6:4>		
SPI4 General	100	92	0000CCh	IFS5<12>	IEC5<12>	IPC23<2:0>		
SPI4 Receive	65	57	000086h	IFS3<9>	IEC3<9>	IPC14<6:4>		
Timer1	11	3	00001Ah	IFS0<3>	IEC0<3>	IPC0<14:12>		
Timer2	15	7	000022h	IFS0<7>	IEC0<7>	IPC1<14:12>		
Timer3	16	8	000024h	IFS0<8>	IEC0<8>	IPC2<2:0>		
Timer4	35	27	00004Ah	IFS1<11>	IEC1<11>	IPC6<14:12>		
Timer5	36	28	00004Ch	IFS1<12>	IEC1<12>	IPC7<2:0>		
UART1 Error	73	65	000096h	IFS4<1>	IEC4<1>	IPC16<6:4>		
UART1 Receiver	19	11	00002Ah	IFS0<11>	IEC0<11>	IPC2<14:12>		
UART1 Transmitter	20	12	00002Ch	IFS0<12>	IEC0<12>	IPC3<2:0>		
UART2 Error	74	66	000098h	IFS4<2>	IEC4<2>	IPC16<10:8>		
UART2 Receiver	38	30	000050h	IFS1<14>	IEC1<14>	IPC7<10:8>		
UART2 Transmitter	39	31	000052h	IFS1<15>	IEC1<15>	IPC7<14:12>		

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

	Vector	100 #	IVT	Interrupt Bit Locations			
Interrupt Source	Number	IRQ #	Address	Flag	Enable	Priority	
UART3 Error	89	81	0000B6h	IFS5<1>	IEC5<1>	IPC20<6:4>	
UART3 Receiver	90	82	0000B8h	IFS5<2>	IEC5<2>	IPC20<10:8>	
UART3 Transmitter	91	83	0000BAh	IFS5<3>	IEC5<3>	IPC20<14:12>	
UART4 Error	95	87	0000C2h	IFS5<7>	IEC5<7>	IPC21<14:12>	
UART4 Receiver	96	88	0000C4h	IFS5<8>	IEC5<8>	IPC22<2:0>	
UART4 Transmitter	97	89	0000C6h	IFS5<9>	IEC5<9>	IPC22<6:4>	
UART5 Error	121	113	0000F6h	IFS7<1>	IEC7<1>	IPC28<6:4>	
UART5 Receive	119	111	0000F2h	IFS6<15>	IEC6<15>	IPC27<14:12>	
UART5 Transmit	120	112	0000F4h	IFS7<0>	IEC7<0>	IPC28<2:0>	
UART6 Error	124	116	0000FCh	IFS7<4>	IEC7<4>	IPC29<2:0>	
UART6 Receive	122	114	0000F8h	IFS7<2>	IEC7<2>	IPC28<10:8>	
UART6 Transmit	123	113	0000FAh	IFS7<3>	IEC7<3>	IPC28<14:12>	
USB	94	86	0000C0h	IFS5<6>	IEC5<6>	IPC21<10:8>	

8.3 Interrupt Control and Status Registers

The PIC24FJ256GA412/GB412 family of devices implements a total of 50 registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON4
- IFS0 through IFS7
- IEC0 through IEC7
- IPC0 through ICP29
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls global interrupt generation, the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT). INTCON2 and INTCON4 also contain status flags for various hardware trap events.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or an external signal and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Priority Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the order of their vector numbers, as shown in Table 8-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user can change the current CPU priority level by writing to the IPLx bits.

The CORCON register contains the IPL3 bit, which together with the IPL<2:0> bits, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

The interrupt controller has the Interrupt Controller Test register, INTTREG, which displays the status of the interrupt controller. When an interrupt request occurs, its associated vector number and the new Interrupt Priority Level are latched into INTTREG. This information can be used to determine a specific interrupt source if a generic ISR is used for multiple vectors (such as when ISR remapping is used in bootloader applications) or to check if another interrupt is pending while in an ISR.

All Interrupt registers are described in Register 8-3 through Register 8-52 in the succeeding pages.

REGISTER 8-1: SR: ALU STATUS REGISTER (IN CPU)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	DC ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾

|--|

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9	Unimplemented: Read as '0'
----------	----------------------------

bit 7

- bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3)
 - 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
 - 110 = CPU Interrupt Priority Level is 6 (14)
 - 101 = CPU Interrupt Priority Level is 5 (13)
 - 100 = CPU Interrupt Priority Level is 4 (12)
 - 011 = CPU Interrupt Priority Level is 3 (11)
 - 010 = CPU Interrupt Priority Level is 2 (10)
 - 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
 - 000 Cr O Interrupt i honty Leven's 0 (0)
- **Note 1:** See Register 3-1 for the description of the remaining bits (bits 8, 4, 3, 2, 1 and 0) that are not dedicated to interrupt control functions.
 - **2:** The IPLx bits are concatenated with the IPL3 (CORCON<3>) bit to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - 3: The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—			—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit	C = Clearable bit	C = Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-4 Unimplemented: Read as '0'

- bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
- bit 2 Reserved: Read as '1'
- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-2 for bit description.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
NSTDIS	_	—	—	—	—	—	—	
bit 15		U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 MATHERR ADDRERR STKERR OSCFAIL W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown terrupt Nesting Disable bit 0' = Bit is cleared x = Bit is unknown terrupt Nesting Disable bit o' = Bit is cleared x = Bit is unknown terrupt Nesting Disable bit o' = Bit is cleared x = Bit is unknown terrupt Nesting Disable bit o' = Bit is cleared x = Bit is unknown terrupt Nesting Disable bit or = Bit is cleared x = Bit is unknown terrupt Nesting Disable bit or = Bit is cleared x = Bit is unknown terrupt Nesting Disable bit or = Bit is cleared x = Bit is unknown terrupt Nesting is enabled or = Bit is cleared x = Bit is unknown terrupt Nesting is enabled or = Bit is cleared x = Bit is unknown terrupt As not occurred serror Trap Status bit serror trap has not occurred serror trap has not occurred serror trap has not occurred serror trap has not occurred <td>bit 8</td>		bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
			MATHERR	ADDRERR	STKERR	OSCFAIL		
bit 7							bit C	
Legend:								
R = Readab	ole bit			-		d as '0'		
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is clea	0' = Bit is cleared x = Bit is unknown			
bit 15		rupt Nonting	Dischla hit					
DIL 15								
	•	•						
bit 14-5	Unimplement	ted: Read as	' 0'					
bit 4	MATHERR: A	rithmetic Erro	r Trap Status bi	t				
	0 = Overflow	trap has not o	occurred					
bit 3			•					
		•						
L:1 0		•						
bit 2		•						
bit 1		•	e Trap Status bit	ł				
	1 = Oscillator		•					
			as not occurred					
bit 0	Unimplement	ted: Read as	'0'					

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	R-0, HSC	R/W-0	U-0	U-0	U-0	U-0	R/W-0
GIE	DISI	SWTRAP	_		_	_	ALTIVT
bit 15							bit
			DAMA		D 444.0	D 44/ 0	D /// 0
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0 INT1EP	R/W-0 INT0EP
 bit 7	—		INT4EP	INT3EP	INT2EP	INTIEP	bit
							DIL
Legend:		HSC = Hardwa	are Settable/C	learable bit			
R = Readab	le bit	W = Writable b	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15		nterrupt Enable					
	•		•	ole bits are enat	bled		
L:1 4 4	•	s are disabled; t	•	nabled			
bit 14		struction Status					
		truction is not a					
bit 13	SWTRAP: So	oftware Trap Sta	tus bit				
		s a software tra					
	0 = Software	trap is not requ	ested				
bit 12-9	Unimplemen	ted: Read as '0	,				
bit 8		ole Alternate Int	•	Table bit			
		ernate Interrupt ndard (default)		or Table			
bit 7-5	Unimplemen	ted: Read as '0	,				
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect I	Polarity Select b	bit		
	•	on negative edg	•				
bit 3	-			Polarity Select b	bit		
		on negative edg	-	,			
	0 = Interrupt	on positive edg	e				
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect I	Polarity Select b	bit		
		on negative edg					
bit 1	-			Polarity Select b	nit		
bit i		on negative ed	-	olarity beleet t			
		on positive edg					
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect I	Polarity Select b	bit		
		on negative edg					
	0 = Interrupt	on positive edg	е				

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 8-5: INTCON4: INTERRUPT CONTROL REGISTER 4

	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit	_	—	_	—	—	—	—	—
	bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC
—	—		—	—		_	SGHT
bit 7							bit 0

Legend:	HSC = Hardware Settable/0	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-1 Unimplemented: Read as '0'

bit 0

SGHT: Software Generated Hard Trap Status bit

1 = A software generated hard trap has occurred

0 = No software generated hard trap has occurred

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1TXIF	SPI1IF	T3IF			
bit 15	·	·	·				bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0,	R/W-0	R/W-0			
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF			
bit 7						-	bit C			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15		Memory Write	•	e Interrupt Flag	g Status bit					
		request has oc request has no								
bit 14	•	A Channel 1 In		atus bit						
		request has oc								
	•	request has no								
bit 13	AD1IF: 12-Bit Pipeline A/D Event Interrupt Flag Status bit 1 = Interrupt request has occurred									
		request has oc request has no								
bit 12	-	T1 Transmitter		Status bit						
		request has oc								
	0 = Interrupt	request has no	t occurred							
bit 11		RT1 Receiver Ir		tatus bit						
		request has oc request has no								
bit 10	SPI1TXIF: SF	PI1 Transmit In	errupt Flag Sta	atus bit						
		equest has oc equest has no								
bit 9	•	General Interr		bit						
	1 = Interrupt r	equest has oc equest has no	curred							
bit 8	•	Interrupt Flag S								
bit 0		request has oc								
	•	equest has no								
bit 7	T2IF: Timer2	Interrupt Flag	Status bit							
		request has oc								
bit 6	-	request has no ut Compare Ch		int Flag Status	hit					
bit o	1 = Interrupt r	equest has oc	curred	pri lag Status	bit					
	•	request has not								
bit 5		Capture Chann	-	lag Status bit						
		request has oc request has no								
bit 4	-	A Channel 0 In		atus bit						
		request has oc								
		request has no								

REGISTER 8-6: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 8-6: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 3 **T1IF:** Timer1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred bit 2 **OCLUE:** Output Compare Channel 1 Interrupt
- bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

bit 0 INTOIF: External Interrupt 0 Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

REGISTER 8	3-7: IFS1	: INTERRUPT	FLAG STAT	US REGISTE	R 1					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF			
bit 15							bit 8			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CCP6IF	CCP5IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF			
bit 7					•		bit 0			
Legend:										
R = Readable	hit	W = Writable I	hit	U = Unimplem	ented hit re:	ad as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown			
	FUR	I – Dit is set			areu					
bit 15	U2TXIF: UA	RT2 Transmitter	Interrupt Flag	Status bit						
	1 = Interrupt	t request has occ	curred							
	0 = Interrup	t request has not	occurred							
bit 14		RT2 Receiver In		atus bit						
		t request has occ t request has not								
h:+ 40	•									
bit 13	INT2IF: External Interrupt 2 Flag Status bit 1 = Interrupt request has occurred									
		t request has not								
bit 12		5 Interrupt Flag S								
		t request has oc								
		t request has not								
bit 11	T4IF: Timer4	Interrupt Flag S	tatus bit							
		t request has oc								
	•	t request has not								
bit 10	OC4IF: Output Compare Channel 4 Interrupt Flag Status bit 1 = Interrupt request has occurred									
		t request has occ t request has not								
bit 9	•	•		ot Elaa Statue k	Nit.					
DIL 9	OC3IF: Output Compare Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred									
		t request has not								
bit 8	DMA2IF: DN	IA Channel 2 Int	errupt Flag Sta	atus bit						
		t request has occ								
	0 = Interrup	t request has not	occurred							
bit 7	CCP6IF: SCCP6 Capture/Compare Interrupt Flag Status bit									
		t request has oc								
	 0 = Interrupt request has not occurred CCP5IF: SCCP5 Capture/Compare Interrupt Flag Status bit 									
bit 6		•	•	ot Flag Status b	Dit					
		t request has occ t request has not								
bit 5	-	nted: Read as '0								
bit 4	-	ernal Interrupt 1 F								
		t request has oc								
		t request has not								
bit 3	CNIF: Interru	upt-on-Change Ir	nterrupt Flag S	tatus bit						
	-	t request has oc								
	0 = Interrup	t request has not	occurred							

REGISTER 8-7: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 8-7: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 2 CMIF: Comparator Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 MI2C1IF: Master I2C1 Event Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CCT5IF	DMA4IF	PMPIF	CCT4IF	CCT3IF	OC6IF	OC5IF	IC6IF		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IC5IF	IC4IF	IC3IF	DMA3IF	CRYROLLIF		SPI2TXIF	SPI2IF		
bit 7	10411	1031	DIVIASI	OKTROLLIF	ORTFREEIF	SFIZIAI	bit (
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own		
bit 15	CCT5IF: SCC	P5 Timer Inter	rupt Flag Stat	us bit					
	1 = Interrupt	request has oc	curred						
	0 = Interrupt	request has no	t occurred						
bit 14		A Channel 4 In		tatus bit					
		request has oc							
L:1 10	•	request has no							
bit 13		lel Master Port request has oc		Status bit					
		request has oc							
bit 12	-	P4 Timer Inter		us bit					
	1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred								
bit 11		CP3 Timer Inte		tus bit					
		request has oc request has no							
bit 10	OC6IF: Outpu	ut Compare Ch	annel 6 Interr	upt Flag Status I	bit				
		request has oc							
	•	request has no							
bit 9	OC5IF: Output Compare Channel 5 Interrupt Flag Status bit								
		request has oc request has no							
bit 8	•	Capture Channe		Jag Status hit					
		request has oc		lag Status bit					
		request has no							
bit 7	IC5IF: Input C	apture Chann	el 5 Interrupt F	-lag Status bit					
		request has oc							
	0 = Interrupt request has not occurred								
bit 6	-	IC4IF: Input Capture Channel 4 Interrupt Flag Status bit							
		request has oc request has no							
bit 5	-	Capture Channe		-lag Status bit					
	•	request has oc	•	J					
		request has no							
bit 4	DMA3IF: DM	A Channel 3 In	terrupt Flag S	tatus bit					
		request has oc							
	0 = Interrupt	request has no	t occurred						

REGISTER 8-8: IFS2: INTERRUPT FLAG STATUS REGISTER 2

REGISTER 8-8: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

- bit 3
 CRYROLLIF: Cryptographic Rollover Status bit

 1 = Interrupt request has occurred

 0 = Interrupt request has not occurred

 bit 2
 CRYFREEIF: Cryptographic Buffer Free Status bit
 - of Z **CRYFREEIF:** Cryptographic Buffer Free Status b
 - 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred
- bit 1 SPI2TXIF: SPI2 Transmit Interrupt Flag Status bit
 - IT SPIZIAIF: SPIZ Transmit interrupt riag Status
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SPI2IF: SPI2 General Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CCP1IF	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	SPI4RXIF	KEYSTRIF				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
CRYDNIF	INT4IF	INT3IF	_	MI2C2IF	SI2C2IF	CCT6IF					
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	iown				
bit 15	1 = Interrupt r	equest has occ	urred	ot Flag Status bi	t						
bit 14	1 = Interrupt r	 0 = Interrupt request has not occurred RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 13	DMA5IF: DM	-	errupt Flag Stat	tus bit							
		equest has not									
bit 12	SPI3RXIF: SF	PI3 Receive Inte	errupt Flag Stat	us bit							
		equest has occ equest has not									
bit 11		: SPI2 Receive Interrupt Flag Status bit									
		equest has occ equest has not									
bit 10	-	-	errupt Flag Stat	us bit							
		equest has occ equest has not									
bit 9	SPI4RXIF: SF	PI4 Receive Inte	errupt Flag Stat	us bit							
		equest has occ equest has not									
bit 8	KEYSTRIF: C	Cryptographic K	ey Store Progra	am Done Interru	pt Flag Status	bit					
		equest has occ equest has not									
bit 7	CRYDNIF: Cr	yptographic Op	eration Done Ir	nterrupt Flag Sta	atus bit						
		equest has occ equest has not									
bit 6	INT4IF: Exter	nal Interrupt 4	Flag Status bit								
		equest has occ equest has not									
bit 5	INT3IF: External Interrupt 3 Flag Status bit										
		request has oc request has no									
bit 4		ted: Read as '									
bit 3	CCT7IF: SCC	P7 Timer Inter	upt Flag Status	bit							

REGISTER 8-9: IFS3: INTERRUPT FLAG STATUS REGISTER 3

REGISTER 8-9: IFS3: INTERRUPT FLAG STATUS REGISTER 3 (CONTINUED)

- bit 2 MI2C2IF: Master I2C2 Event Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 CCT6IF: SCCP6 Timer Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER	8-10: IFS4:	INTERRUPT	FLAG STA	TUS REGISTE	ER 4								
U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0						
—	DAC1IF	CTMUIF	—	—	—	CCP7IF	HLVDIF						
bit 15							bit 8						
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
MI2C3IF	SI2C3IF	_	U2ERIF	U1ERIF	CCP2IF								
bit 7				CRCIF			bit (
Legend:													
R = Readable	e bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'							
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown						
bit 15	Unimplemen	ted: Read as 'o	,										
bit 14	-	C Converter Inte		atus bit									
		request has occ											
	0 = Interrupt	request has not	occurred										
bit 13		MU Interrupt Fla	•										
		request has occorrequest has not											
bit 12-10	•	ited: Read as '0											
bit 9	-			upt Flag Status b	nit								
DIL 9		request has oc		apt i lag Status t	Jit								
	•	request has not											
bit 8	HLVDIF: High	LVDIF: High/Low-Voltage Detect Interrupt Flag Status bit											
		request has oc											
1.11.7	-	request has not											
bit 7	MI2C3IF: Master I2C3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred												
		request has not											
bit 6	-	-		Status bit									
	SI2C3IF: Slave I2C3 Event Interrupt Flag Status bit 1 = Interrupt request has occurred												
	•	request has not											
bit 5-4		ted: Read as '0											
bit 3	CRCIF: CRC Generator Interrupt Flag Status bit												
		request has occurred											
bit 2	 0 = Interrupt request has not occurred U2ERIF: UART2 Error Interrupt Flag Status bit 												
	1 = Interrupt request has occurred												
) = Interrupt request has not occurred											
bit 1	U1ERIF: UAF	RT1 Error Interro	upt Flag Statu	ıs bit									
		request has occ											
	() = Interrupt	roquet has not	occurred										
	-	request has not			CCP2IF: MCCP2 Capture/Compare Interrupt Flag Status bit								
bit 0	CCP2IF: MCC	-	mpare Interru	ipt Flag Status bi	it								

REGISTER 8-10: IFS4: INTERRUPT FLAG STATUS REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CCP4IF	CCP3IF	SPI4TXIF	SPI4IF	SPI3TXIF	SPI3IF	U4TXIF	U4RXIF				
bit 15			1				bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
U4ERIF	USB1IF	I2C2BCIF	I2C1BCIF	U3TXIF	U3RXIF	U3ERIF					
bit 7							bit (
Legend:											
R = Readable	e hit	W = Writable	bit	U = Unimplem	ented hit read	1 as 'N'					
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	NOW/D				
	TOR	1 - Dit 13 3et									
bit 15	CCP4IF: SCO	CP4 Capture/Co	mpare Interrup	t Flag Status bit	t						
		request has occ	• •								
		request has not									
bit 14		CP3 Capture/Co		ot Flag Status bi	t						
		request has occ									
1 11 40	-	request has not									
bit 13		SPI4TXIF: SPI4 Transmit Interrupt Flag Status bit L = Interrupt request has occurred									
		request has occ request has not									
bit 12	•	General Interru		bit							
		request has occ									
	0 = Interrupt request has not occurred										
bit 11	SPI3TXIF: SI	PI3 Transmit Int	errupt Flag Sta	atus bit							
		request has occ									
1:1.40	•	request has not		1.11							
bit 10		General Interru		DIT							
		request has not									
bit 9		RT4 Transmitter		Status bit							
		request has oc									
	0 = Interrupt	request has no	t occurred								
bit 8	U4RXIF: UAF	RT4 Receiver Ir	nterrupt Flag St	atus bit							
		request has oc									
h:+ 7	-	request has no		. h:+							
bit 7		RT4 Error Interr		S DIT							
		request has oc request has no									
bit 6	 Interrupt request has not occurred USB1IF: USB1 (USB OTG) Interrupt Flag Status bit 										
	1 = Interrupt request has occurred										
	0 = Interrupt	request has no	t occurred								
bit 5	12C2BCIF: 12	C2 Bus Collisio	n Interrupt Flag	g Status bit							
		request has occ									
h:+ 4	-	request has not									
bit 4		C1 Bus Collisio request has occ	-	y Status dit							
	i = interruot	request has occ	anteo								

REGISTER 8-11: IFS5: INTERRUPT FLAG STATUS REGISTER 5

REGISTER 8-11: IFS5: INTERRUPT FLAG STATUS REGISTER 5 (CONTINUED)

bit 3	U3TXIF: UART3 Transmitter Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 2	U3RXIF: UART3 Receiver Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	U3ERIF: UART3 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0			
U5RXIF	RTCTSIF	I2C3BCIF	_	—	FSTIF	—	_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
0-0	CCT2IF	CCT1IF		CLC4IF	CLC3IF	CLC2IF	CLC1IF			
bit 7	00121	00111	LODII	CLOHI	CECSII	OLOZII	bit (
Legend:										
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	1 as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
							lown			
bit 15	U5RXIF: UAF	RT5 Receiver In	terrupt Flag S	tatus bit						
	1 = Interrupt	request has occ	curred							
	0 = Interrupt	request has not	occurred							
bit 14		CC Timestamp		Status bit						
		request has occ								
bit 13		request has not		a Statua hit						
DIL 13		C3 Bus Collision request has occ		g Status bit						
		equest has not								
bit 12-11	Unimplemen	ted: Read as '0	,							
bit 10	FSTIF: FRC Self-Tune Interrupt Flag Status bit									
	1 = Interrupt	request has occ request has not	curred							
bit 9-7	Unimplemen	ted: Read as '0	,							
bit 6	CCT2IF: MCC	P2 Timer Interr	upt Flag Statu	s bit						
	•	equest has occu								
	•	equest has not o								
bit 5	CCT1IF: MCCP1 Timer Interrupt Flag Status bit									
		equest has occu equest has not o								
bit 4	•	Controller Interr		is hit						
		request has occ								
		request has not								
bit 3	CLC4IF: CLC4 Interrupt Flag Status bit									
		request has occ								
	-	request has not								
bit 2	CLC3IF: CLC3 Interrupt Flag Status bit									
		request has occ request has not								
bit 1	•	2 Interrupt Flag								
		request has occ								
		request has not								
bit 0	CLC1IF: CLC	1 Interrupt Flag	Status bit							
		request has occ								
	• • •	request has not								

REGISTER 8-12: IFS6: INTERRUPT FLAG STATUS REGISTER 6

REGISTER	(o-13: IF3/	INTERRUPT	FLAG STAT	US REGISTE	-R /							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—		_	—	—		—	_					
bit 15							bit 8					
U-0	U-0	R/W-0	R/W-0									
_		JTAGIF	U6ERIF	U6TXIF	U6RXIF	U5ERIF	U5TXIF					
bit 7							bit 0					
Legend:												
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'						
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-6	Unimpleme	nted: Read as '	0'									
bit 5		AG Controller In		atus bit								
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 4	•	•		a hit								
DIC 4		U6ERIF: UART6 Error Interrupt Flag Status bit 1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred											
bit 3		RT6 Transmitte		Status bit								
	1 = Interrupt request has occurred											
	0 = Interrup	t request has no	ot occurred									
bit 2	U6RXIF: UA	RT6 Receiver I	nterrupt Flag S	tatus bit								
		t request has or										
	•	t request has no										
bit 1	U5ERIF: UART5 Error Interrupt Flag Status bit 1 = Interrupt request has occurred											
	•	t request has of										
bit 0		RT5 Transmitte		Status bit								
		t request has or										
		t request has no										

REGISTER 8-13: IFS7: INTERRUPT FLAG STATUS REGISTER 7

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1TXIE	SPI1IE	T3IE			
bit 15							bit 8			
DAMA	D/M/ 0	DAMO			DAMA	DAMA	DAMA			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0,	R/W-0	R/W-0			
T2IE bit 7	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE bit C			
							Dit O			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15		-	e/Program Don	e Interrupt Ena	able bit					
		request is enal request is not								
bit 14	•	•	iterrupt Enable	bit						
		request is ena	-							
	0 = Interrupt	request is not	enabled							
bit 13		-	nterrupt Enable	e bit						
		request is enal request is not								
bit 12	•	-	r Interrupt Enal	nle hit						
		request is enal	•							
		request is not								
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit									
	•	request is ena								
h:+ 40	-	request is not		L:+						
bit 10		request is enal	terrupt Enable	DIL						
		request is enal								
bit 9	SPI1IE: SPI1	General Interr	upt Enable bit							
		request is ena								
	•	request is not								
bit 8		Interrupt Enab								
	•	request is enal request is not								
bit 7	•	Interrupt Enab								
		request is ena								
	0 = Interrupt	request is not	enabled							
bit 6		•	annel 2 Interru	pt Enable bit						
		request is enal request is not								
bit 5	•		el 2 Interrupt E	nable bit						
	-	request is ena	-							
		request is not								
bit 4	DMAOIE: DM	A Channel 0 Ir	iterrupt Flag Er	nable bit						
		request is enal								
	0 = interrupt	request is not	enabled							

REGISTER 8-14: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

REGISTER 8-14: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 3	T1IE: Timer1 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE ⁽¹⁾	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP6IE	CCP5IE	—	INT1IE ⁽¹⁾	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea	-	x = Bit is unkn	iown
bit 15	U2TXIE: UAF	RT2 Transmitter	Interrupt Enal	ble bit			
	1 = Interrupt	request is enab	bled				
	0 = Interrupt	request is not e	enabled				
bit 14		RT2 Receiver Ir	•	e bit			
		request is enab request is not e					
bit 13		nal Interrupt 2					
DIL 15		request is enal					
		request is not e					
bit 12	T5IE: Timer5	Interrupt Enabl	e bit				
		request is enab request is not e					
bit 11	-	Interrupt Enabl					
		request is enat					
	0 = Interrupt	request is not e	enabled				
bit 10	•	ut Compare Ch		pt Enable bit			
		request is enab request is not e					
bit 9	OC3IE: Output	ut Compare Ch	annel 3 Interru	pt Enable bit			
		request is enal request is not e					
bit 8	•	A Channel 2 In		nable bit			
bit o		request is enal					
	•	request is not e					
bit 7	CCP6IE: SCO	CP6 Capture/Co	ompare Interru	pt Enable bit			
		request is enab request is not e					
bit 6	CCP5IE: SCO	CP5 Capture/Co	ompare Interru	pt Enable bit			
		request is enab request is not e					
bit 5	-	ted: Read as '					
bit 4	-	nal Interrupt 1					
		request is enal					
		request is not e					
Note 1: If	an external inte	rrupt is enabled	d, the interrupt	input must also	be configured	d to an available	RPn or RPIn

REGISTER 8-15: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 8-15: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	 CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 1	MI2C1IE: Master I2C1 Event Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 0	SI2C1IE: Slave I2C1 Event Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 8-16: IE	EC2: INTERRUPT ENABLE CONTROL REGISTER 2
-------------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCT5IE	DMA4IE	PMPIE	CCT4IE	CCT3IE	OC6IE	OC5IE	IC6IE
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IE	IC4IFE	IC3IE	DMA3IFE	CRYROLLIFE	CRYFREEIE	SPI2TXIE	SPI2IE
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, reac	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	1 = Interrupt	CP5 Timer Inter request is enal	bled	t			
hit 11	•	request is not o		hit			
bit 14	1 = Interrupt	A Channel 4 In request is enal request is not (bled	DI			
bit 13	1 = Interrupt	llel Master Port request is enal request is not e	bled	ole bit			
bit 12	CCT4IE: SCC 1 = Interrupt	CP4 Timer Inter request is enal request is not e	rupt Enable bi bled	t			
bit 11	CCT3IE: MC	CP3 Timer Inte request is enal request is not o	rrupt Enable bi bled	it			
bit 10	OC6IE: Output 1 = Interrupt	ut Compare Ch request is enal request is not o	annel 6 Interru bled	upt Enable bit			
bit 9	OC5IE: Output 1 = Interrupt	ut Compare Ch request is enal request is not e	annel 5 Interru bled	upt Enable bit			
bit 8	IC6IE: Input (1 = Interrupt	Capture Chann request is enal request is not e	el 6 Interrupt E bled	nable bit			
bit 7	IC5IE: Input (1 = Interrupt	Capture Chann request is enal request is not o	el 5 Interrupt E bled	nable bit			
bit 6	IC4IE: Input (1 = Interrupt	Capture Chann request is enal request is not o	el 4 Interrupt E bled	nable bit			
bit 5	IC3IE: Input (1 = Interrupt	Capture Chann request is enal request is not e	el 3 Interrupt E bled	nable bit			
bit 4	DMA3IE: DM 1 = Interrupt	A Channel 3 In request is enal request is not e	terrupt Enable bled	bit			

REGISTER 8-16: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	CRYROLLIE: Cryptographic Rollover Interrupt Enable bit 1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 2	CRYFREEIE: Cryptographic Buffer Free Interrupt Enable bit
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 1	SPI2TXIE: SPI2 Transmit Interrupt Enable bit
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 0	SPI2IE: SPI2 General Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP1IE	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE	SPI4RXIE	KEYSTRIE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CRYDNIE	INT4IE ⁽¹⁾	INT3IE ⁽¹⁾		CCT7IE	MI2C2IE	SI2C2IE	CCT6IE
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15		CP1 Capture/Co	omoare Interrur	ot Enable bit			
		request is enal					
		request is not e					
bit 14	RTCIE: Real-	Time Clock an	d Calendar Inte	errupt Enable b	bit		
		request is enal					
1.1.40	-	request is not o		1.11			
bit 13		A Channel 5 In request is enal	•	DIT			
		request is enal					
bit 12	-	PI3 Receive Inte		it			
		request is enal	•				
	0 = Interrupt	request is not e	enabled				
bit 11		PI2 Receive Inte	•	it			
	•	request is enal request is not e					
bit 10	SPI1RXIE: SP	PI1 Receive Inte	errupt Enable b	it			
		request is enal request is not e					
bit 9	-	PI4 Receive Inte		it			
	1 = Interrupt	request is enal	bled				
bit 8	•	request is not o Cryptographic K		om Dono Intor	runt Enchlo hit		
DILO		request is enal			upt Enable bit		
		request is not e					
bit 7	CRYDNIE: Cr	yptographic Op	eration Done Ir	nterrupt Enable	e bit		
		request is enal					
		request is not e					
bit 6		rnal Interrupt 4					
	•	request is enal request is not e					
bit 5	•	rnal Interrupt 3					
		request is enal					
		request is not o					
bit 4	Unimplemen	ted: Read as '	0'				
Note 1. If	an external inte	rrunt is enabled	the interrunt	innut must als	o be configured	to an available	DDn or DDIn

REGISTER 8-17: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 8-17: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 (CONTINUED)

bit 3	CCT7IE: SCCP7 Timer Interrupt Enable bit
	 Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 2	MI2C2IE: Master I2C2 Event Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 1	SI2C2IE: Slave I2C2 Event Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 0	CCT6IE: SCCP6 Timer Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 8-18: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
_	DAC1IE	CTMUIE	_	—	_	CCP7IE	HLVDIE
bit 15		·				·	bit 8
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
MI2C3IE	SI2C3IE			CRCIE	U2ERIE	U1ERIE	CCP2IE
bit 7							bit 0
Legend:							
R = Readable		W = Writable	bit	•	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	-	ted: Read as '					
bit 14		C Converter Inte	•	bit			
		request is enable request is not e					
bit 13	•	MU Interrupt Er					
		request is enab					
	0 = Interrupt	request is not e	enabled				
bit 12-10	Unimplemen	ted: Read as ')'				
bit 9		CP7 Capture/Co	-	upt Enable bit			
		request is enable request is not e					
bit 8	-	h/Low-Voltage [t Enable bit			
	-	request is enat	-				
		request is not e					
bit 7	MI2C3IE: Ma	ster I2C3 Event	Interrupt Ena	ble bit			
	1 = Interrupt	request is enab	led				
		request is not e					
bit 6		ve I2C3 Event li		e bit			
		request is enable request is not e					
bit 5-4	•	ited: Read as '					
bit 3	-	Generator Inte		pit			
		request is enab	•				
		request is not e					
bit 2	U2ERIE: UAR	RT2 Error Interr	upt Enable bit				
		request is enab					
hit 1	-	request is not e					
bit 1		RT1 Error Interr request is enat					
		request is not e					
bit 0	CCP2IE: MC	CP2 Capture/Co	ompare Interru	pt Enable bit			
	1 = Interrupt	request is enab	oled				
	0 = Interrupt	request is not e	enabled				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CCP4IE	CCP3IE	SPI4TXIE	SPI4IE	SPI3TXIE	SPI3IE	U4TXIE	U4RXIE
bit 15	·			· · ·			bit 8
	D 444 A	D 444 0	D 444 0	D M M O	D 444 0	D M M O	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U4ERIE	USB1IE	I2C2BCIE	I2C1BCIFE	U3TXIE	U3RXIE	U3ERIE	—
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown
bit 15	CCP4IE: SCC	CP4 Capture/Co	mpare Interrup	t Enable bit			
		request is enal					
	•	request is not e					
bit 14		CP3 Capture/Co		ot Enable bit			
	•	request is enal					
L:1 1 0		request is not e		L:4			
bit 13		PI4 Transmit In request is enal	•	DIL			
		request is enal					
oit 12	-	General Interr					
		request has occ	•				
	0 = Interrupt r	request has not	occurred				
bit 11	SPI3TXIE: SF	PI3 Transmit In	terrupt Enable	bit			
	•	request is enal					
	-	request is not e					
bit 10		General Interr	•				
		request is enal request is not e					
bit 9		RT4 Transmitter		ole hit			
bit 5		request is enal					
		request is not e					
bit 8	U4RXIE: UAF	RT4 Receiver Ir	nterrupt Enable	bit			
		request is enal					
	•	request is not e					
bit 7		RT4 Error Interr	-				
	•	request is enal					
hit G	•	request is not e		la hit			
bit 6		B1 (USB OTG)	-				
	•	request is enal request is not e					
bit 5	-	C2 Bus Collisio		able bit			
		request is enal					
		request is not e					
bit 4	12C1BCIE: 12	C1 Bus Collisio	on Interrupt Ena	able bit			
		request is enal					
	0 = Interrupt	request is not e	enabled				

REGISTER 8-19: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

REGISTER 8-19: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5 (CONTINUED)

- bit 3 U3TXIE: UART3 Transmitter Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 2 U3RXIE: UART3 Receiver Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 1 U3ERIE: UART3 Error Interrupt Enable bit
 - 1 = Interrupt request is enabled
- 0 = Interrupt request is not enabled
- bit 0 Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0			
U5RXIE	RTCTSIE	I2C3BCIE	—	_	FSTIE	—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	CCT2IE	CCT1IE	LCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE			
bit 7							bit (
Legend:										
R = Readable		W = Writable	oit	•	nented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
L:1 4 F			to much Enchl	- h:4						
bit 15		RT5 Receiver Ir request is enab	•							
		request is enaction request is not e								
bit 14		CC Timestamp		ble bit						
	1 = Interrupt	request is enab	led							
	•	request is not e								
bit 13	I2C3BCIE: I2C3 Bus Collision Interrupt Enable bit									
		request is enab request is not e								
bit 12-11	•	ted: Read as '(
bit 10	-									
	FSTIE: FRC Self-Tune Interrupt Enable bit 1 = Interrupt request is enabled									
	0 = Interrupt	request is not e	nabled							
bit 9-7	Unimplement	ted: Read as 'o)'							
bit 6		CP2 Timer Inter	•	t						
		request is enab								
bit 5	•	request is not e								
DIL D		CP1 Timer Interi request is enab	•	L						
		request is not e								
bit 4	LCDIE: LCD	Controller Inter	upt Enable bi	t						
		request is enab								
	•	request is not e								
bit 3		4 Interrupt Ena								
		request is enab request is not e								
bit 2	-	3 Interrupt Ena								
SIT 2		request is enab								
		request is not e								
bit 1	CLC2IE: CLC	2 Interrupt Ena	ble bit							
		request is enab								
L:1 0	-	request is not e								
DIT ()	CLC1IE: CLC	Interrupt Lpc	DIO DIT							
bit 0		request is enab								

REGISTER 8-21: IEC7: INTERRUPT ENABLE CONTROL REGISTER 7

1 = Interrupt request has occurred0 = Interrupt request has not occurred

1 = Interrupt request has occurred0 = Interrupt request has not occurred

U5ERIE: UART5 Error Interrupt Enable bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

U5TXIE: UART5 Transmitter Interrupt Enable bit

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	JTAGIE	U6ERIE	U6TXIE	U6RXIE	U5ERIE	U5TXIE		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN		
bit 15-6	Unimplemen		0'	'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-6	Unimplemen JTAGIE: JAT 1 = Interrupt	nted: Read as ' G Interrupt Ena request is enal	^{0'} able bit bled	'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-6	Unimplemen JTAGIE: JAT 1 = Interrupt	nted: Read as f	^{0'} able bit bled	'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-6 bit 5	Unimplemen JTAGIE: JAT 1 = Interrupt 0 = Interrupt	nted: Read as ' G Interrupt Ena request is enal	^{0'} able bit bled enabled	'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-6 bit 5	Unimplemen JTAGIE: JAT 1 = Interrupt 0 = Interrupt U6ERIE: UAI 1 = Interrupt	nted: Read as f G Interrupt Ena request is enal request is not e RT6 Error Interr request has oc	0' able bit bled enabled rupt Enable bit curred	'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-6 bit 5	Unimplemen JTAGIE: JAT 1 = Interrupt 0 = Interrupt U6ERIE: UAI 1 = Interrupt	ated: Read as ' G Interrupt Ena request is enal request is not e RT6 Error Interr	0' able bit bled enabled rupt Enable bit curred	'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-6 bit 5 bit 4	Unimplemen JTAGIE: JAT 1 = Interrupt 0 = Interrupt U6ERIE: UAI 1 = Interrupt 0 = Interrupt	nted: Read as f G Interrupt Ena request is enal request is not e RT6 Error Interr request has oc	0' able bit bled enabled rupt Enable bit scurred at occurred		ared	x = Bit is unkr	iown		
bit 15-6 bit 5 bit 4	Unimplemen JTAGIE: JAT 1 = Interrupt 0 = Interrupt U6ERIE: UAI 1 = Interrupt 0 = Interrupt U6TXIE: UAF 1 = Interrupt	ted: Read as ' G Interrupt Ena request is enal request is not e RT6 Error Interr request has oc request has no RT6 Transmitter request has oc	0' able bit bled enabled rupt Enable bit curred t occurred r Interrupt Enal curred		ared	x = Bit is unkr	iown		
<u>-n = Value a</u> bit 15-6 bit 5 bit 4 bit 3	Unimplemen JTAGIE: JAT 1 = Interrupt 0 = Interrupt U6ERIE: UAI 1 = Interrupt 0 = Interrupt U6TXIE: UAF 1 = Interrupt	nted: Read as f G Interrupt Ena request is enal request is not e RT6 Error Interr request has oc request has no RT6 Transmitter	0' able bit bled enabled rupt Enable bit curred t occurred r Interrupt Enal curred		ared	x = Bit is unkr	iown		

bit 1

bit 0

U-0												
	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0					
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0					
bit 7							bit (
Legend:												
R = Readable bit		W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle			Bit is unknown					
bit 15	Unimplemen	ted: Read as 'o)'									
bit 14-12	T1IP<2:0>: ⊺	imer1 Interrupt	Priority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interrupt is Priority 1											
	000 = Interru	pt source is dis	abled									
bit 11	Unimplemented: Read as '0'											
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits											
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled											
			abled									
bit 7	000 = Interru	pt source is dis										
bit 7 bit 6-4	000 = Interru Unimplemen	pt source is dis ted: Read as '()'	rrupt Priority bit	ts							
	000 = Interru Unimplemen IC1IP<2:0>: I	pt source is dis ted: Read as '()' Channel 1 Inte	rrupt Priority bit y interrupt)	s							
	000 = Interru Unimplemen IC1IP<2:0>: I	pt source is dis ted: Read as '(nput Capture C)' Channel 1 Inte		ts							
	000 = Interru Unimplemen IC1IP<2:0>: I	pt source is dis ted: Read as '(nput Capture C)' Channel 1 Inte		S							
	000 = Interru Unimplemen IC1IP<2:0>: I 111 = Interru • •	pt source is dis ted: Read as '(nput Capture C pt is Priority 7 ()' Channel 1 Inte		s							
	000 = Interru Unimplemen IC1IP<2:0>: I 111 = Interru 001 = Interru	pt source is dis ted: Read as '(nput Capture C pt is Priority 7 (₎ , channel 1 Inte highest priorit		S							
bit 6-4	000 = Interru Unimplemen IC1IP<2:0>: I 111 = Interru	pt source is dis ted: Read as '(nput Capture C pt is Priority 7 (pt is Priority 1	_o , channel 1 Inte highest priorit abled		'S							
bit 6-4 bit 3	000 = Interru Unimplemen IC1IP<2:0>: I 111 = Interru	pt source is dis ted: Read as '(nput Capture C pt is Priority 7 (pt is Priority 1 pt source is dis	^{)'} hannel 1 Inte highest priorit abled	y interrupt)	S							
	000 = Interru Unimplemen IC1IP<2:0>: I 111 = Interru 001 = Interru 000 = Interru Unimplemen INT0IP<2:0>:	pt source is dis ted: Read as '(nput Capture C pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(_o , hannel 1 Inte highest priorit abled o [,] upt 0 Priority I	y interrupt)	S							
bit 6-4 bit 3	000 = Interru Unimplemen IC1IP<2:0>: I 111 = Interru 001 = Interru 000 = Interru Unimplemen INT0IP<2:0>:	pt source is dis ted: Read as '(nput Capture C pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(External Interr	_o , hannel 1 Inte highest priorit abled o [,] upt 0 Priority I	y interrupt)	S							
bit 6-4 bit 3	000 = Interru Unimplemen IC1IP<2:0>: I 111 = Interru 001 = Interru 000 = Interru Unimplemen INT0IP<2:0>:	pt source is dis ted: Read as '(nput Capture C pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(External Interr	_o , hannel 1 Inte highest priorit abled o [,] upt 0 Priority I	y interrupt)	IS							
bit 6-4 bit 3	000 = Interru Unimplemen IC1IP<2:0>: I 111 = Interru 001 = Interru 000 = Interru Unimplemen INT0IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(nput Capture C pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(External Interr pt is Priority 7 (^{o'} channel 1 Inte highest priorit abled o' upt 0 Priority I highest priorit	y interrupt)	S							

REGISTER 8-22: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0
pit 15		·	•				bit
	— — — — — — — — — —		B # 4 4		D 444 4	D 444 A	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	IC2IP2	IC2IP1	IC2IP0	_	DMA0IP2	DMA0IP1	DMA0IP0
pit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
oit 15	Unimpleme	nted: Read as '	ר י				
oit 14-12	-	Timer2 Interrupt					
51(14 12		upt is Priority 7 (•	v interrupt)			
	•			,,			
	•						
	• 001 = Interr	upt is Priority 1					
		upt source is dis	abled				
pit 11	Unimpleme	nted: Read as '	o'				
oit 10-8	OC2IP<2:0>	: Output Compa	are Channel 2	Interrupt Priori	ty bits		
		upt is Priority 7 (-	-		
	•						
	•						
	• 001 = Interr	upt is Priority 1					
		upt source is dis	abled				
bit 7	Unimpleme	nted: Read as '	o'				
bit 6-4	IC2IP<2:0>:	Input Capture C	Channel 2 Inter	rupt Priority bi	ts		
		upt is Priority 7 (•			
	•						
	•						
	001 = Interr	upt is Priority 1					
		upt source is dis	abled				
bit 3	Unimpleme	nted: Read as '	o'				
oit 2-0	-	D>: DMA Chann		Priority bits			
	111 = Interr	upt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	- 001 = Intern	upt is Priority 1					
		appendent induity I					
	-	upt source is dis					

REGISTER 8-23: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPI1IP2	SPI1IP1	SPI1IP0		T3IP2	T3IP1	T3IP0
bit 7	0111112					1011 1	bit
Legend:							
R = Readab		W = Writable		•	emented bit, read		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as '	כי				
bit 14-12	-	: UART1 Rece		Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1 pt source is dis	ablad				
bit 11		ted: Read as '					
bit 10-8	•	0>: SPI1 Trans		riority bite			
		pt is Priority 7 (-	-			
	•	perior monty i	ingridet pridit	, interrupt)			
	•						
	• 001 = Interru	pt is Priority 1					
		pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	D'				
bit 6-4	SPI1IP<2:0>:	SPI1 General	Interrupt Prior	ity bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru						
		pt source is dis					
bit 3	•	ted: Read as '					
bit 2-0		imer3 Interrupt	-	(interrupt)			
	•	pt is Priority 7 (ingnest phone	y interrupt)			
	•						
	• 001 = Interru	nt is Driarity 1					

REGISTER 8-24: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	NVMIP2	NVMIP1	NVMIP0	—	DMA1IP2	DMA1IP1	DMA1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	AD1IP2	AD1IP1	AD1IP0		U1TXIP2	U1TXIP1	U1TXIP0
bit 7	7.01112	7.0 11 1	7.0 111 0		01174112		bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	nted: Read as ')'				
bit 14-11	-	: Flash Memory		m Interrupt Prie	ority bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
		pt is Priority 1					
		pt source is dis					
bit 7	-	ted: Read as '					
bit 10-8		>: DMA Channe		-			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
		ipt is Priority 1 ipt source is dis	ablad				
bit 7		ited: Read as '					
bit 6-4	-	12-Bit Pipeline		Driarity bita			
DIL 0-4		ipt is Priority 7 (-	-			
	•		ingricat priorit	y menupty			
	•						
	• 001 - Intorru	pt is Priority 1					
		ipt is Friding 1	abled				
bit 3		nted: Read as 'o					
bit 2-0	-	-: UART1 Trans		ot Priority bits			
		ıpt is Priority 7 (-	-			
	•						
	•						
	•						
	• 001 = Interru	ıpt is Priority 1					

REGISTER 8-25: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

	8-26: IPC4:				EGISTER 4		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	CNIP2	CNIP1	CNIP0	—	CMIP2	CMIP1	CMIP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
0-0	MI2C1IP2	MI2C1IP1	MI2C1IP0	0-0	SI2C1IP2	SI2C1IP1	SI2C1IP0
	WIZCTIP2	IVII2CTIFT	IVIIZG HFU		3120 TIF2	312CTIFT	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as 'o	,				
bit 14-12	CNIP<2:0>:	nput Change N	otification Inte	rrupt Priority bi	ts		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as 'o	1				
bit 10-8	CMIP<2:0>: (Comparator Inte	errupt Priority I	oits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as 'o	,				
bit 6-4	MI2C1IP<2:0						
		>: Master I2C1		ot Priority bits			
	111 = Interru	>: Master I2C1 pt is Priority 7 (Event Interrup	-			
	111 = Interru •		Event Interrup	-			
	111 = Interru • •		Event Interrup	-			
			Event Interrup	-			
		pt is Priority 7 (Event Interrup highest priority	-			
bit 3	• • 001 = Interru 000 = Interru	pt is Priority 7 (pt is Priority 1	Event Interrup highest priority abled	-			
bit 3 bit 2-0	• • 001 = Interru 000 = Interru Unimplemen	pt is Priority 7 (pt is Priority 1 pt source is dis	Event Interrup highest priority abled	/ interrupt)			
	• • 001 = Interru 000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '0	Event Interrup highest priority abled ,' vent Interrupt	/ interrupt) Priority bits			
	• • 001 = Interru 000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 7 (pt is Priority 1 pt source is disa ted: Read as 'd >: Slave I2C1 E	Event Interrup highest priority abled ,' vent Interrupt	/ interrupt) Priority bits			
	• • 001 = Interru 000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 7 (pt is Priority 1 pt source is disa ted: Read as 'd >: Slave I2C1 E	Event Interrup highest priority abled ,' vent Interrupt	/ interrupt) Priority bits			
	• • 001 = Interru 000 = Interru Unimplemen SI2C1IP<2:0:	pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as 'û >: Slave I2C1 E pt is Priority 7 (Event Interrup highest priority abled ,' vent Interrupt	/ interrupt) Priority bits			

REGISTER 8-26: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

REGISTER 8-27: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CCP6IP2	CCP6IP1	CCP6IP0	_	CCP5IP2	CCP5IP1	CCP5IP0
oit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_	INT1IP2	INT1IP1	INT1IP0
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		pt source is dis					
bit 11	-	ted: Read as '					
bit 10-8	111 = Interru • • 001 = Interru	 SCCP5 Capt pt is Priority 7 (pt is Priority 1 pt source is dis 	highest priority	•	y μις		
bit 7-3	Unimplemen	ted: Read as 'o)'				
bit 2-0		External Interr pt is Priority 7 (
	•						

U-0							
	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	OC3IP2	OC3IP1	OC3IP0	_	DMA2IP2	DMA2IP1	DMA2IP0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
L:1 4 C			- 1				
bit 15	-	ted: Read as '					
bit 14-12		mer4 Interrupt pt is Priority 7 ((interrunt)			
	•		ingriest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1 pt source is dis	ablad				
hit 11							
bit 11	-	ted: Read as '			4 h:ta		
bit 10-8		Output Compa pt is Priority 7 (•	ly bits		
	•	puis Priority / (nignest phonty	/ interrupt)			
	•						
	•						
	001 = Interru		ablad				
L:1 7		pt source is dis					
bit 7	Unimplemen	tea: Read as 10					
	OC3IP<2:0>:						
DIL 0-4		Output Compa	ire Channel 3 I	-	ty bits		
bit 0-4			ire Channel 3 I	-	ty bits		
bit 0-4		Output Compa	ire Channel 3 I	-	ty bits		
bit 6-4	111 = Interru • •	Output Compa pt is Priority 7 (ire Channel 3 I	-	ty bits		
DIL 0-4	111 = Interru • • 001 = Interru	Output Compa pt is Priority 7 (pt is Priority 1	ire Channel 3 l highest priority	-	ty bits		
	111 = Interru • • 001 = Interru 000 = Interru	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis	ire Channel 3 I highest priority abled	-	ty bits		
bit 3	111 = Interru · · 001 = Interru 000 = Interru Unimplemen	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(re Channel 3 l highest priority abled	/ interrupt)	ty bits		
bit 3	111 = Interru 001 = Interru 000 = Interru Unimplemen DMA2IP<2:0:	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(>: DMA Channe	ire Channel 3 I highest priority abled o ² el 2 Interrupt P	/ interrupt) Priority bits	ty bits		
bit 3	111 = Interru 001 = Interru 000 = Interru Unimplemen DMA2IP<2:0:	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(ire Channel 3 I highest priority abled o ² el 2 Interrupt P	/ interrupt) Priority bits	ty bits		
bit 3	111 = Interru 001 = Interru 000 = Interru Unimplemen DMA2IP<2:0:	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(>: DMA Channe	ire Channel 3 I highest priority abled o ² el 2 Interrupt P	/ interrupt) Priority bits	ty bits		
bit 3	111 = Interru 001 = Interru 000 = Interru Unimplemen DMA2IP<2:0:	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(>: DMA Channe	ire Channel 3 I highest priority abled o ² el 2 Interrupt P	/ interrupt) Priority bits	ty bits		
bit 3 bit 2-0	111 = Interru 001 = Interru 000 = Interru Unimplemen DMA2IP<2:0: 111 = Interru 001 = Interru	Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' >: DMA Channe pt is Priority 7 (ire Channel 3 I highest priority abled o' el 2 Interrupt P highest priority	/ interrupt) Priority bits	ty bits		

REGISTER 8-28: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U2TXIP2	U2TXIP1	U2TXIP0		U2RXIP2	U2RXIP1	U2RXIP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	INT2IP2	INT2IP1	INT2IP0		T5IP2	T5IP1	T5IP0
bit 7					1011 2		bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	٥,				
bit 14-12	=	: UART2 Trans		ot Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	o'				
bit 10-8	U2RXIP<2:0>	: UART2 Rece	eiver Interrupt I	Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	o'				
bit 6-4	INT2IP<2:0>:	External Interr	upt 2 Priority b	oits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	o'				
bit 2-0	T5IP<2:0>: ⊤	imer5 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru						
	000 = Interru						

REGISTER 8-29: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CRYROLLIP2	CRYROLLIP1	CRYROLLIP0	_	CRYFREEIP2	CRYFREEIP1	CRYFREEIPO
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0		SPI2IP2	SPI2IP1	SPI2IP0
bit 7	01 12 17(11 2	011217/111			01 1211 2	0112111	bit (
							bit (
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	emented bit, read	1 as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is c	leared	x = Bit is unkr	nown
bit 15	-	ted: Read as 'o					
bit 14-12		<2:0>: Cryptogi	-	-	ority bits		
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru						
	000 = Interru	pt source is dis	abled				
bit 11	Unimplement	ted: Read as ')'				
bit 10-8	CRYFREEIP<	<2:0>: Cryptogr	aphic Buffer Fi	ree Interrupt	Priority bits		
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
		pt source is dis	abled				
bit 7	Unimplement	ted: Read as 'd)'				
bit 6-4	SPI2TXIP<2:0	0>: SPI2 Trans	mit Interrupt Pr	iority bits			
		pt is Priority 7 (-	-			
	•						
	•						
	• 001 = Interru	nt is Priority 1					
		pt source is dis	abled				
bit 3		ted: Read as '(
bit 2-0	•	SPI2 General		tv bits			
		ot is Priority 7 (-	-			
	•		J	····			
	•						
	•	at in Deinstein d					
	001 = Interrup	pt is Priority 1 pt source is disa	abled				
			abieu				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	IC5IP2	IC5IP1	IC5IP0	—	IC4IP2	IC4IP1	IC4IP0
pit 15	÷		•				bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	IC3IP2	IC3IP1	IC3IP0		DMA3IP2	DMA3IP1	DMA3IP0
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	o'				
bit 14-12	-	: Input Capture C		rupt Priority bi	ts		
	111 = Interr	upt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interr	rupt is Priority 1					
	000 = Interr	rupt source is dis	abled				
bit 11	Unimpleme	nted: Read as '	o'				
bit 10-8	IC4IP<2:0>:	: Input Capture C	Channel 4 Inter	rupt Priority bi	ts		
	111 = Interr	rupt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
		rupt is Priority 1					
		rupt source is dis					
bit 7	-	ented: Read as '					
bit 6-4		: Input Capture C			ts		
	111 = Interr	rupt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
		rupt is Priority 1					
		rupt source is dis					
bit 3	-	nted: Read as '					
bit 2-0		0>: DMA Chann		-			
	111 = Interr	rupt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
		rupt is Priority 1 rupt source is dis					

REGISTER 8-31: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	CCT3IP2	CCT3IP1	CCT3IP0		OC6IP2	OC6IP1	OC6IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	OC5IP2	OC5IP1	OC5IP0		IC6IP2	IC6IP1	IC6IP0
bit 7	000112				10011 2		bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	-	ted: Read as '					
bit 14-12		: MCCP3 Time	•	•			
	111 = Interru	pt is Priority 7 (highest priority	(interrupt)			
	•						
	•						
	• 001 = Interru						
	000 = Interru	pt source is dis					
bit 11	000 = Interru						
bit 11 bit 10-8	000 = Interru Unimplemen	pt source is dis	כי	Interrupt Priori	ty bits		
	000 = Interru Unimplemen OC6IP<2:0>:	pt source is dis ted: Read as '()' Ire Channel 6	-	ty bits		
	000 = Interru Unimplemen OC6IP<2:0>:	pt source is dis ted: Read as '(Output Compa)' Ire Channel 6	-	ty bits		
	000 = Interru Unimplemen OC6IP<2:0>:	pt source is dis ted: Read as '(Output Compa)' Ire Channel 6	-	ty bits		
	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru •	pt source is dis ted: Read as '(Output Compa pt is Priority 7 ()' Ire Channel 6	-	ty bits		
	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru • • 001 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (_o , ire Channel 6 highest priorit	-	ty bits		
	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1	_o , ire Channel 6 highest priorit <u>y</u> abled	-	ty bits		
bit 10-8	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru • • • 001 = Interru 000 = Interru Unimplemen	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis	_o , ire Channel 6 highest priorit abled	y interrupt)			
bit 10-8 bit 7	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(_D , Ire Channel 6 highest priority abled D' Ire Channel 5	y interrupt) Interrupt Priori			
bit 10-8 bit 7	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa	_D , Ire Channel 6 highest priority abled D' Ire Channel 5	y interrupt) Interrupt Priori			
bit 10-8 bit 7	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>:	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa	_D , Ire Channel 6 highest priority abled D' Ire Channel 5	y interrupt) Interrupt Priori			
bit 10-8 bit 7	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (_D , Ire Channel 6 highest priority abled D' Ire Channel 5	y interrupt) Interrupt Priori			
bit 10-8 bit 7	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1	_o , ire Channel 6 highest priorit abled o [,] ire Channel 5 highest priorit	y interrupt) Interrupt Priori			
bit 10-8 bit 7 bit 6-4	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 001 = Interru	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis	^{o)} Ire Channel 6 highest priorit abled o ⁾ Ire Channel 5 highest priorit	y interrupt) Interrupt Priori			
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(_o , ire Channel 6 highest priorit abled o' ire Channel 5 highest priorit abled	y interrupt) Interrupt Priori y interrupt)	ty bits		
bit 10-8 bit 7	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen IC6IP<2:0>: I	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis	^{D'} Ire Channel 6 highest priority abled D' Ire Channel 5 highest priority abled D' Channel 6 Inter	y interrupt) Interrupt Priori y interrupt) rupt Priority bi	ty bits		
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen IC6IP<2:0>: I	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 1 pt source is dis ted: Read as '(nput Capture C	^{D'} Ire Channel 6 highest priority abled D' Ire Channel 5 highest priority abled D' Channel 6 Inter	y interrupt) Interrupt Priori y interrupt) rupt Priority bi	ty bits		
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen IC6IP<2:0>: I	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 1 pt source is dis ted: Read as '(nput Capture C	^{D'} Ire Channel 6 highest priority abled D' Ire Channel 5 highest priority abled D' Channel 6 Inter	y interrupt) Interrupt Priori y interrupt) rupt Priority bi	ty bits		
bit 10-8 bit 7 bit 6-4 bit 3	000 = Interru Unimplemen OC6IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC5IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen IC6IP<2:0>: I	pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(nput Capture C pt is Priority 7 (^{D'} Ire Channel 6 highest priority abled D' Ire Channel 5 highest priority abled D' Channel 6 Inter	y interrupt) Interrupt Priori y interrupt) rupt Priority bi	ty bits		

REGISTER 8-32: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CCT5IP2	CCT5IP1	CCT5IP0		DMA4IP2	DMA4IP1	DMA4IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	PMPIP2	PMPIP1	PMPIP0		CCT4IP2	CCT4IP1	CCT4IP0
bit 7							bit
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as ')'				
bit 14-12	CCT5IP<2:0>	SCCP5 Time	r Interrupt Pric	ority bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru						
		pt source is dis					
bit 10-8		>: DMA Chann		•			
	•	pt is Priority 7 (nignest phone	y interrupt)			
	•						
	•	ntin Driarity (
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled				
bit 7		ted: Read as '					
bit 6-4	-	Parallel Maste		t Prioritv bits			
		pt is Priority 7 (•			
	•						
	•						
	001 = Interru	pt is Priority 1					
		pt source is dis	abled				
bit 3	Unimplemen	ted: Read as ')'				
bit 2-0		SCCP4 Time	-	•			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru		. 1. 1 1				
	000 = Interru	pt source is dis	abled				

REGISTER 8-33: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CCT7IP2	CCT7IP1	CCT7IP0	—	MI2C2IP2	MI2C2IP1	MI2C2IP0
bit 15			•				bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	CCT6IP2	CCT6IP1	CCT6IP0
bit 7							bit
Logondi							
Legend: R = Readat	le hit	W = Writable	hit	II = I Inimple	mented bit, read	t as 'O'	
-n = Value a		'1' = Bit is set		'0' = Bit is cl		x = Bit is unkr	own
				0 21110 01			
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	CCT7IP<2:0>	SCCP7 Time	r Interrupt Pric	ority bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	MI2C2IP<2:0	>: Master I2C2	Event Interrup	ot Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	SI2C2IP<2:0	>: Slave I2C2 E	Event Interrupt	Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	CCT6IP<2:0>	SCCP6 Time	r Interrupt Pric	ority bits			
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	•						
	•						
	• • 001 = Interru	pt is Priority 1 pt source is dis					

REGISTER 8-35: IPC13: INTERRUPT PRIORIT	TY CONTROL REGISTER 13
---	------------------------

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CRYDNIP2	CRYDNIP21	CRYDNIP0	_	INT4IP2	INT4IP1	INT4IP0
bit 15						•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	INT3IP2	INT3IP1	INT3IP0	_	—	_	_
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
							lowin
bit 15	Unimplemen	ted: Read as '0	,				
bit 14-12	-	0>: Cryptograph		one Interrupt F	Priority bits		
		pt is Priority 7 (I			nonty bito		
	•		ingricor priority	interrupt)			
	•						
	•						
	001 = Interru						
	000 = Interru	pt source is disa					
bit 11	000 = Interru						
bit 11 bit 10-8	000 = Interru Unimplemen	pt source is disa	,	its			
	000 = Interru Unimplemen INT4IP<2:0>:	pt source is disa ted: Read as '0	, [,] upt 4 Priority b				
	000 = Interru Unimplemen INT4IP<2:0>:	pt source is disa ted: Read as '0 External Interro	, [,] upt 4 Priority b				
	000 = Interru Unimplemen INT4IP<2:0>:	pt source is disa ted: Read as '0 External Interro	, [,] upt 4 Priority b				
	000 = Interru Unimplemen INT4IP<2:0>: 111 = Interru • •	pt source is disa ted: Read as 'o External Intern pt is Priority 7 (I	, [,] upt 4 Priority b				
	000 = Interru Unimplement INT4IP<2:0>: 111 = Interru • • • 001 = Interru	pt source is disa ted: Read as 'o External Interru pt is Priority 7 (I pt is Priority 1	, [,] upt 4 Priority b highest priority				
bit 10-8	000 = Interru Unimplemen INT4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru	pt source is disa ted: Read as '0 External Intern pt is Priority 7 (I pt is Priority 1 pt source is disa	, [,] upt 4 Priority b highest priority abled				
bit 10-8 bit 7	000 = Interru Unimplemen INT4IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen	pt source is disa ted: Read as '0 External Intern pt is Priority 7 (I pt is Priority 1 pt source is disa ted: Read as '0	,' upt 4 Priority b highest priority abled ,'	interrupt)			
bit 10-8 bit 7	000 = Interru Unimplemen INT4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen INT3IP<2:0>:	pt source is disa ted: Read as '0 External Interru pt is Priority 7 (I pt is Priority 1 pt source is disa ted: Read as '0 External Interru	, [,] upt 4 Priority b highest priority abled , [,] upt 3 Priority b	interrupt) its			
bit 10-8 bit 7	000 = Interru Unimplemen INT4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen INT3IP<2:0>:	pt source is disa ted: Read as '0 External Intern pt is Priority 7 (I pt is Priority 1 pt source is disa ted: Read as '0	, [,] upt 4 Priority b highest priority abled , [,] upt 3 Priority b	interrupt) its			
	000 = Interru Unimplemen INT4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen INT3IP<2:0>:	pt source is disa ted: Read as '0 External Interru pt is Priority 7 (I pt is Priority 1 pt source is disa ted: Read as '0 External Interru	, [,] upt 4 Priority b highest priority abled , [,] upt 3 Priority b	interrupt) its			
bit 10-8 bit 7	000 = Interru Unimplemen INT4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen INT3IP<2:0>:	pt source is disa ted: Read as '0 External Interru pt is Priority 7 (I pt is Priority 1 pt source is disa ted: Read as '0 External Interru	, [,] upt 4 Priority b highest priority abled , [,] upt 3 Priority b	interrupt) its			
bit 10-8 bit 7	000 = Interru Unimplemen INT4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen INT3IP<2:0>: 111 = Interru 001 = Interru	pt source is disa ted: Read as '0 External Intern pt is Priority 7 (I pt is Priority 1 pt source is disa ted: Read as '0 External Intern pt is Priority 7 (I pt is Priority 1	,' upt 4 Priority b highest priority abled ,' upt 3 Priority b highest priority	interrupt) its			
bit 10-8 bit 7	000 = Interru Unimplemen INT4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen INT3IP<2:0>: 111 = Interru 001 = Interru	pt source is disa ted: Read as '0 External Intern pt is Priority 7 (I pt is Priority 1 pt source is disa ted: Read as '0 External Intern pt is Priority 7 (I	,' upt 4 Priority b highest priority abled ,' upt 3 Priority b highest priority	interrupt) its			

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	SPI2RXIP2	SPI2RXIP1	SPI2RXIP0	_	SPI1RXIP2	SPI1RXIP1	SPI1RXIP0
bit 15							bit 8
	D 444 4	D 444 0	D #44.0		D M A A	D 444 0	D 444 0
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
 bit 7	SPI4RXIP2	SPI4RXIP1	SPI4RXIP0	—	KEYSTRIP2	KEYSTRIP1	KEYSTRIP0
							DILC
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	emented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cl	leared	x = Bit is unkr	nown
			.1				
bit 15	-	ted: Read as '					
bit 14-12		0>: SPI2 Recei	•	•			
	•	pt is Priority 7 (nignest priority	(interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1 pt source is dis	abled				
bit 11		ted: Read as '					
bit 10-8	•	0>: SPI1 Recei		iority hits			
		pt is Priority 7 (•	•			
	•		5				
	•						
	• 001 = Interru	ot is Priority 1					
		pt source is dis	abled				
bit 7	Unimplemen	ted: Read as 'd)'				
bit 6-4	SPI4RXIP<2:	0>: SPI4 Recei	ve Interrupt Pri	iority bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru						
		pt source is dis					
bit 3	•	ted: Read as '					
bit 2-0					e Interrupt Priori	ty bits	
	111 = Interru	pt is Priority 7 (highest priority	(interrupt)			
	•						
	•						
	• • •						
	• • • • • • • • • • • • • • • • • • • •	pt is Priority 1 pt source is dis	ablad				

REGISTER 8-36: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CCP1IP2	CCP1IP1	CCP1IP0	—	RTCIP2	RTCIP1	RTCIP0
oit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	DMA5IP2	DMA5IP1	DMA5IP0		SPI3RXIP2	SPI3RXIP1	SPI3RXIP
bit 7	Diff ton 2						bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkn	iown
-:: 4 C	11						
bit 15	-	ted: Read as '		Interrunt Drier	ity hito		
bit 14-12		>: MCCP1 Capt pt is Priority 7 (-	-	ity bits		
	•			/ interrupt)			
	•						
	•						
		pt is Priority 1 pt source is dis	abled				
bit 11		ited: Read as '					
bit 10-8	-	Real-Time Clo		ar Interrunt P	riority hite		
		pt is Priority 7 (-	ionty bits		
	•	pero i nonty i (ingricer priority	, interrupt)			
	•						
	• 001 - Internu	nt in Driarity 1					
		pt is Priority 1 pt source is dis	abled				
L:+ 7		ted: Read as '					
חוז /	-		5				
bit 7 bit 6-4		S DIVIA C.Nanni	el 5 Interrunt P	riority hits			
bit 7 bit 6-4			el 5 Interrupt P	-			
		pt is Priority 7 (-	-			
			-	-			
	111 = Interru • •	pt is Priority 7 (-	-			
	111 = Interru • • 001 = Interru	pt is Priority 7 (pt is Priority 1	highest priority	-			
bit 6-4	111 = Interru • • 001 = Interru 000 = Interru	pt is Priority 7 (pt is Priority 1 pt source is dis	highest priority abled	-			
bit 6-4 bit 3	111 = Interru • • 001 = Interru 000 = Interru Unimplemen	pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(highest priority abled	/ interrupt)			
	<pre>111 = Interru</pre>	pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '0 0>: SPI3 Recei	highest priority abled o' ve Interrupt Pr	/ interrupt) iority bits			
bit 6-4 bit 3	<pre>111 = Interru</pre>	pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(highest priority abled o' ve Interrupt Pr	/ interrupt) iority bits			
bit 6-4 bit 3	<pre>111 = Interru</pre>	pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '0 0>: SPI3 Recei	highest priority abled o' ve Interrupt Pr	/ interrupt) iority bits			
bit 6-4 bit 3	<pre>111 = Interru</pre>	pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as 'û 0>: SPI3 Recei pt is Priority 7 (highest priority abled o' ve Interrupt Pr	/ interrupt) iority bits			

REGISTER 8-37: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U1ERIP2	U1ERIP1	U1ERIP0		CCP2IP2	CCP2IP1	CCP2IP0
bit 7	0 ILIUI L	01214111	0 I LI W O		0012112	0012111	bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	iown
bit 15	Unimplomon	ted: Read as '	`				
bit 14-12	-	CRC Generat		unt Driority hite			
DIL 14-12		pt is Priority 7 (
	•			(interrupt)			
	•						
	• 001 = Interru	nt in Driarity 1					
		pt is Fridity 1 pt source is dis	abled				
bit 11	-	ted: Read as '					
bit 10-8	-	-: UART2 Error		ritv bits			
		pt is Priority 7 (•	•			
	•		• • •	. ,			
	•						
	001 = Interru	pt is Priority 1					
		pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	כי				
bit 6-4	U1ERIP<2:0>	-: UART1 Error	Interrupt Prior	rity bits			
	111 = Interru	pt is Priority 7 (highest priority	v interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
		pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	כי				
bit 2-0	CCP2IP<2:0>	-: MCCP2 Cap	ture/Compare	Interrupt Prior	ity bits		
	111 = Interru	pt is Priority 7 (highest priority	v interrupt)			
	•						
	-						
	•						
	• 001 = Interru	pt is Priority 1					

REGISTER 8-38: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
	MI2C3IP2	MI2C3IP1	MI2C3IP0		SI2C3IP2	SI2C3IP1	SI2C3IP0		
oit 15		1				1	bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	_	_	_	—	_		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15 bit 14-12	MI2C3IP<2:0	 ted: Read as '0 Master I2C3 	Event Interrup	,					
DIT 14-12		pt is Priority 7 (•	,					
	•		ingricor priority	, interrupt)					
	•								
	•								
		pt is Priority 1 pt source is dis	abled						
bit 11		ited: Read as '(
bit 10-8	•	>: Slave I2C3 E		Priority bits					
				•					
	 111 = Interrupt is Priority 7 (highest priority interrupt) • 								
	•								
	•								
	• • • • • • • • • • • • • • • • • • • •	unt is Driority 1							
		pt is Priority 1	abled						
bit 7-0	000 = Interru	pt is Priority 1 pt source is dis t ted: Read as '(

REGISTER 8-40: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 ____ ____ ____ ____ ____ _ ____ ____ bit 8 bit 15 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 CCP7IP2 CCP7IP1 CCP7IP0 ____ HLVDIP2 HLVDIP1 HLVDIP0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' CCP7IP<2:0>: SCCP7 Capture/Compare Interrupt Priority bits bit 6-4 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 HLVDIP<2:0>: High/Low-Voltage Detect Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled

DS30010089B-page 162

REGISTER 8-41: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

- - - DAC1IP2 DAC1IP1 DAC1IP0 bit 15 bit 8	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
bit 15 bit 8	—	—			—	DAC1IP2	DAC1IP1	DAC1IP0
	bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CTMUIP2	CTMUIP1	CTMUIP0	—	—	—	—
bit 7							bit 0

Legend:								
R = Readable bit		W = Writable bit	U = Unimplemented bit,	ed bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-11	Unimple	mented: Read as '0'						
bit 10-8	DAC1IP<	2:0>: DAC Converter Interru	pt Priority bits					
	111 = Int	errupt is Priority 7 (highest p	riority interrupt)					
	•							
	•							
	•							
		errupt is Priority 1 errupt source is disabled						
h:+ 7		•						
bit 7	-	mented: Read as '0'						
bit 6-4	CTMUIP∢	<2:0>: CTMU Interrupt Priorit	ty bits					
	111 = Interrupt is Priority 7 (highest priority interrupt)							
	•							
	•							
	•							
		errupt is Priority 1						
L:1 0 0		errupt source is disabled						
bit 3-0	Unimplei	nented: Read as '0'						

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U3TXIP2	U3TXIP1	U3TXIP0		U3RXIP2	U3RXIP1	U3RXIP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
0-0	U3ERIP2	U3ERIP1	U3ERIP0	0-0	0-0	0-0	0-0
 bit 7	USERIPZ	USERIPT	USERIPU	—	—	_	 bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	Unimplemen	ted: Read as '	כי				
bit 14-12	U3TXIP<2:0>	: UART3 Trans	smitter Interrup	t Priority bits			
	111 = Interru	pt is Priority 7(highest priority	v interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as 'd	כי				
bit 10-8	U3RXIP<2:0>	: UART3 Rece	eiver Interrupt F	Priority bits			
	111 = Interru	pt is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interru						
	000 = Interru	pt source is dis	abled				
bit 7	-	ted: Read as '					
bit 6-4		: UART3 Error	•				
	111 = Interru	pt is Priority 7(highest priority	interrupt)			
	-						
	•						
	• •						
	• • 001 = Interru						
bit 3-0	000 = Interru	pt is Priority 1 pt source is dis ted: Read as 'o					

REGISTER 8-42: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

REGISTER 8-43:	IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21

-							
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	U4ERIP2	U4ERIP1	U4ERIP0	—	USB1IP2	USB1IP1	USB1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0

Legend:				
R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	•	emented: Read as '0'		
bit 14-12		<2:0>: UART4 Error Interrupt	•	
	111 = In	terrupt is Priority 7 (highest pr	iority interrupt)	
	•			
	•			
		terrupt is Priority 1 terrupt source is disabled		
L:1 1 1				
bit 11		emented: Read as '0'		
bit 10-8		<2:0>: USB1 (USB OTG) Inter		
	⊥⊥⊥ = In •	terrupt is Priority 7 (highest pr	ionty interrupt)	
	•			
	•			
		terrupt is Priority 1		
1.11.7		terrupt source is disabled		
bit 7	-	emented: Read as '0'		
bit 6-4		IP<2:0>: I2C2 Bus Collision In		
	111 = In	terrupt is Priority 7 (highest pr	iority interrupt)	
	•			
	•			
		terrupt is Priority 1		
		terrupt source is disabled		
bit 3		emented: Read as '0'		
bit 2-0		IP<2:0>: I2C1 Bus Collision In	•	
	111 = I n	terrupt is Priority 7 (highest pr	iority interrupt)	
	•			
	•			
	001 = In	terrupt is Priority 1		
		terrupt source is disabled		

bit 7

bit 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0	—	SPI3IP2	SPI3IP1	SPI3IP0				
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimplement	ted: Read as ')'								
bit 14-12	SPI3TXIP<2:0	D>: SPI3 Trans	mit Interrupt P	riority bits							
	111 = Interrup	SPI3TXIP<2:0>: SPI3 Transmit Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)									
	•	•									
	•										
	001 = Interrup										
		ot source is dis									
bit 11	-	ted: Read as '		1 h. 1							
bit 10-8	SPI3IP<2:0>: SPI3 General Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)										
	•		nightest phoney	interrupt)							
	•										
	• 001 = Interrup	nt is Priority 1									
		ot source is dis	abled								
bit 7	Unimplement	ted: Read as ')'								
bit 6-4	U4TXIP<2:0>	: UART4 Trans	smitter Interrup	t Priority bits							
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrup 000 = Interrup	ot is Priority 1 ot source is dis	abled								
bit 3	Unimplement	ted: Read as ')'								
bit 2-0	U4RXIP<2:0>	UART4 Rece	eiver Interrupt F	Priority bits							
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)							
	•										
	•										
		ot is Priority 1 ot source is dis									

REGISTER 8-44: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	CCP4IP2	CCP4IP1	CCP4IP0	—	CCP3IP2	CCP3IP1	CCP3IP0				
bit 15						1	bit				
	D A A	DAMA	DAMA			DAMA	D 444 0				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	SPI4TXIP2	SPI4TXIP1	SPI4TXIP0	—	SPI4IP2	SPI4IP1	SPI4IP0				
bit 7							bit				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as '	n'								
bit 14-12	-	SCCP4 Capt		nterrunt Priori	ty hite						
511 14-12		•			ty bits						
	•	 111 = Interrupt is Priority 7 (highest priority interrupt) • 									
	•										
	• 001 = Interrupt is Priority 1										
		pt is Phonity 1 pt source is dis	abled								
bit 11		ted: Read as '									
bit 10-8	-	CCP3IP<2:0>: MCCP3 Capture/Compare Interrupt Priority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	• 001 = Interru	pt is Priority 1									
		pt source is dis	abled								
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-4	SPI4TXIP<2:	SPI4TXIP<2:0>: SPI4 Transmit Interrupt Priority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	• 001 = Interrupt is Priority 1										
	000 = Interru	pt source is dis	abled								
bit 3	Unimplemen	ted: Read as '	0'								
bit 2-0		: SPI4 General	-	•							
	111 = Interru	pt is Priority 7 (highest priority	interrupt)							
	•										
	•										
	001 = Interru										
	000 = Interru	pt source is dis	abled								

REGISTER 8-45: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 CLC4IP2 CLC4IP1 CLC4IP0 ____ CLC3IP2 CLC3IP1 CLC3IP0 ___ bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 CLC2IP2 CLC2IP1 CLC2IP0 CLC1IP2 CLC1IP0 ____ CLC1IP1 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 CLC4IP<2:0>: CLC4 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 CLC3IP<2:0>: CLC3 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 CLC2IP<2:0>: CLC2 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 CLC1IP<2:0>: CLC1 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled

REGISTER 8-47: IPC25: INTERRUPT PRIORITY CONTROL REGISTER 2

	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
			—		CCT2IP2	CCT2IP1	CCT2IP0
oit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	CCT1IP2	CCT1IP1	CCT1IP0	0-0	LCDIP2	LCDIP1	LCDIP0
bit 7	0011112	0011111	0011110			LODII I	bit (
Legend: R = Reada	hle hit	W = Writable I	hit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as 'o)'				
bit 10-8	CCT2IP<2:0>	. MCCP2 Time	r Interrupt Pric	ority bits			
	111 = Interru	pt is Priority 7 (I	highest priority	interrupt)			
	•						
	•						
	• • 001 = Interru	ot is Priority 1					
	• • 001 = Interru 000 = Interru	pt is Priority 1 pt source is disa	abled				
bit 7	000 = Interru						
bit 7 bit 6-4	000 = Interru Unimplemen	pt source is disa)'	rity bits			
	000 = Interru Unimplemen CCT1IP<2:0>	pt source is disa ted: Read as '0)' r Interrupt Pric	•			
	000 = Interru Unimplemen CCT1IP<2:0>	pt source is disa ted: Read as '0 -: MCCP1 Time)' r Interrupt Pric	•			
	000 = Interru Unimplemen CCT1IP<2:0>	pt source is disa ted: Read as '0 -: MCCP1 Time)' r Interrupt Pric	•			
	000 = Interru Unimplemen CCT1IP<2:0> 111 = Interru • •	pt source is disa ted: Read as 'c MCCP1 Time pt is Priority 7 (I)' r Interrupt Pric	•			
	000 = Interru Unimplemen CCT1IP<2:0> 111 = Interru • • 001 = Interru	pt source is disa ted: Read as 'c MCCP1 Time pt is Priority 7 (I	₎ , r Interrupt Pric highest priority	•			
bit 6-4	000 = Interru Unimplemen CCT1IP<2:0> 111 = Interru • • 001 = Interru 000 = Interru	pt source is disa ted: Read as 'c MCCP1 Time pt is Priority 7 (I pt is Priority 1	₎ ' r Interrupt Pric highest priority abled	•			
bit 6-4 bit 3	000 = Interru Unimplemen CCT1IP<2:0> 111 = Interru • • 001 = Interru 000 = Interru Unimplemen	pt source is disa ted: Read as '(: MCCP1 Time pt is Priority 7 (I pt is Priority 1 pt source is disa ted: Read as '()' r Interrupt Pric highest priority abled	interrupt)			
bit 6-4 bit 3	000 = Interru Unimplemen CCT1IP<2:0> 111 = Interru • • 001 = Interru 000 = Interru Unimplemen LCDIP<2:0>:	pt source is disa ted: Read as '(: MCCP1 Time pt is Priority 7 (I pt is Priority 1 pt source is disa ted: Read as '(LCD Controller) [,] r Interrupt Pric highest priority abled) [,] r Interrupt Prior	interrupt)			
bit 6-4 bit 3	000 = Interru Unimplemen CCT1IP<2:0> 111 = Interru • • 001 = Interru 000 = Interru Unimplemen LCDIP<2:0>:	pt source is disa ted: Read as '(: MCCP1 Time pt is Priority 7 (I pt is Priority 1 pt source is disa ted: Read as '() [,] r Interrupt Pric highest priority abled) [,] r Interrupt Prior	interrupt)			
	000 = Interru Unimplemen CCT1IP<2:0> 111 = Interru • • 001 = Interru 000 = Interru Unimplemen LCDIP<2:0>:	pt source is disa ted: Read as '(: MCCP1 Time pt is Priority 7 (I pt is Priority 1 pt source is disa ted: Read as '(LCD Controller) [,] r Interrupt Pric highest priority abled) [,] r Interrupt Prior	interrupt)			
bit 6-4 bit 3	000 = Interru Unimplemen CCT1IP<2:0> 111 = Interru • • 001 = Interru 000 = Interru Unimplemen LCDIP<2:0>:	pt source is disa ted: Read as '(0 : MCCP1 Time pt is Priority 7 (1 pt is Priority 1 pt source is disa ted: Read as '(0 LCD Controller pt is Priority 7 (1) [,] r Interrupt Pric highest priority abled) [,] r Interrupt Prior	interrupt)			

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	_	—	FSTIP2	FSTIP1	FSTIP0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 7	·	•					bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-11	Unimplement	ted: Read as ')'				
bit 10-8	FSTIP<2:0>:	FRC Self-Tune	Interrupt Prior	rity bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	• 001 = Interru	nt is Priority 1					
		pt is Fridity 1 pt source is dis	abled				
bit 7-0	Unimplement						
	omplement	ieu. Reau as	J				

REGISTER 8-48: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

REGISTER 8-49:	IPC27: INTERRUPT PRIORITY CONTROL REGISTER 27	

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	U5RXIP2	U5RXIP1	U5RXIP0	_	RTCTSIP2	RTCTSIP1	RTCTSIP0			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
	I2C3BCIP2	I2C3BCIP1	I2C3BCIP0	—	—	—	—			
bit 7							bit (
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15	Unimplemen	ted: Read as 'o)'							
bit 14-12	U5RXIP<2:0>	: UART5 Rece	iver Interrupt F	Priority bits						
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
	001 = Interru	pt is Priority 1								
		pt source is dis	abled							
bit 1	Unimplemen	ted: Read as 'o)'							
bit 10-8	RTCTSIP<2:0	D>: RTCC Time	stamp Interrup	ot Priority bits						
	111 = Interru	11 = Interrupt is Priority 7 (highest priority interrupt)								
	•									
	•									
	001 = Interrupt is Priority 1									
		pt source is dis	abled							
bit 7	Unimplemen	ted: Read as 'o)'							
bit 6-4	I2C3BCIP<2:	0>: I2C3 Bus C	ollision Interru	pt Priority bits						
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
	001 = Interru	pt is Priority 1								
		pt is Priority 1 pt source is dis	abled							

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 U6RXIP0 U6TXIP2 U6TXIP1 U6TXIP0 ____ U6RXIP2 U6RXIP1 _ bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 U5ERIP1 U5ERIP2 U5TXIP2 U5TXIP0 U5ERIP0 _ U5TXIP1 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 U6TXIP<2:0>: UART6 Transmitter Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 U6RXIP<2:0>: UART6 Receiver Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 U5ERIP<2:0>: UART5 Error Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 U5TXIP<2:0>: UART5 Transmitter Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled

REGISTER 8-51: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		_	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	JTAGIP2	JTAGIP1	JTAGIP0	—	U6ERIP2	U6ERIP1	U6ERIP0
bit 7							bit 0

Legend:	
J	

R = Readable bit -n = Value at POR		W = Writable bit	U = Unimplemented bit, read as '0'					
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-7	Unimple	mented: Read as '0'						
bit 6-4	JTAGIP<2:0>: JTAG Interrupt Priority bits							
	111 = Int	errupt is Priority 7 (highest p	riority interrupt)					
	•							
	•							
	•							
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled							
bit 3	Unimplemented: Read as '0'							
bit 2-0	U6ERIP<	2:0>: UART6 Error Interrupt	Priority bits					
	111 = Int	errupt is Priority 7 (highest p	riority interrupt)					
	•							
	•							
	•							

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

R-0	r-0	R/W-0	U-0	R-0	R-0	R-0	R-0		
CPUIRQ		VHOLD	_	ILR3	ILR2	ILR1	ILR0		
bit 15							bit 8		
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0		
bit 7							bit C		
Lowende			h:+						
Legend:	- h:t	r = Reserved			and hit was				
R = Readabl		W = Writable		-	nented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15			from Interrupt (Controllor CDU	h:t				
DIL 15				Controller CPU		ed by the CPU	· this hannens		
	1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens when the CPU priority is higher than the interrupt priority								
		upt request is u			5				
bit 14	Reserved: Ma	aintain as '0'							
bit 13	VHOLD: Vect	or Number Cap	oture Configura	ation bit					
	0 = VECNUM	1<6:0> bits con	tain the value c		owledged interr	upt (i.e., the las			
		-		he CPU, even i	if other interrup	ts are pending)		
bit 12	Unimplemented: Read as '0'								
bit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits								
	1111 = CPU Interrupt Priority Level is 15								
	•								
	•								
		Interrupt Priorit Interrupt Priorit							
bit 7	Unimplemented: Read as '0'								
bit 6-0	VECNUM<6:0>: Vector Number of Pending Interrupt or Last Acknowledged Interrupt bits								
	When VHOLD = 1:								
	Indicates the vector number (from 0 to 118) of the last interrupt to occur.								
	When VHOLD = 0: Indicates the vector number (from 0 to 118) of the interrupt request currently being handled.								
	mulcales the			or the interrup	i requesi culle		neu.		

REGISTER 8-52: INTTREG: INTERRUPT CONTROLLER TEST REGISTER

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS (INTCON1<15>) control bit if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits, for all enabled interrupt sources, may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are					
	initialized such that all user interrupt					
	sources are assigned to Priority Level 4.					

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE (ISR)

The method that is used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler), and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles; otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, 0Eh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

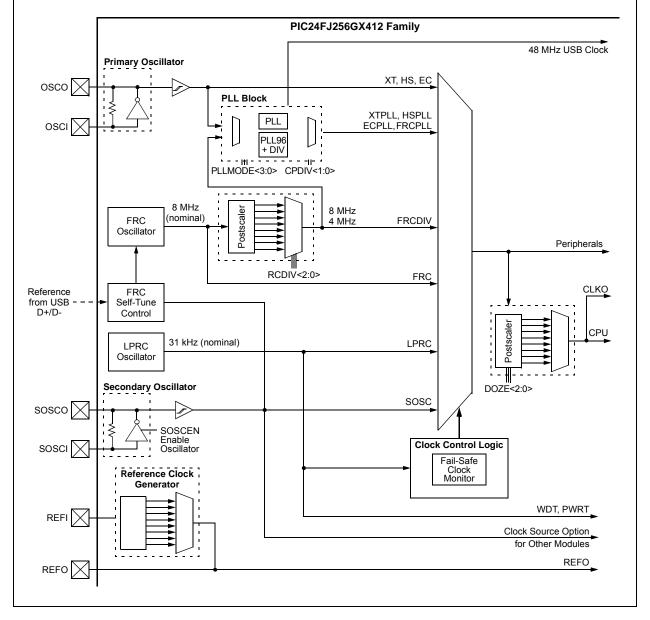
Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

NOTES:

9.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to
	the "dsPIC33/PIC24 Family Reference
	Manual", "Oscillator" (DS39700).


The oscillator system for PIC24FJ256GA412/GB412 family devices has the following features:

 A Total of Four External and Internal Oscillator Options as Clock Sources, providing 11 Different Clock Modes

- An On-Chip PLL Block to provide a Wide Range of Precise Frequency Options for the System Clock, plus a Stable 48 MHz Clock for USB Devices
- Software-Controllable Switching between Various Clock Sources
- Software-Controllable Postscaler for Selective Clocking of CPU for System Power Savings
- A Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- A Separate and Independently Configurable Reference Clock for Synchronizing External Hardware

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FJ256GA412/GB412 FAMILY GENERAL CLOCK DIAGRAM

9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The Primary Oscillator and FRC sources have the option of using the internal USB PLL block, which generates both the USB module clock and a separate system clock from the 96 MHZ PLL. Refer to **Section 9.6 "PLL Block"** for additional information.

The internal FRC provides an 8 MHz clock source. It can optionally be reduced by the programmable clock divider to provide a range of system clock frequencies.

The selected clock source generates the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to Section 33.1 "Configuration Bits" for further details). The Primary Oscillator Configuration bits, POSCMOD<1:0> (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a Power-on Reset. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator (SOSC), or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes, as shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (FOSC<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION							
Oscillator Mode	Oscillator Source POSCMOD<		FNOSC<2:0>	Notes			
Fast RC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2			
(Reserved)	Internal	xx	110	1			
Low-Power RC Oscillator (LPRC)	Internal	11	101	1			
Secondary (Timer1) Oscillator (SOSC)	Secondary	11	100	1			
Primary Oscillator (XT) with PLL Module (XTPLL)	Primary	01	011				
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011				
Primary Oscillator (HS)	Primary	10	010				
Primary Oscillator (XT)	Primary	01	010				
Primary Oscillator (EC)	Primary	00	010				
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1			
Fast RC Oscillator (FRC)	Internal	11	000	1			

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers:

- · OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. OSCCON is protected by a write lock to prevent inadvertent clock switches. See **Section 9.4** "**Clock Switching Operation**" for more information.

The CLKDIV register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator.

The OSCTUN register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 1.5\%$. It also controls the FRC self-tuning features, described in **Section 9.5 "FRC Active Clock Tuning**".

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0	R-0	R-0	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0	R/W-0	R-0 ⁽³⁾	U-0	R/CO-0	R/W-0	R/W-0	R/W-0
CLKLOCK	IOLOCK ⁽²⁾	LOCK	—	CF	POSCEN	SOSCEN	OSWEN
bit 7							bit 0

Legend:	CO = Clearable Only bit	SO = Settable Only bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Fast RC Oscillator with Postscaler (FRCDIV)
 - 110 = Reserved
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
 - 010 = Primary Oscillator (XT, HS, EC)
 - 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)⁽⁴⁾
 - 000 = Fast RC Oscillator (FRC)

bit 11 Unimplemented: Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽¹⁾

- 111 = Fast RC Oscillator with Postscaler (FRCDIV)
- 110 = Reserved
- 101 = Low-Power RC Oscillator (LPRC)
- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
- 010 = Primary Oscillator (XT, HS, EC)
- 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)⁽⁴⁾
- 000 = Fast RC Oscillator (FRC)
- Note 1: Reset values for these bits are determined by the FNOSCx Configuration bits.
 - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1' once the IOLOCK bit is set, it cannot be cleared.
 - 3: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
 - 4: The default divisor of the postscaler is 2, which will generate a 4 MHz clock to the PLL module.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit
	If FSCM is enabled (FCKSM1 = 1):
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	If FSCM is disabled (FCKSM1 = 0):
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	IOLOCK: I/O Lock Enable bit ⁽²⁾
	1 = I/O lock is active
	0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit ⁽³⁾
	1 = PLL module is in lock or PLL module start-up timer is satisfied
	0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	POSCEN: Primary Oscillator Sleep Enable bit
	1 = Primary Oscillator continues to operate during Sleep mode
	0 = Primary Oscillator is disabled during Sleep mode
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	1 = Enables Secondary Oscillator
	0 = Disables Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Initiates an oscillator switch to a clock source specified by the NOSC<2:0> bits
	0 = Oscillator switch is complete

- **Note 1:** Reset values for these bits are determined by the FNOSCx Configuration bits.
 - 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1' once the IOLOCK bit is set, it cannot be cleared.
 - 3: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
 - 4: The default divisor of the postscaler is 2, which will generate a 4 MHz clock to the PLL module.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1	
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
CPDIV1	CPDIV0	PLLEN	_		_	_	_	
bit 7							bit	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	is cleared x = Bit is unknown			
bit 15	1 = Interrupts		EN bit and res	et the CPU perip	oheral clock ra	tio to 1:1		
bit 14-12	-	have no effect CPU Periphera						
	111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 (de 010 = 1:4 001 = 1:2 000 = 1:1	fault)						
bit 11		:0> bits specify		pheral clock ratio)			
	•	pheral clock ra		1				
bit 10-8	111 = 31.25 k 110 = 125 kH 101 = 250 kH 100 = 500 kH 011 = 1 MHz 010 = 2 MHz 001 = 4 MHz	(divide-by-4) (divide-by-2) (d	256))))					
bit 7-6	<pre>000 = 8 MHz (divide-by-1) CPDIV<1:0>: System Clock Select bits (postscaler select from fast PLL branch) 11 = 4 MHz (divide-by-8)⁽²⁾ 10 = 8 MHz (divide-by-4)⁽²⁾ 01 = 16 MHz (divide-by-2) 00 = 32 MHz (divide-by-1)</pre>							
bit 5	 00 = 32 MHz (divide-by-1) PLLEN: USB PLL Enable bit 1 = PLL is always active 0 = PLL is only active when a PLL Oscillator mode is selected (OSCCON<14:12> = 011 or 001) 							

2: This setting is not allowed while the USB module is enabled.

Legend: $R = Readable bit$ $W = Writable$ $n = Value at POR$ '1' = Bit is setbit 15STEN: FRC Self-Tune Enable $1 = FRC$ self-tuning is enable $0 = FRC$ self-tuning is disatebit 14Unimplemented: Read as 'bit 13STSIDL: FRC Self-Tune Storebit 14Unimplemented: Read as 'bit 13STSIDL: FRC Self-Tune Storebit 14Unimplemented: Read as 'bit 15STSIDL: FRC Self-Tune Storebit 16STSRC: FRC Self-Tune Referstbit 17STSRC: FRC Self-Tune Referstbit 18STLPOL: FRC Self-Tune Locebit 10STLPOL: FRC Self-Tune Locebit 11STCR: FRC Self-Tune Locebit 12STOR: FRC Self-Tune Locebit 13STORPOL: FRC Self-Tune Locebit 14STORPOL: FRC Self-Tune Locebit 15STORPOL: FRC Self-Tune Locebit 10STLPOL: FRC Self-Tune Locebit 11STORPOL: FRC Self-Tune Locebit 12STORPOL: FRC Self-Tune Locebit 13STORPOL: FRC Self-Tune Locebit 14Storebit 15Storebit 10Storebit 10Storebit 11Storebit 12Storebit 13Storebit 14Storebit 15Storebit 10Store	STSRC ⁽¹⁾								
U-0 U-0 R/W-0 — — TUN5 ⁽²⁾ Dit 7 Legend: W = Writable n = Value at POR '1' = Bit is set Dit 15 STEN: FRC Self-Tune Enable 1 = FRC self-tuning is enable 0 = FRC self-tuning is disat Dit 14 Unimplemented: Read as ' Dit 13 STSIDL: FRC Self-Tune Enable Dit 14 Unimplemented: Read as ' Dit 13 STSIDL: FRC Self-Tune Stat Dit 14 Unimplemented: Read as ' Dit 13 STSIDL: FRC Self-Tune Stat Dit 14 Unimplemented: Read as ' Dit 15 STERC: FRC Self-Tune Ref Dit 12 STSRC: FRC Self-Tune Ref Dit 12 STLOCK: FRC Self-Tune Lable Dit 11 STLOCK: FRC Self-Tune Lable Dit 11 STLOCK: FRC Self-Tune Lable Dit 10 STLPOL: FRC Self-Tune Out of a lable	51510	STLOCK	STLPOL	STOR	STORPOL				
— — TUN5 ⁽²⁾ bit 7 Legend: R = Readable bit W = Writable -n = Value at POR '1' = Bit is set bit 15 STEN: FRC Self-Tune Enable 1 = FRC self-tuning is enable 0 = FRC self-tuning is enable 0 = FRC self-tuning is disate 0 = FRC self-tuning is disate bit 14 Unimplemented: Read as ' bit 13 STSIDL: FRC Self-Tune Stope 1 = Self-tuning stops during 0 = Self-tuning continues du bit 12 STSRC: FRC Self-Tune Ref 1 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC accuracy is curren 0 = FRC accuracy is curren 0 = FRC accuracy may not bit 10 STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = STSRC reference clock bit 8 STORPOL: FRC Self-Tune Loc 1 = STSRC reference clock 0 = STSRC reference clock bit 8 STORPOL: FRC Self-Tune Quit 1 = A self-tune out of range 0 = A self-tune					bit				
bit 7 Legend: R = Readable bit W = Writable -n = Value at POR '1' = Bit is set Dit 15 STEN: FRC Self-Tune Enable 1 = FRC self-tuning is enable 0 = FRC self-tuning is disate bit 14 Unimplemented: Read as ' bit 13 STSIDL: FRC Self-Tune Store 1 = Self-tuning stops during 0 = Self-tuning continues du bit 12 STSRC: FRC Self-Tune Referred to approx 0 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC accuracy is curren 0 = FRC accuracy may not bit 10 STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune out of range 0 = A self-tune out of r	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
Legend: R = Readable bit W = Writable -n = Value at POR '1' = Bit is set bit 15 STEN: FRC Self-Tune Enable 1 = FRC self-tuning is enable 0 = FRC self-tuning is enable 0 = FRC self-tuning is disat bit 14 Unimplemented: Read as 'i bit 13 STSIDL: FRC Self-Tune Store 1 = Self-tuning stops during 0 = Self-tuning continues du 0 = Self-tuning continues du 1 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC accuracy is curren 0 = FRC accuracy is curren 0 = FRC accuracy is curren 0 = FRC accuracy may not 1 = FRC Self-Tune Loc bit 10 STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup bit 9 STOR: FRC Self-Tune Out of 1 = STSRC reference clock 0 = STSRC reference clock 0 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range 0 = Stisto>: FRC Oscillator T </td <td>TUN4⁽²⁾</td> <td>TUN3⁽²⁾</td> <td>TUN2⁽²⁾</td> <td>TUN1⁽²⁾</td> <td>TUN0⁽²⁾</td>	TUN4 ⁽²⁾	TUN3 ⁽²⁾	TUN2 ⁽²⁾	TUN1 ⁽²⁾	TUN0 ⁽²⁾				
R = Readable bitW = Writable (1' = Bit is set)bit 15STEN: FRC Self-Tune Enable 1 = FRC self-tuning is enable 0 = FRC self-tuning is disated bit 14bit 14Unimplemented: Read as ' 1 = Self-tuning stops during 0 = Self-tuning continues du 0 = Self-tuning continues du 0 = Self-tuning continues du 0 = Self-tune Ref 1 = FRC is tuned to approx 0 = FRC accuracy is curren 0 = FRC accuracy may notbit 10STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune out of range 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =					bit				
R = Readable bitW = Writable (1' = Bit is set)bit 15STEN: FRC Self-Tune Enable 1 = FRC self-tuning is enable 0 = FRC self-tuning is disated bit 14bit 14Unimplemented: Read as ' 1 = Self-tuning stops during 0 = Self-tuning continues du 0 = Self-tuning continues du 0 = Self-tuning continues du 0 = Self-tune Ref 1 = FRC is tuned to approx 0 = FRC accuracy is curren 0 = FRC accuracy may notbit 10STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune out of range 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =									
bit 15 STEN: FRC Self-Tune Enable 1 = FRC self-tuning is enable 0 = FRC self-tuning is disate bit 14 Unimplemented: Read as ' 5TSIDL: FRC Self-Tune Store 1 = Self-tuning stops during 0 = Self-tuning continues du bit 12 STSRC: FRC Self-Tune Refer 1 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC accuracy is current 0 = FRC accuracy is current 0 = FRC accuracy may not bit 10 STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrupt 0 = A self-tune lock interrupt 0 = A self-tune lock interrupt 0 = STSRC reference clock 0 = STSRC	oit	U = Unimplem	ented bit, read	1 as '0'					
1 = FRC self-tuning is enable 0 = FRC self-tuning is disate bit 14 bit 13 STSIDL: FRC Self-Tune Store 1 = Self-tuning stops during 0 = Self-tuning continues du bit 12 STSRC: FRC Self-Tune Ref 1 = FRC is tuned to approx 0 = FRC accuracy is curren 0 = FRC accuracy may not bit 10 STLPOL: FRC Self-Tune Lo 1 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = STSRC reference clock 0 = STSRC reference clock 0 = STSRC reference clock 0 = A self-tune out of range 0 = 0 = 000001 = 0 = 000001 = 0 = 000001 =		'0' = Bit is clea	ared	x = Bit is unk	nown				
0 = FRC self-tuning is disated bit 14 Unimplemented: Read as '' bit 13 STSIDL: FRC Self-Tune Stated 1 = Self-tuning stops during 0 = Self-tuning continues du 0 = Self-tuning continues du 1 = FRC Self-Tune Ref 1 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC self-Tune Lef 1 = FRC accuracy is current 0 = FRC accuracy may not bit 10 STLPOL: FRC Self-Tune Lef 1 = A self-tune lock interrupt 0 = A self-tune lock interrupt 0 = A self-tune lock interrupt 0 = A self-Tune Out of 1 = STSRC reference clock 0 = STSRC reference clock 0 = STSRC reference clock 0 = STSRC reference clock 0 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range 0 = 11110 = 11111 0 = No00001 = 000000 = Center frequency 000001 = 000000 = Center frequency	e bit								
bit 14 Unimplemented: Read as '' bit 13 STSIDL: FRC Self-Tune State 1 = Self-tuning stops during 0 = Self-tuning continues date bit 12 STSRC: FRC Self-Tune Ref 1 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC Self-Tune Ref 1 = FRC is tuned to approx 0 = FRC Self-Tune Loc 1 = FRC accuracy is curren 0 = FRC accuracy may not bit 10 STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = STSRC reference clock 0 = STSRC reference clock 0 = STSRC reference clock 0 = STSRC reference clock 0 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range 0 = 11110 = 000001 = 0000001 = 0000001 = 000000 = Center frequency				bits					
bit 13 STSIDL: FRC Self-Tune Store 1 = Self-tuning stops during 0 = Self-tuning continues du 1 = FRC Self-Tune Ref 1 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC is tuned to approx 1 = FRC Self-Tune Loce 1 = FRC accuracy is current 0 = FRC accuracy is current 0 = FRC accuracy may not bit 10 STLPOL: FRC Self-Tune Loce 1 = A self-tune lock interrupt 0 = A self-tune lock interrupt 0 = A self-tune lock interrupt 0 = STSRC reference clock 0 = A self-tune out of range 0 = A self-tune out of range 1 = A self-tune out of range 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =									
0 = Self-tuning continues di bit 12 STSRC: FRC Self-Tune Ref 1 = FRC is tuned to approx 0 = FRC scuracy is current 0 = FRC accuracy is current 0 = FRC accuracy may not bit 10 STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = STSRC reference clock 0 = A self-tune out of range 0 = Nocillator T 011111 = Maximum frequent 011110 = 0000001 = 0000001 = 0000001 =									
bit 12 STSRC: FRC Self-Tune Ref 1 = FRC is tuned to approx 0 = FRC is tuned to approx 0 = FRC is tuned to approx bit 11 STLOCK: FRC Self-Tune Loc 1 = FRC accuracy is curren 0 = FRC accuracy may not bit 10 STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrup 0 = STSRC reference clock 0 = STSRC reference clock 0 = STSRC reference clock 0 = STSRC reference clock 0 = A self-tune out of range 0 = A self-t									
0 = FRC is tuned to approx bit 11 STLOCK: FRC Self-Tune Loc 1 = FRC accuracy is curren 0 = FRC accuracy may not bit 10 STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup bit 9 STOR: FRC Self-Tune Out of 1 = STSRC reference clock 0 = A self-tune out of range 0 = Noscillator T 011111 = Maximum frequent 011110 = ••• 000001 = 000000 = Center frequency	STSRC: FRC Self-Tune Reference Clock Source bit ⁽¹⁾								
1 = FRC accuracy is curren 0 = FRC accuracy may not 0 = FRC accuracy may not 0 = FRC accuracy may not 1 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = STOR: FRC Self-Tune Out of 1 = STSRC reference clock 0 = A self-tune out of range 0 = Nocillator T 011111 = Maximum frequent 011110 = 0000001 = 0000001 = 000000 = Center frequency	mately match th	he USB host cl		ce					
0 = FRC accuracy may not bit 10 STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrup 0 = A self-tune lock interrup 0 = A self-tune lock interrup bit 9 STOR: FRC Self-Tune Out of 1 = STSRC reference clock 0 = A self-tune out of range 0 = Not self-tune	STLOCK: FRC Self-Tune Lock Status bit								
bit 10 STLPOL: FRC Self-Tune Loc 1 = A self-tune lock interrup 0 = A self-tune lock interrup bit 9 STOR: FRC Self-Tune Out of 1 = STSRC reference clock 0 = STSRC reference clock 0 = STSRC reference clock bit 8 STORPOL: FRC Self-Tune 1 = A self-tune out of range 0 = A self-tune out of range 0 = A self-tune out of range bit 7-6 Unimplemented: Read as ' 011111 = Maximum frequer 011110 = 0000001 = 000000 = Center frequency	•			•					
1 = A self-tune lock interrup 0 = A self-tune lock interrup bit 9 STOR: FRC Self-Tune Out of 1 = STSRC reference clock 0 = STSRC reference clock 0 = STSRC reference clock 1 = A self-tune out of range 0 = Nester	 0 = FRC accuracy may not be within ±0.2% of the STSRC reference accuracy STLPOL: FRC Self-Tune Lock Interrupt Polarity bit 								
bit 9 STOR: FRC Self-Tune Out of 1 = STSRC reference clock 0 = STSRC reference clock 0 = STSRC reference clock bit 8 STORPOL: FRC Self-Tune 1 = A self-tune out of range 0 = A sel	is generated v	when STLOCK							
1 = STSRC reference clock 0 = STSRC reference clock bit 8 STORPOL: FRC Self-Tune 1 = A self-tune out of range 0 = A self-tune out of range bit 7-6 Unimplemented: Read as ' bit 5-0 TUN<5:0>: FRC Oscillator T 011111 = Maximum frequen 011110 = ••• 000001 = 000000 = Center frequency	-								
bit 8 STORPOL: FRC Self-Tune 1 = A self-tune out of range 0 = A self-tune out of range bit 7-6 Unimplemented: Read as ' bit 5-0 TUN<5:0>: FRC Oscillator T 011111 = Maximum frequer 011110 = ••• 0000001 = 000000 = Center frequency	 STOR: FRC Self-Tune Out of Range Status bit 1 = STSRC reference clock error is beyond the range of TUN<5:0>; no tuning is performed 0 = STSRC reference clock is within the tunable range; tuning is performed 								
<pre>1 = A self-tune out of range 0 = A self-tune out of range bit 7-6 Unimplemented: Read as ' D11111 = Maximum frequen 011110 = 0000001 = 000000 = Center frequency</pre>		•	•						
bit 7-6 Unimplemented: Read as ' bit 5-0 TUN<5:0>: FRC Oscillator T 011111 = Maximum frequen 011110 = ••• 000001 = 000000 = Center frequency	interrupt is gen	erated when S	TOR is '0'						
bit 5-0 TUN<5:0>: FRC Oscillator T 011111 = Maximum frequer 011110 = ••• 000001 = 000000 = Center frequency									
011111 = Maximum frequer 011110 = ••• 000001 = 000000 = Center frequency									
000001 = 000000 = Center frequency									
000000 = Center frequency									
*****	oscillator is rur	nning at factory	calibrated free	quency					
• • •									
100001 = 100000 = Minimum freque n	cv deviation								
Note 1: Use of either clock tuning refere	-	specific applic	ation requirem	ents See Sec	tion 9 5 "FP				

2: These bits are read-only when STEN = 1.

9.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMODx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSMx Configuration bits in the FOSC Configuration Word must be programmed. (Refer to **Section 33.1 "Configuration Bits"** for further details.) If the bits are unmodified, the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC<2:0> bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bits value is transferred to the COSCx bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or SOSC (if SOSCEN remains set).

Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0

9.5 FRC Active Clock Tuning

PIC24FJ256GA412/GB412 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses active clock tuning from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that is well within the requirements of the *"USB 2.0 Specification"*, regarding full-speed USB devices.

Note:	The self-tune feature maintains sufficient								
	accuracy for operation in USB Device								
	mode. For applications that function as a								
	USB host, a high-accuracy clock source								
	(±0.05%) is still required.								

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN<15>) enables the self-tuning feature, allowing the hardware to calibrate to a source selected by the STSRC bit (OSCTUN<12>). When STSRC = 1, the system uses the Start-of-Frame (SOF) packets from an external USB host for its source. When STSRC = 0, the system uses the crystal-controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN<5:0> bits (OSCTUN<5:0>) to change the FRC Oscillator's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

Note:	To use the USB as a reference clock tuning source (STSRC = 1), the micro- controller must be configured for USB device operation and connected to a non-suspended USB host or hub port.
	If the SOSC is to be used as the reference clock tuning source (STSRC = 0), the SOSC must also be enabled for clock tuning to occur.
-	

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference by greater than 0.2%, in either direction, or whenever the frequency deviation is beyond the ability of the TUNx bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN<11,9>) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN<10,8>) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

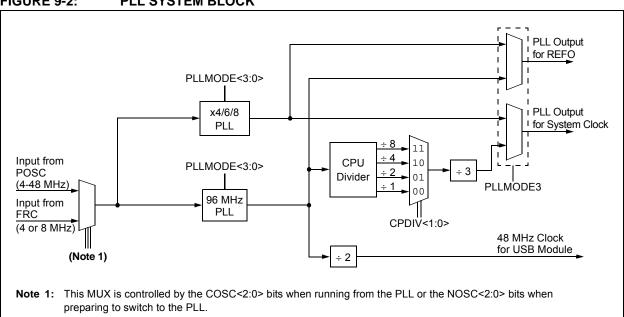
9.6 PLL Block

PIC24FJ256GA412/GB412 family devices include a versatile PLL block as part of the clock generation system. This allows for economical high-speed operation up to FOSCMAX (32 MHz) without the need of an external HS crystal for most applications. It also provides the option to generate a high-precision 48 MHz clock for USB operation, without regard for the system clock frequency. The PLL block is shown in Figure 9-2.

The PLL block has two separate branches:

- A Fixed PLL branch that multiplies the input clock frequency by a factor of 4, 6 or 8. The output frequency is provided as the system clock, as well as an input for the reference clock.
- A 96 MHz PLL that multiplies the input frequency to 96 MHz. The PLL is able to generate a system clock output of 4 MHz, 8 MHz, 16 MHz or 32 MHz. In USB devices, this branch also generates the 48 MHz full-speed USB clock. The 96 MHz output is provided directly as an input for the reference clock.

The PLL block uses either the Primary Oscillator or the FRC as its input source, as selected by the COSC<2:0> or NOSC<2:0> oscillator select bits. For both PLL branches, the minimum input frequency is 4 MHz. For the FRC, the only valid input options are 4 MHz or 8 MHz. The input from the Primary Oscillator can range from up to 48 MHz, in 4 MHz increments.


The fixed PLL multiplier is selected by the PLLMODE<3:0> Configuration bits. As it does not automatically sense the input frequency, the user must select a frequency that will not result in an output frequency greater than 32 MHz.

The 96 MHz PLL branch does not automatically sense the incoming oscillator frequency. The user must manually configure the PLL for the input frequency in order to generate the 96 MHz output, using the PLLMODE<3:0> Configuration bits. This limits the choices for input frequencies to a total of 8 possibilities, shown in Table 9-2. The CPDIV<1:0> bits independently select the system clock speed; available clock options are listed in Table 9-3.

TABLE 9-2: VALID OSCILLATOR INPUTS FOR 96 MHz PLL

Input Oscillator Frequency	Clock Mode	PLL Multiplier (PLLMODE<3:0>)		
48 MHz	ECPLL	2(0111)		
32 MHz	HSPLL, ECPLL	3(0110)		
24 MHz	HSPLL, ECPLL	4(0101)		
20 MHz	HSPLL, ECPLL	4.8 (0100)		
16 MHz	HSPLL, ECPLL	6(0011)		
12 MHz	HSPLL, ECPLL	8(0010)		
8 MHz	ECPLL, XTPLL, FRCPLL ⁽¹⁾	12 (0001)		
4 MHz	ECPLL, XTPLL, FRCPLL ⁽¹⁾	24 (0000)		

Note 1: This requires the use of the FRC self-tune feature to maintain required clock accuracy.

FIGURE 9-2: PLL SYSTEM BLOCK

TABLE 9-3: SYSTEM CLOCK OPTIONS WITH 96 MHz PLL

MCU Clock Division (CPDIV<1:0>)	Microcontroller Clock Frequency
None (00)	32 MHz
÷2(01)	16 MHz
÷4 (10) ⁽¹⁾	8 MHz
÷8 (11) ⁽¹⁾	4 MHz

Note 1: This is not compatible with USB operation. The USB module must be disabled to use this system clock option.

9.6.1 CONSIDERATIONS FOR USB OPERATION

The 96 MHz PLL branch allows for the generation of a USB clock signal that meets the timing requirements of the USB specification. However, some limitations, including the use of a crystal-controlled clock source during Host operation, must also be met to meet the timing requirements. When using the USB On-The-Go module in PIC24FJ256GB412 family devices, users must always observe these rules in configuring the system clock:

- Only the Crystal Oscillator modes listed in Table 9-2 can be used for USB operation. There is no provision to provide a separate external clock source to the USB module.
- The selected clock source (EC, HS or XT) must meet the USB clock tolerance requirements.
- When the FRCPLL Oscillator mode is used for USB applications, the FRC self-tune system should be used as well. While the FRC is accurate, the only two ways to ensure the level of accuracy required by the "USB 2.0 Specification", throughout the application's operating range, are either the self-tune system or manually changing the TUN<5:0> bits.
- The user must always ensure that the FRC source is configured to provide a frequency of 4 MHz or 8 MHz (RCDIV<2:0> = 001 or 000) and that the 96 MHz PLL is configured appropriately.
- All other oscillator modes are available; however, USB operation is not possible when these modes are selected. They may still be useful in cases where other power levels of operation are desirable and the USB module is not needed (e.g., the application is Sleeping and waiting for a bus attachment).

9.7 Secondary Oscillator

9.7.1 BASIC SOSC OPERATION

PIC24FJ256GA412/GB412 family devices do not have to set the SOSCEN bit to use the Secondary Oscillator. Any module requiring the SOSC (such as RTCC, Timer1 or DSWDT) will automatically turn on the SOSC when the clock signal is needed. The SOSC, however, has a long start-up time (as long as 1 second). To avoid delays for peripheral start-up, the SOSC can be manually started using the SOSCEN bit.

To use the Secondary Oscillator, the SOSCSEL Configuration bit (FOSC<3>) must be set to '1'. Programming the SOSCSEL bit to '0' configures the SOSC pins for Digital mode, enabling digital I/O functionality on the pins.

9.7.2 CRYSTAL SELECTION

The 32.768 kHz crystal used for the SOSC must have the following specifications in order to properly start up and run at the correct frequency:

- 12.5 pF loading capacitance
- 1.0 pF shunt capacitance
- A typical ESR of 50 kΩ; 70 kΩ maximum

In addition, the two external crystal loading capacitors should be in the range of 22-27 pF, which will be based on the PC board layout. The capacitors should be COG, 5% tolerance and rated 25V or greater.

The accuracy and duty cycle of the SOSC can be measured on the REFO pin and is recommended to be in the range of 40-60% and accurate to ± 0.65 Hz.

Note:	Do not enable the LCD Segment pin, SEG17, on RD0 when using the 64-pin
	package if the SOSC is used for
	time-sensitive applications. Avoid
	high-frequency traces adjacent to the
	SOSCO and SOSCI pins as this can
	cause errors in the SOSC frequency
	and/or duty cycle.

9.8 Reference Clock

In addition to the CLKO output (Fosc/2), available in certain oscillator modes, the device clock in the PIC24FJ256GA412/GB412 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

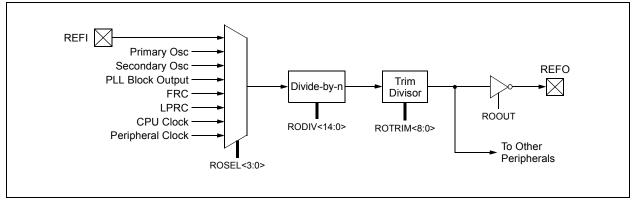
This reference clock output is controlled by the REFOCONL register (Register 9-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The ROSEL<3:0> bits (REFOCONL<3:0>) determine which clock source is used for the reference clock output.

The REFOCONH and REFOTRIML registers (Register 9-5 and Register 9-6) select the divider from the selected clock input source from a wide range of options. The RODIV<14:0> bits (REFOCONH<14:0>) enable the selection of integer clock divider options, from 1:1 to 1:65,534. The ROTRIM<8:0> bits (REFOTRIM<15:7>) allow the user to add a fractional submultiple of the clock input to the RODIVx value.

The ROSWEN bit (REFOCONL<9>) indicates that the clock divider is currently being switched. In order to change the values of the RODIVx or ROTRIMx bits:

- 1. Verify that ROSWEN is clear
- 2. Write the updated values to the ROTRIMx and RODIVx bits.
- 3. Set the ROSWEN bit, then wait until it is clear before assuming that the REFO clock is valid.

The ROSLP bit (REFOCONL<11>) determines if the reference source is available on REFO when the device is in Sleep mode. To use the reference clock output in Sleep mode, the ROSLP bit must be set and the clock selected by the ROSELx bits must be enabled for operation during Sleep mode, if possible. Clearing the ROSELx bits allows the reference output frequency to change as the system clock changes during any clock switches. The ROOUT bit enables/disables the reference clock output on the REFO pin.


The ROACTIV bit (REFOCONL<8>) indicates that the module is active; it can be cleared by disabling the module (ROEN = 0). The user must not change the reference clock source, or adjust the trim or divider when the ROACTIV bit indicates that the module is active. To avoid glitches, the user should not disable the module until the ROACTIV bit is '1'.

9.8.1 REMAPPABLE OUTPUT

For PIC24FJ256GA412/GB412 family devices, the reference clock output is not available as a dedicated pin function. Instead, it is made available as an optional remappable digital output. If the reference clock output is required for an external consumer, it must be mapped to an available output pin. See Section 11.4.3.2 "Output Mapping" for more information.

When REFO is mapped to RP29 (RB15 pin), a reference clock frequency of up to 32 MHz may be used. The drive strength on this pin is also compatible with the fixed REFO pin on previous PIC24F devices. If REFO is mapped to any other output pin, the maximum reference clock frequency is limited to 16 MHz, with a lower drive strength.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R-0, HSC			
ROEN	_	ROSIDL	ROOUT	ROSLP	_	ROSWEN	ROACTIV			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	—		ROSEL3	ROSEL2	ROSEL1	ROSEL0			
bit 7					I	•	bit 0			
Legend:		HC = Hardware	Clearable bit	HSC = Hardw	are Settable/C	learable bit				
R = Readab	R = Readable bit W = Writable bit				nented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15	ROEN: Ref	ference Clock En	able bit							
	1 = Referen	nce Oscillator is e	enabled on the	REFO pin						
		nce Oscillator is c								
bit 14	Unimplem	ented: Read as '	0'							
bit 13		Reference Clock S	•							
		nce Oscillator cor nce Oscillator is c								
bit 12										
DILIZ	ROOUT: Reference Clock Output Enable bit 1 = Reference clock external output is enabled and available on the REFO pin									
	 Reference clock external output is enabled and available on the REFO pin Reference clock external output is disabled 									
bit 11		eference Clock S	•							
		nce Oscillator cor	• •							
	0 = Referen	nce Oscillator is c	lisabled in Slee	p						
bit 10	Unimplem	ented: Read as '	0'							
bit 9		Reference Clock	-							
	1 = Clock divider change (requested by changes to ROTRIMx and/or RODIVx) is requested or is in progress (set in software, cleared by hardware upon completion)									
		ss (set in softwar divider change ha			ompletion)					
bit 8		Reference Clock	-	is not pending						
DIL O		nce clock is active		e clock source						
		nce clock is stopp			ation may be s	afely changed				
bit 7-4	Unimplem	ented: Read as '	0'							
bit 3-0	-	0>: Reference Cl		lect bits						
	1111 =									
		••• = Reserved								
	1001 =									
		1000 = REFI pin 0111 = Reserved								
		block (Fixed PL	L output freque	ncy or 96 MHz	PLL output)					
		condary Oscillato	r							
	0100 = LPF 0011 = FR									
		o nary Oscillator								
		ipheral clock (FC	Y)							
	0000 = CP	U clock								

REGISTER 9-4: REFOCONL: REFERENCE CLOCK CONTROL LOW REGISTER

REGISTER 9-5: REFOCONH: REFERENCE CLOCK CONTROL HIGH REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				RODIV<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ROD)IV<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplem	nented bit, rea	ad as '0'	
	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

 bit 14-0
 RODIV<14:0>: Reference Clock Integer Divisor Select bits

 Divisor for the selected input clock source is two times the selected value.

 111
 1111
 1111
 8ase clock value divided by 65,534 (2 * 7FFFh)

 111
 1111
 1111
 8ase clock value divided by 65,532 (2 * 7FFFh)

 111
 1111
 1111
 1101
 8ase clock value divided by 65,532 (2 * 7FFEh)

 111
 1111
 1111
 1101
 8ase clock value divided by 65,530 (2 * 7FFDh)

 000
 0000
 0010
 8ase clock value divided by 4 (2 * 2)

 000
 0000
 0001
 8ase clock value divided by 2 (2 * 1)

 000
 0000
 0000
 8ase clock value

REGISTER 9-6: REFOTRIM: REFERENCE CLOCK TRIM REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ROTR	IM<8:1>				
bit 15							bit 8	
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
ROTRIMO) —	—		—	—	—		
bit 7						bit 0		
Legend:								
R = Readat	R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-7	Added fraction 1111111111 111111110	0>: Reference C onal portion of th = 1 (512/512) = 0.998947 (511 = 0.996094 (510	e divisor for tl /512)			is the value, div	vided by 512.	
	000000010	= 0.003906 (2/5 = 0.001953 (1/5	,					

NOTES:

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Power-Saving Features with Deep Sleep" (DS39727).

The PIC24FJ256GA412/GB412 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked reduces consumed power.

PIC24FJ256GA412/GB412 family devices manage power consumption with five strategies:

- Instruction-Based Power Reduction Modes
- · Hardware-Based Power Reduction Features
- Clock Frequency Control
- Software Controlled Doze Mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

10.1 Overview of Power-Saving Modes

In addition to full-power operation, otherwise known as Run mode, the PIC24FJ256GA412/GB412 family of devices offers three Instruction-Based Power-Saving modes and one Hardware-Based mode:

- Idle
- Sleep (Sleep and Low-Voltage Sleep)
- · Deep Sleep (without retention)
- VBAT (with and without RTCC)

All four modes can be activated by powering down different functional areas of the microcontroller, allowing progressive reductions of operating and Idle power consumption. In addition, three of the modes can be tailored for more power reduction at a trade-off of some operating features. Table 10-1 lists all of the operating modes in order of increasing power savings. Table 10-2 summarizes how the microcontroller exits the different modes. Specific information is provided in the following sections.

		Active Systems							
Mode	Entry	Core	Peripherals	Data RAM Retention	RTCC ⁽¹⁾	DSGPR0/ DSGPR1 Retention			
Run (default)	N/A	Y	Y	Y	Y	Y			
Idle	Instruction	Ν	Y	Y	Y	Y			
Sleep:									
Sleep	Instruction	Ν	S ⁽²⁾	Y	Y	Y			
Low-Voltage Sleep	Instruction + RETEN bit	Ν	S ⁽²⁾	Y	Y	Y			
Deep Sleep:									
Deep Sleep	Instruction + DSEN bit	Ν	Ν	Ν	Y	Y			
VBAT:									
with RTCC	Hardware	Ν	N	Ν	Y	Y			
w/o RTCC	Hardware + RTCBAT Config. bit	Ν	N	Ν	Ν	Y			

TABLE 10-1: OPERATING MODES FOR PIC24FJ256GA412/GB412 FAMILY DEVICES

Note 1: If RTCC is otherwise enabled in firmware.

2: A select peripheral can operate during this mode from LPRC or some external clock.

TABLE 10-2: EXITING POWER-SAVING MODES

		Code							
Mode	Interrupts Resets			RTCC	WDT	Vdd	Execution		
	All	INT0	All	POR	MCLR	Alarm	WDT	Restore ⁽²⁾	Resumes
Idle	Y	Y	Y	Y	Y	Y	Y	N/A	Next instruction
Sleep (all modes)	Y	Y	Y	Y	Y	Y	Y	N/A	
Deep Sleep	Ν	Y	Ν	Y	Y	Y	Y(1)	N/A	Reset vector
VBAT	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Y	Reset vector

Note 1: Deep Sleep WDT.

2: A POR or POR-like Reset results whenever VDD is removed and restored in any mode.

10.1.1 INSTRUCTION-BASED POWER-SAVING MODES

Three of the power-saving modes are entered through the execution of the PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. Deep Sleep mode stops clock operation, code execution and all peripherals, except RTCC and DSWDT. It also freezes I/O states and removes power to Flash memory, and may remove power to SRAM.

The assembly syntax of the PWRSAV instruction is shown in Example 10-1. Sleep and Idle modes are entered directly with a single assembler command. Deep Sleep requires an additional sequence to unlock and enable the entry into Deep Sleep, which is described in Section 10.4.1 "Entering Deep Sleep Mode".

Note:	SLEEP_MODE	and	IDLE_MODE	are
	constants define	ed in th	e assembler ind	clude
	file for the selec	ted de	vice.	

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

The features enabled with the low-voltage/retention regulator result in some changes to the way that Sleep and Deep Sleep modes behave. See Section 10.3 "Sleep Mode" and Section 10.4 "Deep Sleep Mode" for additional information.

10.1.1.1 Interrupts Coincident with Power Save Instructions

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

For Deep Sleep mode, interrupts that coincide with the execution of the PWRSAV instruction may be lost. The microcontroller resets on leaving Deep Sleep and the interrupt will be lost.

Interrupts that occur during the Deep Sleep unlock sequence will interrupt the mandatory five-instruction cycle sequence timing and cause a failure to enter Deep Sleep. For this reason, it is recommended to disable all interrupts during the Deep Sleep unlock sequence.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

```
// Syntax to enter Sleep mode:
          #SLEEP_MODE
PWRSAV
                            ; Put the device into SLEEP mode
11
//Synatx to enter Idle mode:
PWRSAV
          #IDLE MODE
                            ; Put the device into IDLE mode
11
// Syntax to enter Deep Sleep mode:
// First use the unlock sequence to set the DSEN bit (see Example 10-2)
BSET DSCON, #DSEN ; Enable Deep Sleep
          DSCON, #DSEN
BSET
                          ; Enable Deep Sleep(repeat the command)
PWRSAV
          #SLEEP_MODE
                            ; Put the device into Deep SLEEP mode
```

10.1.2 HARDWARE-BASED POWER-SAVING MODE

The hardware-based VBAT mode does not require any action by the user during code development. Instead, it is a hardware design feature that allows the micro-controller to retain critical data (using the DSGPRx registers) and maintain the RTCC when VDD is removed from the application. This is accomplished by supplying a backup power source to a specific power pin. VBAT mode is described in more detail in Section 10.5 "VBAT Mode".

10.1.3 LOW-VOLTAGE/RETENTION REGULATOR

PIC24FJ256GA412/GB412 family devices incorporate a second on-chip voltage regulator, designed to provide power to select microcontroller features at 1.2V, nominal. This regulator allows features, such as data RAM and the WDT, to be maintained in power-saving modes where they would otherwise be inactive, or maintain them at a lower power than would otherwise be the case.

The low-voltage/retention regulator is only available when Sleep mode is invoked. It is controlled by the LPCFG Configuration bit (FPOR<2>) and in firmware by the RETEN bit (RCON<12>). LPCFG must be programmed (= 0) and the RETEN bit must be set (= 1) for the regulator to be enabled.

10.2 Idle Mode

Idle mode provides these features:

- · The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.8 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

10.3 Sleep Mode

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT or RTCC, with LPRC as the clock source, is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

10.3.1 LOW-VOLTAGE/RETENTION SLEEP MODE

Low-Voltage/Retention Sleep mode functions as Sleep mode with the same features and wake-up triggers. The difference is that the low-voltage/retention regulator allows Core Digital Logic Voltage (VCORE) to drop to 1.2V nominal. This permits an incremental reduction of power consumption over what would be required if VCORE was maintained at a 1.8V (minimum) level.

Low-Voltage Sleep mode requires a longer wake-up time than Sleep mode, due to the additional time required to bring VCORE back to 1.8V (known as TREG). In addition, the use of the low-voltage/retention regulator limits the amount of current that can be sourced to any active peripherals, such as the RTCC/LCD, etc.

10.4 Deep Sleep Mode

Deep Sleep mode provides the lowest levels of power consumption available from the Instruction-Based modes.

Deep Sleep modes have these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Deep Sleep mode if the WDT, or RTCC with LPRC as the clock source, is enabled.
- The dedicated Deep Sleep WDT and BOR systems, if enabled, are used.
- The RTCC and its clock source continue to run, if enabled. All other peripherals are disabled.

Entry into Deep Sleep mode is completely under software control. Exit from the Deep Sleep modes can be triggered from any of the following events:

- POR event
- MCLR event
- RTCC alarm (if the RTCC is present)
- External Interrupt 0
- · Deep Sleep Watchdog Timer (DSWDT) time-out

10.4.1 ENTERING DEEP SLEEP MODE

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register and then executing a Sleep command (PWRSAV #SLEEP_MODE), within one instruction cycle, to minimize the chance that Deep Sleep will be spuriously entered.

If the PWRSAV command is not given within one instruction cycle, the DSEN bit will be cleared by the hardware and must be set again by the software before entering Deep Sleep mode. The DSEN bit is also automatically cleared when exiting Deep Sleep mode.

Note: To re-enter Deep Sleep after a Deep Sleep wake-up, allow a delay of at least 3 TcY after clearing the RELEASE bit.

The sequence to enter Deep Sleep mode is:

- If the application requires the Deep Sleep WDT, enable it and configure its clock source. For more information on Deep Sleep WDT, see Section 10.4.5 "Deep Sleep WDT".
- If the application requires Deep Sleep BOR, enable it by programming the DSBOREN Configuration bit (FDS<6>).
- 3. If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module. For more information on RTCC, see Section 24.0 "Real-Time Clock and Calendar (RTCC) with Timestamp".
- 4. If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).
 - Note: A repeat sequence is required to set the DSEN bit. The repeat sequence (repeating the instruction twice) is required to write to any of the Deep Sleep registers (DSCON, DSWAKE, DSGPR0, DSGPR1). This is required to prevent the user from entering Deep Sleep by mistake. Any write to these registers has to be done twice to actually complete the write (see Example 10-2).
- 6. Enter Deep Sleep mode by issuing three NOP commands and then a PWRSAV #0 instruction.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

EXAMPLE 10-2: THE REPEAT SEQUENCE

Examp	<u>ole 1:</u>	
MOV	#0x8000, W2	;enable DS
MOV	W2, DSCON	
MOV	W2, DSCON	;second write required to
		;actually write to DSCON
_		
Examp	<u>ole 2:</u>	
BSET	DSCON, #15	
NOP		
NOP		
NOP		
BSET	DSCON, #15	;enable DS
		;(two writes required)

10.4.2 EXITING DEEP SLEEP MODES

Deep Sleep modes exit on any one of the following events:

- POR event on VDD supply. If there is no DSBOR circuit to re-arm the VDD supply POR circuit, the external VDD supply must be lowered to the natural arming voltage of the POR circuit.
- DSWDT time-out. When the DSWDT timer times out, the device exits Deep Sleep.
- RTCC alarm (if RTCEN = 1).
- Assertion ('0') of the $\overline{\text{MCLR}}$ pin.
- Assertion of the INT0 pin (if the interrupt was enabled before Deep Sleep mode was entered). The polarity configuration is used to determine the assertion level ('0' or '1') of the pin that will cause an exit from Deep Sleep mode. Exiting from Deep Sleep mode requires a change on the INT0 pin while in Deep Sleep mode.

Note: Any interrupt pending when entering Deep Sleep mode is cleared.

Exiting Deep Sleep generally does not retain the state of the device and is equivalent to a Power-on Reset (POR) of the device. Exceptions to this include the RTCC (if present), which remains operational through the wake-up, the DSGPRx registers and DSWDT.

Wake-up events that occur from the time Deep Sleep exits, until the time the POR sequence completes, are not ignored. The DSWAKE register will capture ALL wake-up events, from setting DSEN to clearing RELEASE. The sequence for exiting Deep Sleep mode is:

- 1. After a wake-up event, the device exits Deep Sleep and performs a POR. The DSEN bit is cleared automatically. Code execution resumes at the Reset vector.
- To determine if the device exited Deep Sleep, read the Deep Sleep bit, DPSLP (RCON<10>). This bit will be set if there was an exit from Deep Sleep mode. If the bit is set, clear it.
- 3. Determine the wake-up source by reading the DSWAKE register.
- Determine if a DSBOR event occurred during Deep Sleep mode by reading the DSBOR bit (DSCON<1>).
- 5. If application context data has been saved, read it back from the DSGPR0 and DSGPR1 registers.
- 6. Clear the RELEASE bit (DSCON<0>).

10.4.3 SAVING CONTEXT DATA WITH THE DSGPRx REGISTERS

As exiting Deep Sleep mode causes a POR, most Special Function Registers reset to their default POR values. In addition, because VCORE power is not supplied in Deep Sleep mode, information in data RAM may be lost when exiting this mode.

Applications which require critical data to be saved prior to Deep Sleep may use the Deep Sleep General Purpose registers, DSGPR0 and DSGPR1, or data EEPROM (if available). Unlike other SFRs, the contents of these registers are preserved while the device is in Deep Sleep mode. After exiting Deep Sleep, software can restore the data by reading the registers and clearing the RELEASE bit (DSCON<0>).

10.4.4 I/O PINS IN DEEP SLEEP MODES

During Deep Sleep, the general purpose I/O pins retain their previous states and the Secondary Oscillator (SOSC) will remain running, if enabled. Pins that are configured as inputs (TRISx bit is set), prior to entry into Deep Sleep, remain high-impedance during Deep Sleep. Pins that are configured as outputs (TRISx bit is clear), prior to entry into Deep Sleep, remain as output pins during Deep Sleep. While in this mode, they continue to drive the output level determined by their corresponding LATx bit at the time of entry into Deep Sleep.

Once the device wakes back up, all I/O pins continue to maintain their previous states, even after the device has finished the POR sequence and is executing application code again. Pins configured as inputs during Deep Sleep remain high-impedance and pins configured as outputs continue to drive their previous value. After waking up, the TRISx and LATx registers, and the SOSCEN bit (OSCCON<1>), are reset. If firmware modifies any of these bits or registers, the I/O will not immediately go to the newly configured states. Once the firmware clears the RELEASE bit (DSCON<0>), the I/O pins are "released". This causes the I/O pins to take the states configured by their respective TRISx and LATx bit values.

This means that keeping the SOSC running after waking up requires the SOSCEN bit to be set before clearing RELEASE.

If the Deep Sleep BOR (DSBOR) is enabled, and a DSBOR or a true POR event occurs during Deep Sleep, the I/O pins will be immediately released, similar to clearing the RELEASE bit. All previous state information will be lost, including the general purpose DSGPR0 and DSGPR1 contents.

If a MCLR Reset event occurs during Deep Sleep, the DSGPRx, DSCON and DSWAKE registers will remain valid, and the RELEASE bit will remain set. The state of the SOSC will also be retained. The I/O pins, however, will be reset to their MCLR Reset state. Since RELEASE is still set, changes to the SOSCEN bit (OSCCON<1>) cannot take effect until the RELEASE bit is cleared.

In all other Deep Sleep wake-up cases, application firmware must clear the RELEASE bit in order to reconfigure the I/O pins.

10.4.5 DEEP SLEEP WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (FDS<7>). The device WDT need not be enabled for the DSWDT to function. Entry into Deep Sleep modes automatically resets the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (FDS<5>). The postscaler options are programmed by the DSWDTPS<4:0> Configuration bits (FDS<4:0>). The minimum time-out period that can be achieved is 1 ms and the maximum is 25.7 days. For more details on DSWDT configuration options, refer to Section 33.0 "Special Features".

10.4.5.1 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC, of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the CLKSEL<1:0> bits (RTCCON2L<1:0>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled) without the need for software intervention. However, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

10.4.6 CHECKING AND CLEARING THE STATUS OF DEEP SLEEP

Upon entry into Deep Sleep mode, the status bit, DPSLP (RCON<10>), becomes set and must be cleared by the software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set; this is a normal POR.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

10.4.7 POWER-ON RESETS (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep mode functionally looks like a POR, the technique described in **Section 10.4.6 "Checking and Clearing the Status of Deep Sleep"** should be used to distinguish between Deep Sleep and a true POR event. When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers, RTCC, DSWDT, etc.), is reset.

10.5 VBAT Mode

This mode represents the lowest power state that the microcontroller can achieve and still resume operation. VBAT mode is automatically triggered when the micro-controller's main power supply on VDD fails. When this happens, the microcontroller's on-chip power switch connects to a backup power source, such as a battery, supplied to the VBAT pin. This maintains a few key systems at an extremely low-power draw until VDD is restored.

The power supplied on VBAT only runs two systems: the RTCC and the Deep Sleep Semaphore registers (DSGPR0 and DSGPR1). To maintain these systems during a sudden loss of VDD, it is essential to connect a power source, other than VDD or AVDD, to the VBAT pin.

When the RTCC is enabled, it continues to operate with the same clock source (SOSC or LPRC) that was selected prior to entering VBAT mode. There is no provision to switch to a lower power clock source after the mode switch.

Since the loss of VDD is usually an unforeseen event, it is recommended that the contents of the Deep Sleep Semaphore registers be loaded with the data to be retained at an early point in code execution.

10.5.1 VBAT MODE WITH NO RTCC

By disabling RTCC operation during VBAT mode, power consumption is reduced to the lowest of all power-saving modes. This is done by programming the RTCBAT Configuration bit (FDS<14>) to '0'. In this mode, only the Deep Sleep Semaphore registers are maintained.

10.5.2 WAKE-UP FROM VBAT MODES

When VDD is restored to a device in VBAT mode, it automatically wakes. Wake-up occurs with a POR, after which, the device starts executing code from the Reset vector. All SFRs, except the Deep Sleep Semaphore registers, are reset to their POR values. IF the RTCC was not configured to run during VBAT mode, it will remain disabled and RTCC will not run. Wake-up timing is similar to that for a normal POR. To differentiate a wake-up from VBAT mode from other POR states, check the VBAT status bit (RCON2<0>). If this bit is set while the device is starting to execute the code from the Reset vector, it indicates that there has been an exit from VBAT mode. The application must clear the VBAT bit to ensure that future VBAT wake-up events are captured.

If a POR occurs without a power source connected to the VBAT pin, the VBPOR bit (RCON2<1>) is set. If this bit is set on a POR, it indicates that a battery needs to be connected to the VBAT pin.

In addition, if the VBAT power source falls below the level needed for Deep Sleep semaphore operation while in VBAT mode (e.g., the battery has been drained), the VBPOR bit will be set. VBPOR is also set when the microcontroller is powered up the very first time, even if power is supplied to VBAT.

10.5.3 I/O PINS DURING VBAT MODES

All I/O pins switch to Input mode during VBAT mode. The only exceptions are the SOSCI and SOSCO pins, which maintain their states if the Secondary Oscillator is being used as the RTCC clock source. It is the user's responsibility to restore the I/O pins to their proper states, using the TRISx and LATx bits, once VDD has been restored.

10.5.4 SAVING CONTEXT DATA WITH THE DSGPRx REGISTERS

As with Deep Sleep mode (i.e., without the low-voltage/retention regulator), all SFRs are reset to their POR values after VDD has been restored. Only the Deep Sleep Semaphore registers are preserved. Applications which require critical data to be saved should save it in DSGPR0 and DSGPR1.

Note: If the VBAT mode is not used, it is recommended to connect the VBAT pin to VDD.

The POR should be enabled for the reliable operation of the VBAT.

R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
DSEN	—	—	RTCCMD	KEYRAMEN	—	—	_
bit 15			•				bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/C-0, HS
—	—	—		_	WAKEDIS	DSBOR ⁽²⁾	RELEASE
bit 7							bit (
Legend:		C = Clearable	bit	HS = Hardwar	e Settable bit		
R = Readab	le bit	W = Writable		U = Unimplem	ented bit, read	as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15	•	Sleep Enable I					
		ep Sleep on ex					
h: 44 40		rmal Sleep on		WRSAV #0			
bit 14-13	•	ted: Read as '					
bit 12	1 = Module is	CC Module Di	sable bit				
		ower and clock	sources are e	nabled			
bit 11	•			AM Deep Sleep	Enable bit		
		•••••		g Deep Sleep a		;	
	0 = Power is o	disabled during	Deep Sleep a	nd VBAT modes			
bit 10-3	Unimplement	ted: Read as '	כי				
bit 2	WAKEDIS: EX	xternal Wake-u	p Source Disa	ble bit			
				nd ignored during			
L 11 A		-		d can be used t	o wake device f	from Deep Sle	ep
bit 1		p Sleep BOR E			d during Deere (
				ent was detected ive, but did not d	•	•	ep Sleep
bit 0		O Pin State Re		,		0	
				is maintain their ious to Deep Sle			
		bits to control					
	Il register bits an				•	•	
	INNER ON ATOM AV	ADDE 2 LIDED S	אממה אנוא מעמ		n nijava in tr	om Liben Sloo	n' fnic

REGISTER 10-1: DSCON: DEEP SLEEP CONTROL REGISTER⁽¹⁾

2: Unlike all other events, a Deep Sleep BOR event will NOT cause a wake-up from Deep Sleep; this re-arms the POR.

REGISTER 10-2: DSWAKE: DEEP SLEEP WAKE-UP SOURCE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS
—	—	_	—	—	—	—	DSINT0
bit 15							bit 8

R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0
DSFLT	—	—	DSWDT	DSRTCC	DSMCLR	—	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	Read as '0'
bit 8 DSINT0: Deep Si	eep Interrupt-on-Change bit
•	Change was asserted during Deep Sleep Change was not asserted during Deep Sleep
bit 7 DSFLT: Deep Sle	ep Fault Detect bit
1 = A Fault occur corrupted	red during Deep Sleep and some Deep Sleep configuration settings may have been
0 = No Fault was	detected during Deep Sleep
bit 6-5 Unimplemented	Read as '0'
bit 4 DSWDT: Deep Sl	eep Watchdog Timer Time-out bit
•	ep Watchdog Timer timed out during Deep Sleep ep Watchdog Timer did not time out during Deep Sleep
bit 3 DSRTCC: Deep S	Sleep Real-Time Clock and Calendar Alarm bit
	e Clock and Calendar triggered an alarm during Deep Sleep e Clock and Calendar did not trigger an alarm during Deep Sleep
bit 2 DSMCLR: Deep	Sleep MCLR Event bit
·	n was active and was asserted during Deep Sleep n was not active, or was active, but not asserted during Deep Sleep
bit 1-0 Unimplemented:	Read as '0'

Note 1: All register bits are cleared when the DSEN (DSCON<15>) bit is set.

REGISTER 10-3: RCON2: RESET AND SYSTEM CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	_	—	—	_
bit 15							bit 8
U-0	U-0	U-0	r-0	R/CO-1	R/CO-1	R/CO-1	R/CO-0
	—	—	—	VDDBOR ⁽¹⁾	VDDPOR ^(1,2)	VBPOR ^(1,3)	VBAT ⁽¹⁾
bit 7							bit C
Legend:		r = Reserved b	bit	CO = Clearab	le Only bit		
R = Reada	ible bit	W = Writable b	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 3 bit 2	1 = A VDD E 0 = A VDD E VDDPOR: V 1 = A VDD F	/DD Brown-out Reset Brown-out Reset Brown-out Reset /DD Power-on Re Power-on Reset h Power-on Reset h	has occurred has not occur set Flag bit ^{(1,2} has occurred ((set by hardwa red 2) set by hardwar	,		
bit 1 bit 0	1 = A VBAT Sleep s 0 = A VBAT VBAT: VBAT 1 = A POR	AT Power-on Res POR has occurr emaphore retenti POR has not occ Flag bit ⁽¹⁾ exit has occurred exit from VBAT ha	ed (no battery on level, set b curred	 connected to by hardware) was applied to 			·
2:		hardware only; it VDD POR. Settin	g the POR bit	(RCON<0>) in	dicates a VCOR		

3: This bit is set when the device is originally powered up, even if power is present on VBAT.

10.6 Clock Frequency and Clock Switching

In Run and Idle modes, all PIC24FJ devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

10.7 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:8 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.8 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to the CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, located in one of the PMDx registers (Register 10-4 through Register 10-11).

Both bits have similar functions in enabling or disabling its associated module. Setting the PMDx bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMDx bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as when the PMDx bits are used. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

REGISTER 1	10-4: PMD1	: PERIPHER	AL MODULE	E DISABLE RE	GISTER 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD		—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD		0-0	ADC1MD
bit 7	OZIVID	OTWID	51 IZIND	SITTND			bit C
							
Legend:			L :4			-l (O'	
R = Readable		W = Writable		U = Unimpleme	•		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unk	nown
bit 15	T5MD: Timer	5 Module Disat	ole bit				
	1 = Module is	s disabled					
	0 = Module p	ower and clock	sources are e	enabled			
bit 14	-	4 Module Disat	ole bit				
	1 = Module is						
h:: 40	•	ower and clock		enabled			
bit 13	1 = Module is	3 Module Disat	DIE DIT				
		ower and clock	sources are e	enabled			
bit 12	•	2 Module Disat					
	1 = Module is						
		ower and clock	sources are e	enabled			
bit 11	T1MD: Timer	1 Module Disat	ole bit				
	1 = Module is						
	-	ower and clock		enabled			
bit 10-8	-	ted: Read as '					
bit 7		1 Module Disat	ble bit				
	1 = Module is	s disabled	sources are e	nabled			
bit 6	-	2 Module Disa					
Sit 0	1 = Module is						
	0 = Module p	ower and clock	sources are e	enabled			
bit 5	U1MD: UART	1 Module Disa	ble bit				
	1 = Module is						
		ower and clock		enabled			
bit 4		2 Module Disal	ole bit				
	1 = Module is	s disabled ower and clock		nabled			
bit 3		1 Module Disal					
	1 = Module is						
		ower and clock	sources are e	enabled			
bit 2-1	-	ted: Read as '					
bit 0	-	D Converter Me		oit			
	1 = Module is	s disabled					

REGISTER 10-4: PMD1: PERIPHERAL MODULE DISABLE REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD
bit 7		0001112	0001112	0011110	000mB	0021112	bit C
Levende							
Legend: R = Readab	le hit	W = Writable	hit	II = I Inimplen	nented bit, read	1 as 'N'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea	-	x = Bit is unkn	nown
					uicu		
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	IC6MD: Input	t Capture 6 Moo	dule Disable bi	t			
	1 = Module is						
hit 10	•	power and clock					
bit 12	1 = Module is	t Capture 5 Moo	duie Disable di	τ			
		s disabled	k sources are e	enabled			
bit 11	IC4MD: Input	t Capture 4 Mo	dule Disable bi	t			
	1 = Module is	s disabled					
	-	power and clock					
bit 10	•	t Capture 3 Moo	dule Disable bi	t			
	1 = Module is	s disabled		enabled			
bit 9	-	t Capture 2 Mo					
	1 = Module is	•		-			
	0 = Module p	power and cloc	sources are e	enabled			
bit 8		t Capture 1 Moo	dule Disable bi	t			
	1 = Module is 0 = Module r	s disabled bower and clocl	sources are e	enabled			
bit 7-6	-	ted: Read as '					
bit 5	-	put Capture 6 I		e bit			
	1 = Module is	s disabled					
	•	power and clock					
bit 4		put Capture 5 I	Module Disable	e bit			
	1 = Module is	s disabled		enabled			
bit 3	•	put Capture 4					
bit o	1 = Module is	-					
	0 = Module p	power and clock	sources are e	enabled			
bit 2	OC3MD: Out	put Capture 3 I	Module Disable	e bit			
	1 = Module is						
hit 1	•	oower and clock					
bit 1	1 = Module is	put Capture 2 I s disabled					
		s disabled	sources are e	enabled			
bit 0	•	put Capture 1					
	1 = Module is	s disabled					
	0 = Module r	power and clock	sources are e	enabled			

REGISTER 10-5: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0
	—	—	_	_	CMPMD	—	PMPMD
bit 15							bit 8
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
CRCMD	DACMD	—	—	U3MD	I2C3MD	I2C2MD	—
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable b	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
							-
bit 15-11	Unimplemen	ted: Read as '0	,				
bit 10	CMPMD: Trip	le Comparator	Module Disabl	e bit			
	1 = Module is	s disabled					
	•	ower and clock		enabled			
bit 9	-	ted: Read as '0					
bit 8		anced Parallel	Master Port D	isable bit			
	1 = Module is	s disabled lower and clock		nabled			
bit 7	•	C Module Disab		inabled			
	1 = Module is						
		ower and clock	sources are e	enabled			
bit 6	DACMD: DAG	C Module Disab	le bit				
	1 = Module is	s disabled					
	•	ower and clock		enabled			
bit 5-4	Unimplemen	ted: Read as '0	3				
bit 3	U3MD: UART	3 Module Disat	ole bit				
	1 = Module is			a shi sh			
L:1 0	•	ower and clock		enabled			
bit 2	1 = Module is	3 Module Disab					
		ower and clock	sources are e	enabled			
bit 1	•	2 Module Disab					
-	1 = Module is						
	0 = Module p	ower and clock	sources are e	nahled			
	 0 = Module power and clock sources are enabled Unimplemented: Read as '0' 						

REGISTER 10-6: PMD3: PERIPHERAL MODULE DISABLE REGISTER 3

REGISTER 10-7: PMD4: PERIPHERAL MODULE DISABLE REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	U4MD		REFOMD	CTMUMD	LVDMD	USB1MD	
bit 7							bit C	
Legend:	1. 1.*(1		
R = Readab		W = Writable k	Dit	•	nented bit, rea			
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown	
bit 15-6	-	ented: Read as '0						
bit 5		RT4 Module Disal	ole bit					
	1 = Module							
L:1		power and clock		enabled				
bit 4	-	ented: Read as '0						
bit 3		Reference Output	Clock Disabl	e bit				
	1 = Module	e is disabled e power and clock		anablad				
bit 2		CTMU Module Di		enableu				
DIL Z	1 = Module		Sable bit					
		power and clock	sources are	enabled				
bit 1		•						
		LVDMD: High/Low-Voltage Detect Module Disable bit 1 = Module is disabled						
		power and clock	sources are	enabled				
		•						
OILU								
bit 0	1 = Module	JSB1MD: USB On-The-Go Module Disable bit . = Module is disabled						

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	_	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	CCP7MD	CCP6MD	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD	
bit 7							bit 0	
Legend:			• •			1 (0)		
R = Readal		W = Writable	DIt		ented bit, read			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	IOWN	
bit 15-7	Unimplement	ted. Dood oo '	,					
	-	ted: Read as '(
bit 6	1 = Module is	CP7 Module D	Isable bit					
		ower and clock	sources are e	enabled				
bit 5	•	CP6 Module D						
	1 = Module is							
	0 = Module p	ower and clock	sources are e	enabled				
bit 4	CCP5MD: SC	CP5 Module D	isable bit					
	1 = Module is							
		ower and clock		enabled				
bit 3		CCP4 Module E	isable bit					
	1 = Module is			nablad				
bit 2	•	ower and clock		Inapleu				
	1 = Module is							
		ower and clock	sources are e	enabled				
bit 1	-							
	1 = Module is	CP2MD: MCCP2 Module Disable bit = Module is disabled						
	0 = Module p	ower and clock	sources are e	enabled				
bit 0	CCP1MD: MO	CCP1 Module E	isable bit					
	1 = Module is	s disabled						
		ower and clock						

REGISTER 10-8: PMD5: PERIPHERAL MODULE DISABLE REGISTER 5

REGISTER 10-9: PMD6: PERIPHERAL MODULE DISABLE REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—				—	—	—	—
bit 15							bit 8

U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	LCDMD	—	—	—	—	SPI4MD	SPI3MD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6	LCDMD: LCD Controller Module Disable bit
	1 = Module is disabled
	0 = Module power and clock sources are enable
bit 5-2	Unimplemented: Read as '0'
bit 1	SPI4MD: SPI4 Module Disable bit
	1 = Module is disabled
	0 = Module power and clock sources are enabled
bit 0	SPI3MD: SPI3 Module Disable bit

- 1 = Module is disabled
- 0 = Module power and clock sources are enabled

REGISTER 10-10: PMD7: PERIPHERAL MODULE DISABLE REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	—	—	_	_	
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	—	DMA1MD	DMA0MD	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	DMA1MD: DMA1 Controller (Channels 4 and 5) Disable bit
	1 = Controller is disabled
	0 = Controller power and clock sources are enabled
bit 4	DMA0MD: DMA0 Controller (Channels 0 through 3) Disable bit
	_ · · · · · · · · · · · · · · · · · · ·
2	1 = Controller is disabled

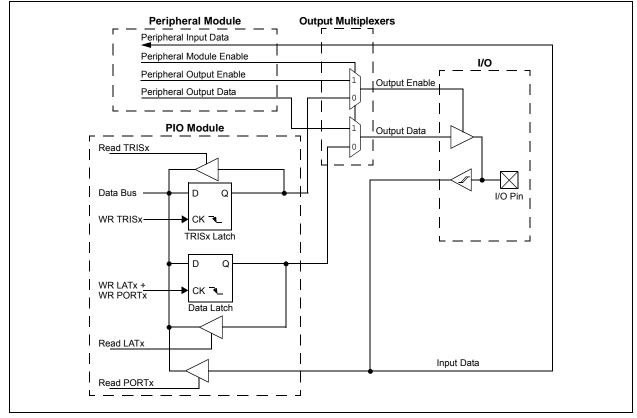
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—		—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
U6MD	U5MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD		CRYMD
bit 7							bit C
Legend:							
R = Readab	ole bit	W = Writable b	oit	U = Unimplem	ented bit, read	d as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
							-
bit 15-8	Unimplemen	ted: Read as '0)'				
bit 7	U6MD: UART	6 Module Disat	ole bit				
	1 = Module is						
		ower and clock		enabled			
bit 6		5 Module Disal	ole bit				
	1 = Module is 0 = Module p	s disabled ower and clock	sources are e	enabled			
bit 5		C4 Module Disa					
	1 = Module is	disabled					
	0 = Module p	ower and clock	sources are e	enabled			
bit 4	CLC3MD: CL	C3 Module Disa	able bit				
	1 = Module is						
L:1 0		ower and clock		enabled			
bit 3	1 = Module is	C2 Module Disa					
		ower and clock	sources are e	enabled			
bit 2	CLC1MD: CL	C1 Module Disa	able bit				
	1 = Module is	s disabled					
	0 = Module p	ower and clock	sources are e	enabled			
bit 1	-	ted: Read as '0					
bit 0		otographic Engi	ne Disable bit				
	1 = Module is						
	0 = introdule p	ower and clock	sources are e	enabled			

REGISTER 10-11: PMD8: PERIPHERAL MODULE DISABLE REGISTER 8

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "I/O Ports with Interrupt-on-Change (IOC)" (DS70005186). The information in this data sheet supersedes the information in the FRM.

All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger (ST) inputs for improved noise immunity.


11.1 Parallel I/O (PIO) Ports

A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/Os and one register associated with their operation as analog inputs. The Data Direction register (TRIS) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LAT), read the latch; writes to the latch, write the latch. Reads from the PORT register, read the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LAT and TRIS registers, and the port pin, will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of inputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits (see Register 11-1 through Register 11-8), which decides if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

Information on voltage tolerance is provided in the pinout diagrams in the beginning of this data sheet. For more information, refer to **Section 36.0** "**Electrical Characteristics**" for more details.

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

REGISTER 11-1: ANSA: PORTA ANALOG FUNCTION SELECTION REGISTER⁽¹⁾

R/W-1	R/W-1	U-0	U-0	U-0	R/W-1	R/W-1	U-0		
ANSA	<15:14>		—		ANSA	A<10:9>	—		
oit 15							bit		
R/W-1	R/W-1	R/W-1	U-0	R/W-1	R/W-1	U-0	R/W-1		
	ANSA<7:5>			ANS	A<3:2>		ANSA0		
oit 7							bit		
egend:									
R = Readabl	e hit	W = Writable I	nit	II – Unimplei	mented bit, rea	d as '0'			
n = Value at		'1' = Bit is set	JIL	'0' = Bit is cle		x = Bit is unk	nown		
	TOR	i – Dit is set							
it 15-14	ANGA -15.1		log Eupotion	Soloction bito					
11 10-14	ANSA<15:14>: PORTA Analog Function Selection bits 1 = Pin is configured in Analog mode; I/O port read is disabled								
		nfigured in Digita							
oit 13-11		Unimplemented: Read as '0'							
oit 10-9	ANSA<10:9:	ANSA<10:9>: PORTA Analog Function Selection bits							
	1 = Pin is co	nfigured in Analo	og mode; I/O	port read is dis	abled				
	0 = Pin is co	nfigured in Digita	al mode; I/O p	port read is ena	bled				
oit 8	Unimpleme	nted: Read as '0)'						
oit 7-5	ANSA<7:5>	: PORTA Analog	Function Se	lection bits					
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled 								
		0		port read is ena	bled				
oit 4	•	nted: Read as '0							
oit 3-2		NSA<3:2>: PORTA Analog Function Selection bits = Pin is configured in Analog mode; I/O port read is disabled							
		nfigured in Analo							
pit 1		nted: Read as '0	•		bicu				
bit 0	-	RTA Analog Fun		on hit					
		nfigured in Analo			abled				
	0 = Pin is co	nfigured in Digita	al mode; I/O p	oort read is ena					

REGISTER 11-2: ANSB: PORTB ANALOG FUNCTION SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			ANS	B<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			ANS	B<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimplen	nented bit, read	d as '0'	

		0 – Unimplemented bit, read	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 ANSB<15:0>: PORTB Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled

0 = Pin is configured in Digital mode; I/O port read is enabled

REGISTER 11-3: ANSC: PORTC ANALOG FUNCTION SELECTION REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	_	—	_	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	U-0
—	—	—	ANSC<4:1> —				
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 15-5 Unimplemented: Read as '0'

bit 4-1 **ANSC<4:1>:** PORTC Analog Function Selection bits 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled

bit 0 Unimplemented: Read as '0'

Note 1: PORTC pins are not available on 64-pin devices.

REGISTER 11-4: ANSD: PORTD ANALOG FUNCTION SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			ANSE)<15:8> ⁽¹⁾			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			ANS	SD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 **ANSD<15:0>:** PORTD Analog Function Selection bits⁽¹⁾ 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled

Note 1: The ANSD<15:12> bits are not available on 64-pin devices.

REGISTER 11-5: ANSE: PORTE ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1
—	—	—	—	—	—	ANSE	<9:8> ⁽¹⁾
bit 15							bit 8

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | ANSE | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 ANSE<9:0>: PORTE Analog Function Selection bits⁽¹⁾

1 = Pin is configured in Analog mode; I/O port read is disabled

0 = Pin is configured in Digital mode; I/O port read is enabled

Note 1: The ANSE<9:8> bits are not available on 64-pin devices.

REGISTER 11-6: ANSF: PORTF ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	R/W-1	R/W-1	U-0	U-0	U-0	R/W-1
0-0			3:12> ⁽¹⁾	0-0	0-0	0-0	ANSF8 ⁽¹⁾
		ANGES	13.12	—	—		
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_			ANSF<	5:0> ⁽²⁾		
bit 7		-					bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplem	ented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown
bit 15-14	Unimplemer	nted: Read as ')'				
bit 13-12	ANSF<13:12	PORTF Anal	og Function Se	election bits ⁽¹⁾			
		nfigured in Anale					
bit 11-9	Unimplemer	nted: Read as ')'				
bit 8	ANSF8: POF	RTA Analog Fun	ction Selection	bit ⁽¹⁾			
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled 						
bit 7-6	Unimplemer	nted: Read as ')'				
bit 5-0	ANSF<5:0>:	PORTA Analog	Function Sele	ction bits ⁽²⁾			
	1 = Pin is co	nfigured in Anal	og mode; I/O p	ort read is disal			
Note 1: Th	e ANSF<13:12	2,8> bits are not	available on 6	4-pin devices.			

2: The ANSF2 bit is not available on PIC24FJXXXGB406 devices.

REGISTER 11-7: ANSG: PORTG ANALOG FUNCTION SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	R/W-1	R/W-1
	ANSG	<15:12>(1)		_	_	ANSC	G<9:8>
bit 15							bit 8
R/W-1	R/W-1 G<7:6>	U-0	U-0	U-0	U-0	R/W-1	R/W-1 <1:0>(1)
	5G<7:0>					ANSG	
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit				U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea		x = Bit is unkr	nown	
bit 15-12			-	Selection bits ⁽¹⁾			
		•	•	port read is disa port read is enab			
bit 11-10	Unimpleme	nted: Read as '	0'				
bit 9-6	ANSG<9:6>	: PORTG Analo	g Function Se	election bits			
				port read is disa oort read is enab			
bit 5-2	Unimpleme	nted: Read as '	0'				
bit 1-0	ANSG<1:0>	: PORTG Analo	g Function Se	election bits ⁽¹⁾			
		•	•	port read is disa port read is enab			

Note 1: The ANSG<15:12,1:0> bits are not available on 64-pin devices.

REGISTER 11-8: ANSH: PORTH ANALOG FUNCTION SELECTION REGISTER⁽¹⁾

11.0	11.0	11.0	11.0	11.0	11.0	11.0	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	_		—		—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	U-0
_		—	ANSH<4:1> —				
bit 7	-						bit C
Legend:							
R = Readable bit W = Writable bi		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 15-5	Unimplemented: Read as '0'
bit 4-1	ANSH<4:1>: PORTH Analog Function Selection bits
	1 = Pin is configured in Analog mode; I/O port read is disabled
	0 = Pin is configured in Digital mode; I/O port read is enabled
bit 0	Unimplemented: Read as '0'

Note 1: PORTH pins are not available on 64-pin and 100-pin devices.

11.3 Interrupt-on-Change (IOC)

The Interrupt-on-Change function of the I/O ports allows the PIC24FJ256GA412/GB412 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on any of the input port pins. This feature is capable of detecting input Change-of-States, even in Sleep mode when the clocks are disabled.

Interrupt-on-Change functionality is globally enabled by setting the IOCON bit in the PADCON register (Register 11-9). Functionality is then enabled for a particular pin by setting the IOCPx and/or IOCNx register bit for that pin. Setting a value of '1' in the IOCPx register enables interrupts for low-to-high transitions, while setting a value of '1' in the IOCNx register enables interrupts for high-to-low transitions. Setting a value of '1' in both register bits will enable interrupts for either case (e.g., a pulse on the pin will generate two interrupts).

When an interrupt request is generated for a pin, the corresponding status flag bit in the IOCFx register will be set, indicating that a Change-of-State occurred on that pin. The IOCFx register bit will remain set until cleared by writing a zero to it. When any IOCFx flag bit in a given port is set, the corresponding IOCPxF bit in the IOCSTAT register (Register 11-10) will also be set. This flag indicates that a change was detected on one of the bits on the given port. The IOCPxF flag will be cleared when all IOCFx

Multiple individual status flags can be cleared by writing a zero to one or more bits using a Read-Modify-Write operation. If another edge is detected on a pin whose status bit is being cleared during the Read-Modify-Write sequence, the associated change flag will still be set at the end of the Read-Modify-Write sequence. The user should use the instruction sequence (or equivalent) shown in Example 11-1 to clear the Interrupt-on-Change Status registers.

At the end of this sequence, the W0 register will contain a zero for each bit for which the port pin had a change detected. In this way, any indication of a pin changing will not be lost.

Due to the asynchronous and real-time nature of the Interrupt-on-Change, the value read on the port pins may not indicate the state of the port when the change was detected, as a second change can occur during the interval between clearing the flag and reading the port. It is up to the user code to handle this case if it is a possibility in their application. To keep this interval to a minimum, it is recommended that any code modifying the IOCFx registers be run either in the interrupt handler or with interrupts disabled.

11.3.1 PULL-UPS AND PULL-DOWNS

Each IOC pin has both a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source connected to the pin, while the pull-downs act as a current sink connected to the pin. These eliminate the need for external resistors when push button or keypad devices are connected.

The pull-ups and pull-downs are separately enabled using the IOCPUx registers (for pull-ups) and the IOCPDx registers (for pull-downs). Each IOC pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.

Note: Pull-ups and pull-downs on pins should always be disabled whenever the pin is configured as a digital output.

EXAMPLE 11-1: IOC STATUS READ/CLEAR IN ASSEMBLY

MOV	OxFFFF, WO	; Initial mask value 0xFFFF -> W0	
XOR	IOCFx, W0	; W0 has '1' for each bit set in IOCFx	
AND	IOCFx	; IOCFx & WO ->IOCFx	

EXAMPLE 11-2: PORT READ/WRITE IN ASSEMBLY

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	W0, TRISB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

EXAMPLE 11-3: PORT READ/WRITE IN 'C'

TRISB = 0xFF00;	// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
Nop();	// Delay 1 cycle
<pre>If (PORTBbits.RB13){ };</pre>	// Next Instruction

REGISTER 11-9: PADCON: PORT CONFIGURATION REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
IOCON	—	—	—	—	—	—	—
bit 15		•		•		•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	—	—	—	_	PMPTTL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set	Bit is set '0' = Bit is cleared x = Bit is unknown			nown	

bit 15 **IOCON:** Interrupt-on-Change Enable bit

- 1 = Interrupt-on-Change functionality is enabled
- 0 = Interrupt-on-Change functionality is disabled

bit 14-1 Unimplemented: Read as '0'

bit 0 **PMPTTL:** EPMP Module TTL Input Buffer Select bit (unused by the GPIO module) Not used by IOC; see Register 21-9 for definition.

REGISTER 11-10: IOCSTAT: INTERRUPT-ON-CHANGE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC			
_		_					IOCPJF ⁽¹⁾			
bit 15							bit 8			
R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC			
IOCPHF ⁽¹⁾	IOCPGF	IOCPFF	IOCPEF	IOCPDF	IOCPCF	IOCPBF	IOCPAF ⁽²⁾			
bit 7			•				bit 0			
Legend:		HSC = Hardw	are Settable/C	learable bit						
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-9	Unimplemer	nted: Read as '	כ'							
bit 8	IOCPJF: Inte	errupt-on-Chang	e PORTJ Flag	bit ⁽¹⁾						
		e was detected								
		ge was detected			etected change	es				
bit 7		errupt-on-Chang		0						
		e was detected				20				
hit C	_	ge was detected			elected change	-5				
bit 6		errupt-on-Chan		•	PTC					
	 1 = A change was detected on an IOC-enabled pin on PORTG 0 = No change was detected or the user has cleared all detected changes 									
bit 5					5					
	IOCPFF: Interrupt-on-Change PORTF Flag bit 1 = A change was detected on an IOC-enabled pin on PORTF									
	0 = No change was detected or the user has cleared all detected changes									
bit 4	IOCPEF: Inte	errupt-on-Chang	ge PORTE Flag	g bit						
	1 = A change was detected on an IOC-enabled pin on PORTE									
	0 = No change was detected or the user has cleared all detected changes									
bit 3		errupt-on-Chang	-	•						
	 1 = A change was detected on an IOC-enabled pin on PORTD 0 = No change was detected or the user has cleared all detected changes 									
bit 2	-	errupt-on-Chang			elected change	-5				
		e was detected		-	RTC					
		ge was detected				es				
bit 1	IOCPBF: Interrupt-on-Change PORTB Flag bit									
	1 = A change was detected on an IOC-enabled pin on PORTB									
	0 = No chang	ge was detected	I or the user ha	as cleared all de	etected change	es				
bit 0	IOCPAF: Inte	errupt-on-Chang	e PORTA Flag	g bit ⁽²⁾						
	•	e was detected		•						
	0 = No chang	ge was detected	I, or the user h	as cleared all d	letected chang	e				
Note 1: Th	nese ports are i	not available on	64-pin or 100-	pin devices.						

- **Note 1:** These ports are not available on 64-pin or 100-pin devices.
 - **2:** This port is not available on 64-pin devices.

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ256GA412/GB412 family devices support a larger number of remappable input only pins than remappable input/output pins. In this device family, there are up to 32 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered: RP0 through RP31. See Table 1-4 and Table 1-5 for a summary of pinout options in each package offering.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals.

PPS is not available for analog peripherals or these digital peripherals:

- I²C[™] (input and output)
- RTCC Alarm and Power Gate Outputs
- EPMP Signals (input and output)
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

11.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., output compare, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pin-selectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

11.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers (Register 11-11 through Register 11-30) are used to configure peripheral input mapping. Each register contains two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral.

Table 11-2 summarizes the remappable inputs available with Peripheral Pin Select. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

Note: Unless otherwise noted, all remappable inputs utilize Schmitt Trigger buffers.

TABLE 11-2: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Input Name	Function Name	Register	Function Mapping Bits
CCP Clock Input A	TCKIA	RPINR12<5:0>	TCKIAR<5:0>
CCP Clock Input B	TCKIB	RPINR12<13:8>	TCKIBR<5:0>
CLC Input A	CLCINA	RPINR25<5:0>	CLCINAR<5:0>
CLC Input B	CLCINB	RPINR25<13:8>	CLCINBR<5:0>
External Interrupt 1	INT1	RPINR0<13:8>	INT1R<5:0>
External Interrupt 2	INT2	RPINR1<5:0>	INT2R<5:0>
External Interrupt 3	INT3	RPINR1<13:8>	INT3R<5:0>
External Interrupt 4	INT4	RPINR2<5:0>	INT4R<5:0>
Generic Timer External input	TMRCK	RPINR23<13:8>	TXCKR<5:0>
Input Capture 1	IC1	RPINR7<5:0>	IC1R<5:0>
Input Capture 2	IC2	RPINR7<13:8>	IC2R<5:0>
Input Capture 3	IC3	RPINR8<5:0>	IC3R<5:0>
Output Compare Fault A	OCFA	RPINR11<5:0>	OCFAR<5:0>
Output Compare Fault B	OCFB	RPINR11<13:8>	OCFBR<5:0>
Output Compare Trigger 1	OCTRIG1	RPINR0<5:0>	OCTRIG1R<5:0>
Output Compare Trigger 1	OCTRIG2	RPINR2<13:8>	OCTRIG2R<5:0>
SPI1 Clock Input	SCK1IN	RPINR20<13:8>	SCK1R<5:0>
SPI1 Data Input	SDI1	RPINR20<5:0>	SDI1R<5:0>
SPI1 Slave Select	SS1IN	RPINR21<5:0>	SS1R<5:0>
SPI2 Clock Input	SCK2IN	RPINR22<13:8>	SCK2R<5:0>
SPI2 Data Input	SDI2	RPINR22<5:0>	SDI2R<5:0>
SPI2 Slave Select	SS2IN	RPINR23<5:0>	SS2R<5:0>
SPI3 Clock Input	SCK3IN	RPINR28<13:8>	SCK3R<5:0>
SPI3 Data Input	SDI3	RPINR28<5:0>	SDI3R<5:0>
SPI3 Slave Select	SS3IN	RPINR29<5:0>	SS3R<5:0>
Timer 2 External Clock	T2CK	RPINR3<5:0>	T2CKR<5:0>
Timer 3 External Clock	T3CK	RPINR3<13:8>	T3CKR<5:0>
Timer 4 External Clock	T4CK	RPINR4<5:0>	T4CKR<5:0>
Timer 5 External Clock	T5CK	RPINR4<13:8>	T5CKR<5:0>
UART1 Clear-to-Send	U1CTS	RPINR18<13:8>	U1CTSR<5:0>
UART1 Receive	U1RX	RPINR18<5:0>	U1RXR<5:0>
UART2 Clear-to-Send	U2CTS	RPINR19<13:8>	U2CTSR<5:0>
UART2 Receive	U2RX	RPINR19<5:0>	U2RXR<5:0>
UART3 Clear-to-Send	U3CTS	RPINR21<13:8>	U3CTSR<5:0>
UART3 Receive	U3RX	RPINR17<13:8>	U3RXR<5:0>
UART4 Clear-to-Send	U4CTS	RPINR27<13:8>	U4CTSR<5:0>
UART4 Receive	U4RX	RPINR27<5:0>	U4RXR<5:0>

11.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 11-31 through Register 11-46). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TARIE 11-2.	SELECTABLE OUTPUT SOURCES	
IADLE II-J.	SELECTABLE OUTPUT SOURCES	

Output Function Number ⁽¹⁾	Function	Output Name
0	NULL ⁽²⁾	Null
1	C1OUT	Comparator 1 Output
2	C2OUT	Comparator 2 Output
3	U1TX	UART1 Transmit
4	U1RTS ⁽³⁾	UART1 Request-to-Send
5	U2TX	UART2 Transmit
6	U2RTS ⁽³⁾	UART2 Request-to-Send
7	SDO1	SPI1 Data Output
8	SCK1OUT	SPI1 Clock Output
9	SS1OUT	SPI1 Slave Select Output
10	SDO2	SPI2 Data Output
11	SCK2OUT	SPI2 Clock Output
12	SS2OUT	SPI2 Slave Select Output
13	OC1	Output Compare 1
14	OC2	Output Compare 2
15	OC3	Output Compare 3
16	OCM4	SCCP Output Compare 4
17	OCM5	SCCP Output Compare 5
18	OCM6	SCCP Output Compare 6
19	U3TX	UART3 Transmit
20	U3RTS	UART3 Request-to-Send
21	U4TX	UART4 Transmit
22	U4RTS ⁽³⁾	UART4 Request-to-Send
23	SDO3	SPI3 Data Output
24	SCK3OUT	SPI3 Clock Output
25	SS3OUT	SPI3 Slave Select Output
26	C3OUT	Comparator 3 Output
27	OCM7	SCCP Output Compare 7
28	REFO ⁽⁴⁾	Reference Clock Output
29	CLC1OUT	CLC1 Output
30	CLC2OUT	CLC2 Output

Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.

2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.

3: IrDA[®] BCLK functionality uses this output.

4: Map to RP29 (RB15) to maintain the high output driver found in previous PIC24F devices.

11.4.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lockouts. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

11.4.3.4 Mapping Exceptions for PIC24FJ256GA412/GB412 Family Devices

Although the PPS registers theoretically allow for up to 44 remappable I/O pins, not all of these are implemented in all devices. For PIC24FJ256GA412/GB412 family devices, the maximum number of remappable pins available is 44, which includes 12 input only pins. The differences in available remappable pins are summarized in Table 11-4.

When developing applications that use remappable pins, users should also keep these things in mind:

- For the RPINRx registers, bit combinations corresponding to an unimplemented pin for a particular device are treated as invalid; the corresponding module will not have an input mapped to it.
- For RPORx registers, the bit fields corresponding to an unimplemented pin will also be unimplemented; writing to these fields will have no effect.

11.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- Continuous state monitoring
- Configuration bit remapping lock

11.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

11.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

11.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

TABLE 11-4: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ256GA412/GB412 FAMILY DEVICES

Device		RP Pins (I/O)	RPI Pins		
Device	Total	Unimplemented	Total	Unimplemented	
PIC24FJXXXGA406	29	RP5, RP15, RP31	1	RPI32-36, RPI38-43	
PIC24FJXXXGB406	28	RP4, RP12, RP30, RP31	1	RPI32-36, RPI38-43	

11.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss, and all Peripheral Pin Select outputs are disconnected.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following a device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

Example 11-4 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 11-4: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

sters		
("MOV	#OSCCON, w1	∖n"
"MOV	#0x46, w2	∖n"
"MOV	#0x57, w3	∖n"
"MOV.b	w2, [w1]	\n"
"MOV.b	w3, [w1]	∖n"
"BCLR	OSCCON, #6");	
XC16 bui	lt-in macro:	
rite_OSC	CONL(OSCCON &	0xbf);
nput Fun	ctions (Table 1	1-2)
-		,
s.UlRXR =	= 0;	
J1CTS To	Pin RP1	
s.U1CTSR	= 1;	
utput Fu	nctions (Table	11-3)
JITX TO H	Pin RP2	
RP2R = 3	;	
JIRTS TO	Pin RP3	
RP3R = 4	;	
		\n"
"BSET	OSCCON, #6");	
	,,	
XC16 bui	lt-in macro: CONL(OSCCON	0.40.).
	("MOV "MOV "MOV.b "MOV.b "BCLR XC16 bui rite_OSC nput Fun JIRX TO I s.UIRXR = JICTS TO s.UICTSR utput Fun JICTS TO S.UICTSR UTPUT FUN JITX TO I RP2R = 3 JIRTS TO RP3R = 4 ers ("MOV "MOV "MOV.b "MOV.b	<pre>("MOV #OSCCON, w1 "MOV #Ox46, w2 "MOV #0x57, w3 "MOV.b w2, [w1] "MOV.b w3, [w1] "BCLR OSCCON, #6"); XC16 built-in macro: rite_OSCCONL(OSCCON & nput Functions (Table 1' JIRX TO Pin RP0 s.U1RXR = 0; JICTS TO Pin RP1 s.U1CTSR = 1; utput Functions (Table JITX TO Pin RP2 RP2R = 3; JIRTS TO Pin RP3 RP3R = 4;</pre>

11.4.6 PERIPHERAL PIN SELECT REGISTERS

The PIC24FJ256GA412/GB412 family of devices implements a total of 36 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (20)
- Output Remappable Peripheral Registers (16)

Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 11.4.4.1 "Control Register Lock" for a specific command sequence.

REGISTER 11-11: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCTRIG1R5	OCTRIG1R4	OCTRIG1R3	OCTRIG1R2	OCTRIG1R1	OCTRIG1R0
bit 7							bit 0

Legend:			
R = Readable bit W = Writable bit		U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	INT1R<5:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	OCTRIG1R<5:0>: Assign Output Compare Trigger 1 (OCTRIG1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-12: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
bit 7							bit 0

Legend:						
R = Readable bit		W = Writable bit	W = Writable bit U = Unimplemented bit, rea			
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		
bit 15-14	Unimplemented: Read as '0'					
bit 13-8	bit 13-8 INT3R<5:0>: Assign External Interrupt 3 (INT3) to Corresponding RPn or RPIn Pin bits					

bit 7-6 Unimplemented: Read as '0'

bit 5-0 INT2R<5:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCTRIG2R5	OCTRIG2R4	OCTRIG2R3	OCTRIG2R2	OCTRIG2R1	OCTRIG2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	OCTRIG2R<5:0>: Assign Output Compare Trigger 2 (OCTRIG2) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	INT4R<5:0>: Assign External Interrupt 4 (INT4) to Corresponding RPn or RPIn Pin bits

REGISTER 11-14: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 T3CKR<5:0>: Assign Timer3 Clock Input (T3CK) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 T2CKR<5:0>: Assign Timer2 Clock Input (T2CK) to Corresponding RPn or RPIn Pin bits

Legend: R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, read	as '0'		
bit 7							bit 0
_		T4CKR5	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
							511.0
bit 15			•	•			bit 8
—	_	T5CKR5	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

'0' = Bit is cleared

x = Bit is unknown

REGISTER 11-15: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

bit 15-14	Unimplemented: Read as '0'
bit 13-8	T5CKR<5:0>: Assign Timer5 Clock Input (T5CK) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	T4CKR<5:0>: Assign Timer4 Clock Input (T4CK) to Corresponding RPn or RPIn Pin bits

REGISTER 11-16: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

'1' = Bit is set

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC2R<5:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC1R<5:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits

-n = Value at POR

REGISTER 11-17: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—		—	—	
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 **Unimplemented:** Read as '0'

bit 5-0 IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

REGISTER 11-18: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 OCFBR<5:0>: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	TCKIBR5	TCKIBR4	TCKIBR3	TCKIBR2	TCKIBR1	TCKIBR0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	TCKIAR5	TCKIAR4	TCKIAR3	TCKIAR2	TCKIAR1	TCKIAR0
bit 7		•	•	•			bit 0
Legend:							

REGISTER 11-19: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	TCKIBR<5:0>: Assign CCP External Clock Input B (TCKIB) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	TCKIAR<5:0>: Assign CCP External Clock Input A (TCKIA) to Corresponding RPn or RPIn Pin bits

REGISTER 11-20: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3RXR<5:0>: Assign UART3 Receive (U3RX) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-21:	RPINR18: PERIPHERAL PIN SE	LECT INPUT REGISTER 18

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U1CTSR<5:0>: Assign UART1 Clear-to-Send (U1CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U1RXR<5:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits

REGISTER 11-22: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U2CTSR<5:0>: Assign UART2 Clear-to-Send (U2CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U2RXR<5:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown	

REGISTER 11-23: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-24: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3CTSR<5:0>: Assign UART3 Clear-to-Send (U3CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

REGISTER 11-25: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

I e	del	۰hd
Le	gei	ia:

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 11-26: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	TXCKR5	TXCKR4	TXCKR3	TXCKR2	TXCKR1	TXCKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 TXCKR<5:0>: Assign General Timer External Input (TMRCK) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

REGISTER 11-27: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	CLCINBR5	CLCINBR4	CLCINBR3	CLCINBR2	CLCINBR1	CLCINBR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13-8	CLCINBR<5:0>: Assign CLC External Input B (CLCINB) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	CLCINAR<5:0>: Assign CLC External Input A (CLCINA) to Corresponding RPn or RPIn Pin bits

REGISTER 11-28: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U4CTSR<5:0>: Assign UART4 Clear-to-Send Input (U4CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U4RXR<5:0>: Assign UART4 Receive Input (U4RX) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0
bit 15							bit 8
11.0	11.0						

REGISTER 11-29: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK3R<5:0>: Assign SPI3 Clock Input (SCK3IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI3R<5:0>: Assign SPI3 Data Input (SDI3) to Corresponding RPn or RPIn Pin bits

REGISTER 11-30: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS3R<5:0>: Assign SPI3 Slave Select Input (SS3IN) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x		x = Bit is unknown	
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13-8	RP1R<5:0>:	RP1 Output Pir	n Mapping bits	i			
	Peripheral Ou	Itput Number n	is assigned to	pin, RP1 (see	Table 11-3 for	peripheral func	tion numbers).

REGISTER 11-31: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

bit 5-0	RP0R<5:0>: RP0 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP0 (see Table 11-3 for peripheral function numbers).

REGISTER 11-32: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	read as '0'		
Legend:								
bit 7	•		•				bit	
_		RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
bit 15							bit	
—	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

Unimplemented: Read as '0'

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-3 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP2 (see Table 11-3 for peripheral function numbers).

bit 7-6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP4R5 ⁽¹⁾	RP4R4 ⁽¹⁾	RP4R3 ⁽¹⁾	RP4R2 ⁽¹⁾	RP4R1 ⁽¹⁾	RP4R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP5R<5:0>: RP5 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP5 (see Table 11-3 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP4R<5:0>: RP4 Output Pin Mapping bits ⁽¹⁾
	Peripheral Output Number n is assigned to pin, RP4 (see Table 11-3 for peripheral function numbers).

Note 1: RP4 and its associated bits are not available in 64-pin devices.

REGISTER 11-34: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0
bit 7							bit 0

bit /

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP7R<5:0>: RP7 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP7 (see Table 11-3 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP6R<5:0>:** RP6 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP6 (see Table 11-3 for peripheral function numbers).

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkn		nown	
bit 15-14	Unimplemen	ted: Read as 'd)'				
bit 13-8	RP9R<5:0>:	RP9 Output Pir	n Mapping bits				
	Peripheral Ou	tput Number n	is assigned to	pin, RP9 (see	Table 11-3 for	peripheral func	tion numbers).

REGISTER 11-35: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit 5-0	RP8R<5:0>: RP8 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP8 (see Table 11-3 for peripheral function numbers).

REGISTER 11-36: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	R/W-0		D AAA A				
00	R/W-U	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	
						bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	
						bit 0	
R = Readable bit W = Writable b		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
	it	U-0 R/W-0 — RP10R5 it W = Writable B	U-0 R/W-0 R/W-0 — RP10R5 RP10R4 it W = Writable bit	U-0 R/W-0 R/W-0 — RP10R5 RP10R4 RP10R3 it W = Writable bit U = Unimplem	U-0 R/W-0 R/W-0 R/W-0 — RP10R5 RP10R4 RP10R3 RP10R2 it W = Writable bit U = Unimplemented bit, read	U-0 R/W-0 R/W-0 R/W-0 R/W-0 — RP10R5 RP10R4 RP10R3 RP10R2 RP10R1 it W = Writable bit U = Unimplemented bit, read as '0'	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R<5:0>:** RP11 Output Pin Mapping bits

Unimplemented: Read as '0'

Peripheral Output Number n is assigned to pin, RP11 (see Table 11-3 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP10R<5:0>:** RP10 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP10 (see Table 11-3 for peripheral function numbers).

bit 7-6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP13R<5:0>: RP13 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP13 (see Table 11-3 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP12R<5:0>: RP12 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP12 (see Table 11-3 for peripheral function numbers).

REGISTER 11-38: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP15R<5:0>:** RP15 Output Pin Mapping bits⁽¹⁾

Peripheral Output Number n is assigned to pin, RP15 (see Table 11-3 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP14R<5:0>:** RP14 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP14 (see Table 11-3 for peripheral function numbers).

Note 1: RP15 and its associated bits are not available on 64-pin devices.

bit 15 bit U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — RP16R5 RP16R4 RP16R3 RP16R2 RP16R1 RP16R0									
bit 15 bit U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — — RP16R5 RP16R4 RP16R3 RP16R2 RP16R1 RP16R0 bit 7	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
U-0U-0R/W-0R/W-0R/W-0R/W-0RP16R5RP16R4RP16R3RP16R2RP16R1RP16R0bit 7bitLegend: R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'Set'0' = Bit is clearedx = Bit is unknownbit 15-14Unimplemented: Read as '0'	—	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0	
- RP16R5 RP16R4 RP16R3 RP16R2 RP16R1 RP16R0 bit 7 bit bit bit bit bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0'	bit 15							bit 8	
- RP16R5 RP16R4 RP16R3 RP16R2 RP16R1 RP16R0 bit 7 bit bit bit bit bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0'									
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0'	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0'	—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0'	bit 7							bit 0	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0'									
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0'	Legend:								
bit 15-14 Unimplemented: Read as '0'	R = Readabl	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'		
	-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unknown		
-									
bit 13-8 RP17R<5:0>: RP17 Output Pin Mapping bits	bit 15-14	Unimplemen	ted: Read as 'd)'					
	bit 13-8 RP17R<5:0>: RP17 Output Pin Mapping bits								

REGISTER 11-39: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP16R<5:0>: RP16 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP16 (see Table 11-3 for peripheral function numbers).

Peripheral Output Number n is assigned to pin, RP17 (see Table 11-3 for peripheral function numbers).

REGISTER 11-40: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x =		x = Bit is unkr	= Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-3 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP18R<5:0>: RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-3 for peripheral function numbers).

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 11-41: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'				
1.11.1.0.0					

bit 7

- bit 13-8**RP21R<5:0>:** RP21 Output Pin Mapping bits
Peripheral Output Number n is assigned to pin, RP21 (see Table 11-3 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'
- bit 5-0 **RP20R<5:0>:** RP20 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP20 (see Table 11-3 for peripheral function numbers).

REGISTER 11-42: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
bit 7							bit 0
Legend:							

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP23R<5:0>:** RP23 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP23 (see Table 11-3 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP22R<5:0>:** RP22 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP22 (see Table 11-3 for peripheral function numbers).

bit 0

bit 15-14	Unimplemen	ted: Read as '0)'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7							bit 0	
—	_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
bit 15							bit 8	
		RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

REGISTER 11-43: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

bit 13-8	RP25R<5:0>: RP25 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP25 (see Table 11-3 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP24R<5:0>: RP24 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP24 (see Table 11-3 for peripheral function numbers).

REGISTER 11-44: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

Legend: R = Readable bit W = Writable bit		II = I Inimplem	nented bit, read	as 'O'			
bit 7							bit 0
_		RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
—	_	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP27R<5:0>:** RP27 Output Pin Mapping bits

'1' = Bit is set

Peripheral Output Number n is assigned to pin, RP27 (see Table 11-3 for peripheral function numbers).

'0' = Bit is cleared

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP26R<5:0>:** RP26 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP26 (see Table 11-3 for peripheral function numbers).

-n = Value at POR

x = Bit is unknown

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0

REGISTER 11-45: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP29R<5:0>: RP29 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP29 (see Table 11-3 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP28R<5:0>: RP28 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP28 (see Table 11-3 for peripheral function numbers).

REGISTER 11-46: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP31R5 ⁽¹⁾	RP31R4 ⁽¹⁾	RP31R3 ⁽¹⁾	RP31R2 ⁽¹⁾	RP31R1 ⁽¹⁾	RP31R0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP31R<5:0>:** RP31 Output Pin Mapping bits⁽¹⁾

Peripheral Output Number n is assigned to pin, RP31 (see Table 11-3 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP30R<5:0>:** RP30 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP30 (see Table 11-3 for peripheral function numbers).

Note 1: RP31 and its associated bits are not available on 64-pin devices.

NOTES:

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704). The information in this data sheet supersedes the information in the FRM.

The Timer1 module is a 16-bit timer, which serves as a free-running, interval timer/counter. It can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during CPU Idle and Sleep Modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 shows a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS, TECS<1:0> and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

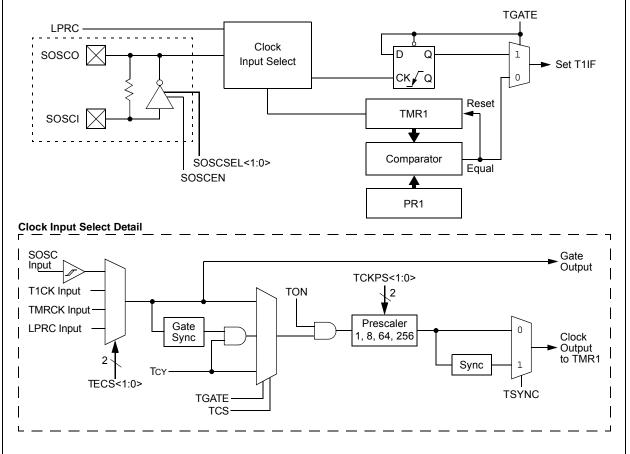


FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0		
TON		TSIDL	—	_		TECS1	TECS0		
bit 15							bit		
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0		
	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS			
bit 7							bit		
Legend:									
R = Readab	le bit	W = Writable	bit U = Unimplemented bit, read as '0'						
-n = Value a	t POR	'1' = Bit is set '0' = Bit is cleared x = Bit				x = Bit is unkr	nown		
bit 15	TON: Timer1	On hit							
	1 = Starts 16 0 = Stops 16	-bit Timer1							
bit 14	Unimplemer	nted: Read as ')'						
bit 13	TSIDL: Timer1 Stop in Idle Mode bit								
		nues module opera			lle mode				
bit 12-10	0 = Continues module operation in Idle mode Unimplemented: Read as '0'								
bit 9-8	TECS<1:0>: Timer1 Extended Clock Source Select bits (selected when TCS = 1)								
	10 = LPRC (Timer (TMRCK Dscillator external clock inp		t ⁽²⁾					
	These bits are ignored; the timer is clocked from the internal system clock (FOSC/2).								
bit 7	Unimplemer	nted: Read as ')'						
bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit									
	<u>When TCS = 1:</u> This bit is ignored.								
	When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled								
bit 5-4		>: Timer1 Input		Select bits					
	Unimplemented: Read as '0'								

2: The TMRCK input must also be assigned to an available RPn or RPIn pin. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 2 **TSYNC:** Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = Synchronizes external clock input}$ 0 = Does not synchronize external clock input $\frac{When TCS = 0:}{This bit is ignored.}$
- bit 1 **TCS:** Timer1 Clock Source Select bit 1 = Extended clock selected by the TECS<1:0> bits 0 = Internal clock (Fosc/2)
- bit 0 Unimplemented: Read as '0'
- **Note 1:** Changing the value of T1CON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
 - 2: The TMRCK input must also be assigned to an available RPn or RPIn pin. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

NOTES:

13.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

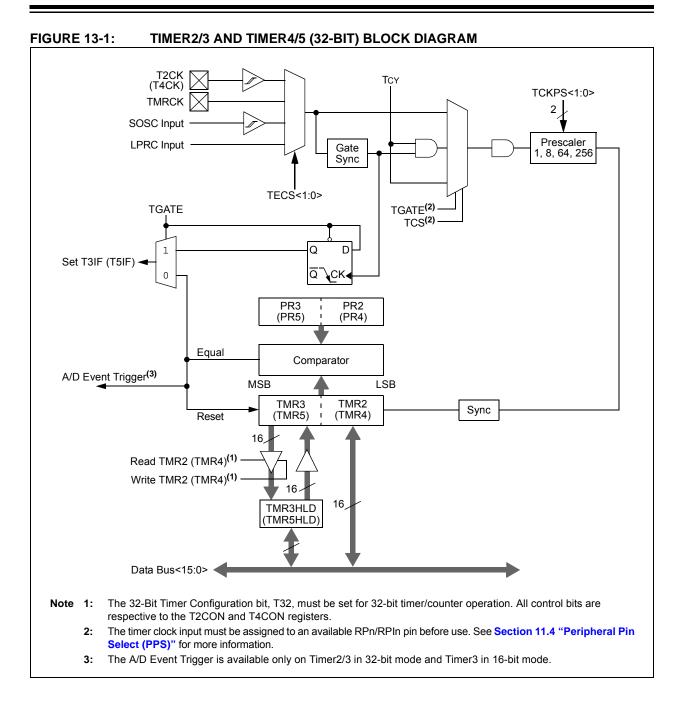
- Two Independent 16-Bit Timers with all 16-Bit Operating Modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

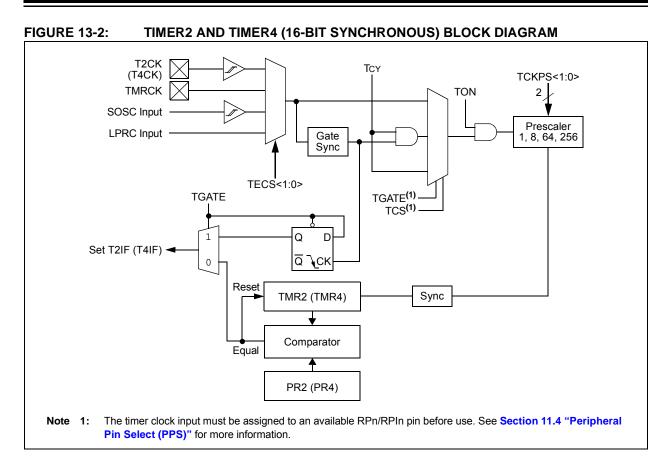
They also support these features:

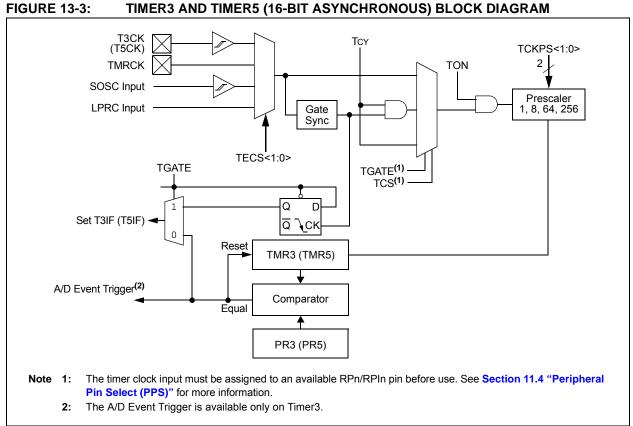
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep Modes
- Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger (only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D Event Trigger. This trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1; T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer5 are the most significant word of the 32-bit timers.


Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 or Timer5 interrupt flags. To configure Timer2/3 or Timer4/5 for 32-bit operation:


- 1. Set the T32 or T45 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word (msw) of the value, while PR2 (or PR4) contains the least significant word (lsw).
- 5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).


The timer value, at any point, is stored in the register pair, TMR<3:2> (or TMR<5:4>). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON (TxCON<15> = 1) bit.

REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER ⁽¹⁾										
R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
TON		TSIDL		_	—	TECS1 ⁽²⁾	TECS0 ⁽²⁾			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
	TGATE	TCKPS1	TCKPS0	T32 ⁽³⁾		TCS ⁽²⁾	_			
bit 7			1				bit (
Legend:										
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	TON: Timerx When TxCOI 1 = Starts 32 0 = Stops 32 When TxCOI 1 = Starts 16 0 = Stops 16	<u>N<3> = 1:</u> -bit Timerx/y -bit Timerx/y <u>N<3> = 0:</u> -bit Timerx								
bit 14	Unimplemer	nted: Read as '	0'							
bit 13	TSIDL: Time	TSIDL: Timerx Stop in Idle Mode bit								
	1 = Discontir	ues module op s module opera	eration when de		lle mode					
bit 12-10		nted: Read as '								
bit 9-8	<u>When TCS =</u> 11 = Generic 10 = LPRC 0 01 = TxCK e 00 = SOSC <u>When TCS =</u>	Timer (TMRC) Dscillator xternal clock in	<) external inpu out	t						
bit 7	Unimplemer	nted: Read as '	0'							
bit 6	When TCS = This bit is igr When TCS = 1 = Gated tin 0 = Gated tin	iored. <u>0:</u> ne accumulation ne accumulation	n is enabled n is disabled							
bit 5-4	TCKPS<1:0: 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1	 Timerx Input 	Clock Prescale	Select bits						
Note 1:	Changing the val reset and is not r		hile the timer is	s running (TON	V = 1) causes	the timer presca	le counter to			
2: 3:	If TCS = 1 and T to an available R In T4CON, the T T5CON control b	Pn/RPIn pin. Fo 45 bit is implem	or more informa ented instead o	ition, see <mark>Sect</mark> f T32 to select	tion 11.4 "Pe	ripheral Pin Sel	ect (PPS)"			

REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3 **T32:** 32-Bit Timer Mode Select bit⁽³⁾
 - 1 = Timerx and Timery form a single 32-bit timer
 - 0 = Timerx and Timery act as two 16-bit timers
 - In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timerx Clock Source Select bit⁽²⁾
 - 1 = Timer source is selected by TECS<1:0>0 = Internal clock (Fosc/2)
- bit 0 Unimplemented: Read as '0'
- **Note 1:** Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
 - 2: If TCS = 1 and TECS<1:0> = x1, the selected external timer input (TMRCK or TxCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - **3:** In T4CON, the T45 bit is implemented instead of T32 to select 32-bit mode. In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
TON ⁽²⁾	—	TSIDL ⁽²⁾	—		_	TECS1 ^(2,3)	TECS0 ^(2,3)			
bit 15							bita			
	D 444 0	DAALO	DAMA			5444.0				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0			
	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	—		TCS ^(2,3)	—			
bit 7							bit			
Legend:										
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15	TON: Timery	On hit(2)								
DIL 15	1 = Starts 16-									
	0 = Stops 16-									
bit 14	•	ted: Read as ')'							
bit 13	TSIDL: Timer	y Stop in Idle M	lode bit ⁽²⁾							
	1 = Discontin	ues module ope	eration when d	evice enters Id	le mode					
	0 = Continues	s module opera	tion in Idle mo	de						
bit 12-10	-	ted: Read as '								
bit 9-8		TECS<1:0>: Timery Extended Clock Source Select bits (selected when TCS = 1) ^(2,3)								
		11 = Generic Timer (TMRCK) external input 10 = LPRC Oscillator								
		01 = TxCK external clock input								
	00 = SOSC									
bit 7	Unimplemented: Read as '0'									
bit 6	TGATE: Time	TGATE: Timery Gated Time Accumulation Enable bit ⁽²⁾								
	When TCS =									
	This bit is igno									
	<u>When TCS =</u> 1 = Gated tin	<u>0:</u> ne accumulatio	n is enabled							
		ne accumulation								
bit 5-4	TCKPS<1:0>	: Timery Input (Clock Prescale	Select bits ⁽²⁾						
	11 = 1:256									
	10 = 1:64									
	01 = 1:8 00 = 1:1									
bit 3-2		ted: Read as 'd)'							
bit 1	-	Clock Source S								
	•	clock from pin,		sina edae)						
	0 = Internal cl			8 8 /						
bit 0	Unimplemen	ted: Read as ')'							
Note 1:		Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.								
2:	When 32-bit oper operation; all time	er functions are	set through T2	2CON and T4C	ON.					
3:	If TCS = 1 and TE available RPn/RP									

REGISTER 13-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽¹⁾

14.0 CAPTURE/COMPARE/PWM/ TIMER MODULES (MCCP AND SCCP)

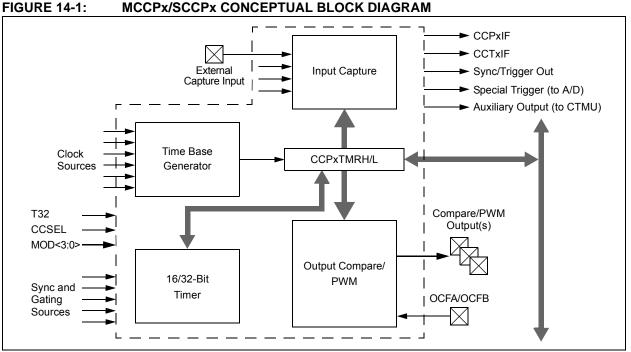
Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information on the
	MCCP/SCCP modules, refer to the
	"dsPIC33/PIC24 Family Reference
	Manual", "Capture/Compare/PWM/Timer
	(MCCP and SCCP)" (DS33035).

PIC24FJ256GA412/GB412 family devices include several Capture/Compare/PWM/Timer base modules, which provide the functionality of three different peripherals of earlier PIC24F devices. The module can operate in one of three major modes:

- · General Purpose Timer
- Input Capture
- Output Compare/PWM

The module is provided in two different forms, distinguished by the number of PWM outputs that the module can generate. Single output modules (SCCPs) provide only one PWM output. Multiple output modules (MCCPs) can provide up to six outputs and an extended range of power control features, depending on the pin count of the particular device. All other features of the modules are identical.

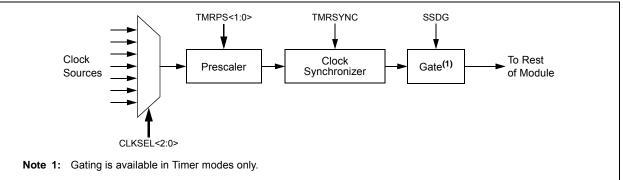
The SCCP and MCCP modules can be operated only in one of the three major modes at any time. The other modes are not available unless the module is reconfigured for the new mode.


A conceptual block diagram for the module is shown in Figure 14-1. All three modes share a time base generator and a common Timer register pair (CCPxTMRH/L); other shared hardware components are added as a particular mode requires.

Each module has a total of seven control and status registers:

- CCPxCON1L (Register 14-1)
- CCPxCON1H (Register 14-2)
- CCPxCON2L (Register 14-3)
- CCPxCON2H (Register 14-4)
- CCPxCON3L (Register 14-5)
- CCPxCON3H (Register 14-6)
- CCPxSTATL (Register 14-7)

Each module also includes eight buffer/counter registers that serve as Timer Value registers or data holding buffers:


- CCPxTMRH/CCPxTMRL (CCPx Timer High/Low Counters)
- CCPxPRH/CCPxPRL (CCPx Timer Period High/Low)
- CCPxRAH/CCPxRAL (CCPx Primary Output Compare Data High/Low Buffers)
- CCPxRBH/CCPxRBL (CCPx Secondary Output Compare Data High/Low Buffers)
- CCPxBUFH/CCPxBUFL (CCPx Input Capture High/Low Buffers)

14.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base, using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 14-2.

FIGURE 14-2: TIMER CLOCK GENERATOR

14.2 General Purpose Timer

Timer mode is selected when CCSEL = 0 and MOD<3:0> = 0000. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 14-1).

T32 (CCPxCON1L<5>)	Operating Mode
0	Dual Timer Mode (16-bit)
1	Timer Mode (32-bit)

Dual 16-Bit Timer mode provides a simple timer function with two independent 16-bit timer/counters. The primary timer uses CCPxTMRL and CCPxPRL. Only the primary timer can interact with other modules on the device. It generates the MCCPx sync out signals for use by other MCCP modules. It can also use the SYNC<4:0> bits signal generated by other modules.

The secondary timer uses CCPxTMRH and CCPxPRH. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an output sync/trigger signal like the primary time base. In Dual Timer mode, the CCPx Secondary Timer Period register, CCPxPRH, generates the MCCP compare event (CCPxIF) used by many other modules on the device.

The 32-Bit Timer mode uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments by one. This mode provides a simple timer function when it is important to track long time periods. Note that the T32 bit (CCPxCON1L<5>) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

14.2.1 SYNC AND TRIGGER OPERATION

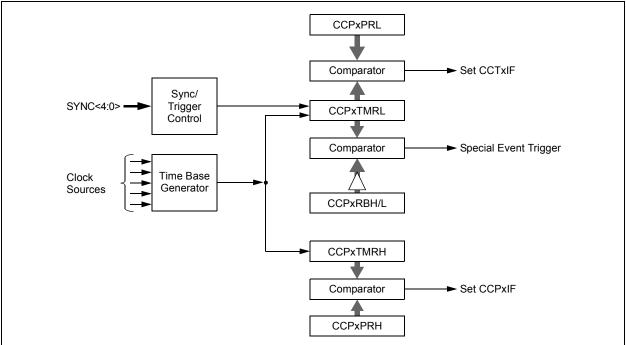
There are eight inputs available to the clock generator,

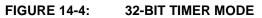
which are selected using the CLKSEL<2:0> bits

(CCPxCON1L<10:8>). Available sources include the

FRC and LPRC, the Secondary Oscillator and the TCKI

external clock inputs. The system clock is the default


source (CLKSEL<2:0> = 000).


In both 16-bit and 32-bit modes, the timer can also function in either synchronization ("sync") or trigger operation. Both use the SYNC<4:0> bits (CCPxCON1H<4:0>) to determine the input signal source. The difference is how that signal affects the timer.


In sync operation, the timer Reset or clear occurs when the input selected by SYNC<4:0> is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H<7>) is cleared. SYNC<4:0> can have any value except '11111'.

In trigger operation, the timer is held in Reset until the input selected by SYNC<4:0> is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a trigger event as long as the CCPTRIG bit (CCPxSTATL<7>) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL<5>) must be set to clear the trigger event, reset the timer and hold it at zero until another trigger event occurs. On PIC24FJ256GA412/GB412 family devices, trigger operation can only be used when the system clock is the time base source (CLKSEL<2:0> = 000).

14.3 Output Compare Mode

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module, on compare match events, has the ability to generate a single output transition or a train of

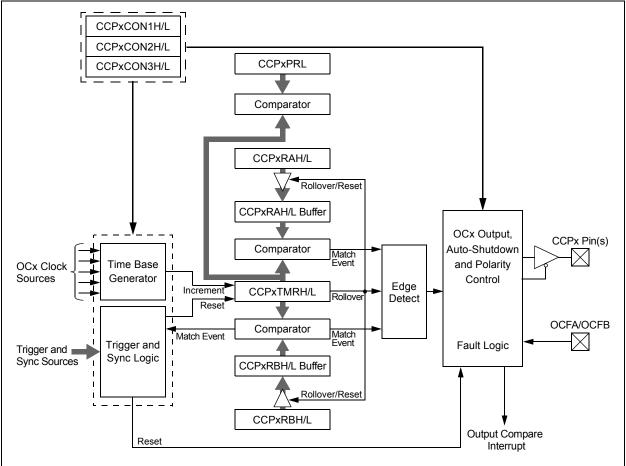

output pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

Table 14-2shows the various modes available inOutput Compare modes.

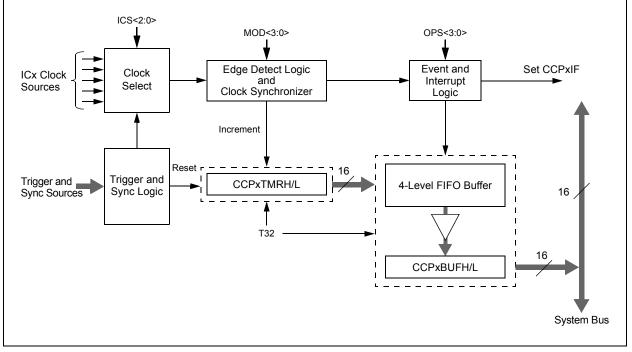
MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode			
0001	0	Output High on Compare (16-bit)			
0001	1	Output High on Compare (32-bit)			
0010	0	Output Low on Compare (16-bit)	Single Edge Mede		
0010 1		Output Low on Compare (32-bit)	Single Edge Mode		
0011	0	Output Toggle on Compare (16-bit)			
0011	1	Output Toggle on Compare (32-bit)			
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode		
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode		
0110	0	Center-Aligned Pulse (16-bit buffered)	Center PWM		
0111	0	Variable Frequency Pulse (16-bit)			
0111	1	Variable Frequency Pulse (32-bit)			

TABLE 14-2: OUTPUT COMPARE/PWM MODES

FIGURE 14-5: OUTPUT COMPARE x BLOCK DIAGRAM

14.4 Input Capture Mode

Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 14-6 depicts a simplified block diagram of Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L register.


To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and the MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 14-3.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode			
0000	0	Edge Detect (16-bit capture)			
0000	1	Edge Detect (32-bit capture)			
0001	0	Every Rising (16-bit capture)			
0001	1	Every Rising (32-bit capture)			
0010	0	Every Falling (16-bit capture)			
0010	1	Every Falling (32-bit capture)			
0011	0	Every Rise/Fall (16-bit capture)			
0011	1	Every Rise/Fall (32-bit capture)			
0100	0	Every 4th Rising (16-bit capture)			
0100	1	Every 4th Rising (32-bit capture)			
0101	0	Every 16th Rising (16-bit capture)			
0101	1	Every 16th Rising (32-bit capture)			

TABLE 14-3: INPUT CAPTURE MODES

INPUT CAPTURE x BLOCK DIAGRAM

14.5 Auxiliary Output

The MCCPx and SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCP or SCCP modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

On the PIC24FJ256GA412/GB412 family of devices, only the CTMU discharge trigger has access to the auxiliary output signal.

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description	
00	х	xxxx	Auxiliary output disabled	No Output	
01	0	0000	Time Base modes	Time Base Period Reset or Rollover	
10				Special Event Trigger Output	
11				No Output	
01	0	0001	Output Compare modes	Time Base Period Reset or Rollover	
10		through		Output Compare Event Signal	
11		1111		Output Compare Signal	
01	1	xxxx	Input Capture modes	Time Base Period Reset or Rollover	
10				Reflects the Value of the ICDIS bit	
11				Input Capture Event Signal	

TABLE 14-4: AUXILIARY OUTPUT

R/W-0	U-0	R/W-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0		
CCPON		CCPSIDL	_	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0		
bit 15	·						bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0		
bit 7							bit 0		
		n December	- :4						
Legend: R = Readabl	o hit	r = Reserved W = Writable I			nented bit, read	1 00 '0'			
-n = Value at		'1' = Bit is set	JIL	·0' = Bit is clea		x = Bit is unkr	0.000		
	FUK				areu	X – DIL IS ULIKI	IUWII		
bit 15	CCPON: CCF	Px Module Enal	ole bit						
				node specified b	ov the MOD<3:	0> control bits			
	0 = Module is		5		,				
bit 14	Unimplemen	ted: Read as 'o)'						
bit 13	CCPSIDL: CO	CPx Stop in Idle	Mode Bit						
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 								
h:: 40		-	ation in Idle mo	bde					
bit 12	Reserved: M		0	41 a. a. 10 14					
bit 11	TMRSYNC: Time Base Clock Synchronization bit 1 = Asynchronous module time base clock is selected and synchronized to the internal system clocks								
	1 = Asynchronous module time base clock is selected and synchronized to the internal system clocks $(CLKSEL<2:0 > \neq 0.00)$								
	0 = Synchror		time base cl	ock is selecte	d and does	not require s	ynchronization		
bit 10-8	CLKSEL<2:0	>: CCPx Time	Base Clock Se	elect bits					
		al TCKIB input							
	110 = External TCKIA input								
	101 = CLC1 100 = 2 * System Clock								
	011 = CLCx output, as determined by the MCCPx or SCCPx module (see Table 14-5)								
	010 = Secondary Oscillator (SOSC) 001 = Reference clock (REFO)								
	001 = Refere		0)						
bit 7-6		: Time Base Pr	escale Select	bits					
	11 = 1:64 Pre								
	10 = 1:16 Pre								
	01 = 1:4 Pres								
bit 5		ime Base Selec	t hit						
bit o				edge output co	mpare or input	capture function	on		
				edge output co					
bit 4	CCSEL: Cap	ture/Compare N	lode Select bi	t					
		pture peripheral		.,					
	0 = Output C	ompare/PWM/	imer peripher	al (exact function	on is selected b	by the MOD<3:	J> bits)		

REGISTER 14-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS

REGISTER 14-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

- bit 3-0 MOD<3:0>: CCPx Mode Select bits
 - For CCSEL = 1 (Input Capture Modes):
 - 1xxx = Reserved
 - 011x = Reserved
 - 0101 = Capture every 16th rising edge
 - 0100 = Capture every 4th rising edge
 - 0011 = Capture every rising and falling edge
 - 0010 = Capture every falling edge
 - 0001 = Capture every rising edge
 - 0000 = Capture every rising and falling edge (Edge Detect mode)
 - For CCSEL = 0 (Output Compare/Timer Modes):
 - 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
 - 1110 = Reserved
 - 110x = Reserved
 - 10xx = Reserved
 - 0111 = Variable Frequency Pulse mode
 - 0110 = Center-Aligned Pulse Compare mode, buffered
 - 0101 = Dual Edge Compare mode, buffered
 - 0100 = Dual Edge Compare mode
 - 0011 = 16-Bit/32-Bit Single Edge mode, toggles output on compare match
 - 0010 = 16-Bit/32-Bit Single Edge mode, drives output low on compare match
 - 0001 = 16-Bit/32-Bit Single Edge mode, drives output high on compare match
 - 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled

TABLE 14-5: CLC CLOCK SOURCE SELECTION (CLKSEL<2:0> = 011)

MCCP/SCCP Module	MCCP1	MCCP2	MCCP3	SCCP4	SCCP5	SCCP6	SCCP7
CLC Module for Clock Source	1	2	3	1	2	3	4

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
OPSSRC ⁽¹) RTRGEN ⁽²⁾			OPS3 ⁽³⁾	OPS2 ⁽³⁾	OPS1 ⁽³⁾	OPS0 ⁽³⁾		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
				(4)					
bit 15		tput Postscaler							
		ostscaler scales ostscaler scales			6				
bit 14		trigger Enable b		enupt events					
		e can be retrigg		RIGEN bit = 1					
		e may not be re			= 1				
bit 13-12	Unimplement	Unimplemented: Read as '0'							
bit 11-8	OPS3<3:0>: (CCPx Interrupt	Output Postsc	ale Select bits ⁽	3)				
		upt every 16th ti upt every 15th ti							
	0011 = Interru 0010 = Interru 0001 = Interru	upt every 5th tin upt every 4th tin upt every 3rd tin upt every 2nd tin upt after each tin	ne base period ne base period me base perio	d match or 4th i d match or 3rd d match or 2nd	input capture e l input capture	event event			
bit 7		Px Trigger Enab							
		peration of time peration of time							
bit 6	ONESHOT: O	ne-Shot Mode I	Enable bit						
		t Trigger mode i t Trigger mode i		ger duration is	set by OSCN	۲<2:0>			
bit 5	ALTSYNC: CO	CPx Clock Sele	ct bits						
		ate signal is use ule synchroniza							
bit 4-0	SYNC<4:0>:	CCPx Synchror	ization Sourc	e Select bits					
bit 4-0		CCPx Synchror 6 for the definiti		e Select bits					
	See Table 14-	6 for the definiti	on of inputs.						
Note 1: T		6 for the definiti s no function in	on of inputs. Input Capture	e modes.					

REGISTER 14-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

SYNC<4:0>	Synchronization Source
00000	None; Timer with Rollover on CCPxPRH/L Match or FFFFh
00001	Module's Own Timer Sync Out
00010	MCCP1 Sync Output
00011	MCCP2 Sync Output
00100	MCCP3 Sync Output
00101	SCCP4 Sync Output
00110	SCCP5 Sync Output
00111	SCCP6 Sync Output
01000	SCCP7 Sync Output
01001	INTO
01010	INT1
01011	INT2
01100 to 01111	Unused
10000	CLC1 Output ⁽¹⁾
10010	CLC2 Output ⁽¹⁾
10011	CLC3 Output ⁽¹⁾
10100	CLC4 Output ⁽¹⁾
10101 to 10111	Unused
11000	Comparator 3 Trigger
11001	Comparator 2 Trigger
11010	Comparator 1 Trigger
11011	A/D ⁽¹⁾
11100	CTMU Trigger
11101 and 11110	Unused
11111	None; Timer with Auto-Rollover (FFFFh \rightarrow 0000h)

TABLE 14-6: SYNCHRONIZATION SOURCES

Note 1: These sources are only available when the source module is being used in a Synchronous mode.

REGISTER 14-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS
--

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
PWMRSEN	ASDGM	—	SSDG	—	—	—	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0
bit 7						•	bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at F	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn			nown			

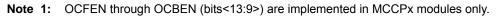

PWMRSEN: CCPx PWM Restart Enable bit
1 = ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has ended
0 = ASEVT bit must be cleared in software to resume PWM activity on output pins
ASDGM: CCPx Auto-Shutdown Gate Mode Enable bit
 1 = Waits until the next Time Base Reset or rollover for shutdown to occur 0 = Shutdown event occurs immediately
Unimplemented: Read as '0'
SSDG: CCPx Software Shutdown/Gate Control bit
 1 = Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM bit still applies) 0 = Normal module operation
Unimplemented: Read as '0'
ASDG<7:0>: CCPx Auto-Shutdown/Gating Source Enable bits 1 = ASDGx Source n is enabled (see Table 14-7 for auto-shutdown/gating sources) 0 = ASDGx Source n is disabled

TABLE 14-7: AUTO-SHUTDOWN AND GATING SOURCES

ASDG <x></x>		Auto-Shutdown/Gating Source							
Bit	MCCP1	MCCP2	MCCP3	SCCP4	SCCP5	SCCP6	SCCP7		
0		Comparator 1 Output							
1		Comparator 2 Output							
2		Comparator 3 Output							
3	SCC	P4 Output Com	npare		MCCP1 Out	put Compare			
4	SCC	P5 Output Com	npare		MCCP2 Out	put Compare			
5	CLC1 Output	CLC2 Output	CLC3 Output	CLC1 Output	CLC2 Output	CLC3 Output	CLC4 Output		
6			C	CFA Fault Inpu	ut				
7			C	CFB Fault Inpu	ut				

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OENSYNC		OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN
bit 15							bit 8
D/M/ 0		11.0				R/W-0	
R/W-0 ICGSM1	R/W-0 ICGSM0	U-0	R/W-0 AUXOUT1	R/W-0 AUXOUT0	R/W-0 ICS2	ICS1	R/W-0 ICS0
bit 7	ICGSIVIO		AUXUUTT	AUXOUTU	10.52	1031	bit (
							DIL
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	1 = Update b 0 = Update b	Dutput Enable S by output enable by output enable	e bits occurs or e bits occurs im	n the next Time	Base Reset of	r rollover	
bit 14	-	ted: Read as '					
bit 13-8		Output Enable					
	0 = OCx pin		d by the CCP			compare or PWI e to the port log	
bit 7-6	ICGSM<1:0>	: Input Capture	Gating Source	Mode Control	bits		
	01 = One-Sh 00 = Level-Se	ot mode: Falling ot mode: Rising	edge from gat A high level fr	ting source ena om gating sour	bles future cap	pture events (IC oture events (IC future capture	DIS = 0)
bit 5	Unimplemen	ted: Read as ')'				
bit 4-3	AUXOUT<1:0)>: Auxiliary Οι	Itput Signal on	Event Selectio	n bits		
	10 = Signal o	pture or output utput is defined se rollover eve d	l by module op)	
bit 2-0	ICS<2:0>: Inp	out Capture So	urce Select bits	6			
	010 = Compa 001 = Compa	output output	x (ICMx) nin				

REGISTER 14-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

REGISTER 14-5: CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_					
			—	—	—	—
						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_			DT<	5:0>		
						bit 0
	W = Writable b	it	U = Unimplem	ented bit, rea	d as '0'	
R	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
	U-0 —	W = Writable b	W = Writable bit	W = Writable bit U = Unimplem	— DT<5:0> W = Writable bit U = Unimplemented bit, read	— DT<5:0> W = Writable bit U = Unimplemented bit, read as '0'

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **DT<5:0>:** CCPx Dead-Time Select bits 11111 = Inserts 63 dead-time delay periods between complementary output signals 11110 = Inserts 62 dead-time delay periods between complementary output signals ... 000010 = Inserts 2 dead-time delay periods between complementary output signals 000001 = Inserts 1 dead-time delay period between complementary output signals 000000 = Dead-time logic is disabled

Note 1: This register is implemented in MCCPx modules only.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
OETRIG	OSCNT2	OSCNT1	OSCNT0	0-0	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾
bit 15	000112	000111	COCINIC		0011112	001111	bit 8
							Ditt
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0 ⁽¹
bit 7		102,102	1 02001	100,1021	100,1020	1.000011	bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15	OETRIG: CC	Px Dead-Time	Select bit				
	1 = For Trigg	ered mode (TF	RIGEN = 1): Mo	dule does not d	drive enabled	output pins unti	l triggered
	0 = Normal o	utput pin opera	ation				
bit 14-12		: One-Shot Ev					
			ent by 7 time ba				
			ent by 6 time ba ent by 5 time ba				
			ent by 4 time ba				
			ent by 3 time ba			,	
			ent by 2 time ba				
			ent by 1 time ba shot trigger eve		le base period	is lotal)	
bit 11		ted: Read as '					
bit 10-8	-		Mode Control I	oits ⁽¹⁾			
	111 = Reserv	-					
	110 = Output						
		DC Output mod DC Output mod					
	011 = Reserv		le, levelse				
		idge Output m	ode				
		Pull Output mod					
		ble Single Outp					
	Unimplemen	teu. Keau as j					
bit 7-6	-				le site : O s start	L.14	
bit 7-6 bit 5	POLACE: CC	Px Output Pin	s, OCxA, OCxC	and OCxE, Po	plarity Control	bit	
	POLACE: CC 1 = Output pi	Px Output Pin n polarity is ac	s, OCxA, OCxC tive-low	C and OCxE, Po	plarity Control	bit	
bit 5	POLACE: CC 1 = Output pi 0 = Output pi	Px Output Pin n polarity is ac n polarity is ac	s, OCxA, OCxC tive-low tive-high		-		
	POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC	Px Output Pin n polarity is ac n polarity is ac Px Output Pin	s, OCxA, OCxC tive-low tive-high s, OCxB, OCxD		-		
bit 5	POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC 1 = Output pi	Px Output Pin n polarity is ac n polarity is ac	s, OCxA, OCxC tive-low tive-high s, OCxB, OCxE tive-low		-		
bit 5	POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC 1 = Output pi 0 = Output pi	Px Output Pin n polarity is ac n polarity is ac Px Output Pins n polarity is ac n polarity is ac	s, OCxA, OCxC tive-low tive-high s, OCxB, OCxE tive-low tive-high) and OCxF, Pc	larity Control		bits
bit 5 bit 4	POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC 1 = Output pi 0 = Output pi PSSACE<1:0 11 = Pins are	Px Output Pin n polarity is ac n polarity is ac Px Output Pin n polarity is ac n polarity is ac >: PWMx Outp driven active v	s, OCxA, OCxC tive-low tive-high s, OCxB, OCxE tive-low tive-high out Pins, OCxA vhen a shutdow) and OCxF, Pc , OCxC and OC vn event occurs	larity Control CxE, Shutdowr	bit ⁽¹⁾	bits
bit 5 bit 4	POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC 1 = Output pi 0 = Output pi PSSACE<1:0 11 = Pins are 10 = Pins are	Px Output Pin n polarity is ac n polarity is ac Px Output Pins n polarity is ac n polarity is ac >: PWMx Outp driven active v driven inactive	s, OCxA, OCxC tive-low tive-high s, OCxB, OCxE tive-low tive-high out Pins, OCxA when a shutdow when a shutdow) and OCxF, Pc , OCxC and OC vn event occurs own event occurs	larity Control CxE, Shutdowr	bit ⁽¹⁾	bits
bit 5 bit 4 bit 3-2	POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC 1 = Output pi 0 = Output pi 0 = Output pi PSSACE<1:0 11 = Pins are 10 = Pins are 0x = Pins are	CPx Output Pin n polarity is ac n polarity is ac Px Output Pins n polarity is ac n polarity is ac polarity is ac >: PWMx Outp driven active tri-stated when	s, OCxA, OCxC tive-low tive-high s, OCxB, OCxE tive-low tive-high out Pins, OCxA when a shutdow e when a shutdown e) and OCxF, Pc , OCxC and OC yn event occurs own event occu yent occurs	larity Control CxE, Shutdown rs	bit ⁽¹⁾ n State Control	<i></i>
bit 5 bit 4	POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC 1 = Output pi 0 = Output pi PSSACE<1:0 11 = Pins are 10 = Pins are 0x = Pins are PSSBDF<1:0	CPx Output Pin n polarity is ac n polarity is ac CPx Output Pins n polarity is ac n polarity is ac >: PWMx Outp driven active tri-stated when >: PWMx Outp	s, OCxA, OCxC tive-low tive-high s, OCxB, OCxE tive-low tive-high out Pins, OCxA when a shutdow e when a shutdow a shutdown e out Pins, OCxB,	and OCxF, Po , OCxC and OC vn event occurs own event occurs own event occurs own occurs OCxD, and OC	larity Control CxE, Shutdown rs CxF, Shutdown	bit ⁽¹⁾	
bit 5 bit 4 bit 3-2	POLACE: CO 1 = Output pi 0 = Output pi POLBDF: CO 1 = Output pi 0 = Output pi PSSACE<1:0 11 = Pins are 0x = Pins are PSSBDF<1:0 11 = Pins are	CPx Output Pin n polarity is ac n polarity is ac CPx Output Pin n polarity is ac n polarity is ac >: PWMx Outp driven active v driven inactive tri-stated when >: PWMx Outp driven active v	s, OCxA, OCxC tive-low tive-high s, OCxB, OCxE tive-low tive-high out Pins, OCxA when a shutdow e when a shutdown e) and OCxF, Pc , OCxC and OC vn event occurs own event occurs own event occurs OCxD, and OC vn event occurs	larity Control CxE, Shutdown rs CxF, Shutdown	bit ⁽¹⁾ n State Control	<i></i>

REGISTER 14-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

Note 1: These bits are implemented in MCCPx modules only.

REGISTER 14-7: CCPxSTATL: CCPx STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
bit 7							bit 0

Legend:	C = Clearable bit			
R = Readable bit	W1 = Write '1' Only bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7	CCPTRIG: CCPx Trigger Status bit
	1 = Timer has been triggered and is running
	0 = Timer has not been triggered and is held in Reset
bit 6	TRSET: CCPx Trigger Set Request bit
	Writes '1' to this location to trigger the timer when TRIGEN = 1 (location always reads as '0').
bit 5	TRCLR: CCPx Trigger Clear Request bit
	Writes '1' to this location to cancel the timer trigger when TRIGEN = 1 (location always reads as '0').
bit 4	ASEVT: CCPx Auto-Shutdown Event Status/Control bit
	1 = A shutdown event is in progress; CCPx outputs are in the shutdown state
	0 = CCPx outputs operate normally
bit 3	SCEVT: Single Edge Compare Event Status bit
	1 = A single edge compare event has occurred
	0 = A single edge compare event has not occurred
bit 2	ICDIS: Input Capture x Disable bit
	1 = Event on Input Capture x pin (ICx) does not generate a capture event
	0 = Event on Input Capture x pin will generate a capture event
bit 1	ICOV: Input Capture x Buffer Overflow Status bit
	 The Input Capture x FIFO buffer has overflowed
	0 = The Input Capture x FIFO buffer has not overflowed
bit 0	ICBNE: Input Capture x Buffer Status bit
	1 = Input Capture x buffer has data available
	0 = Input Capture x buffer is empty

NOTES:

15.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture" (DS70000352). The information in this data sheet supersedes the information in the FRM.

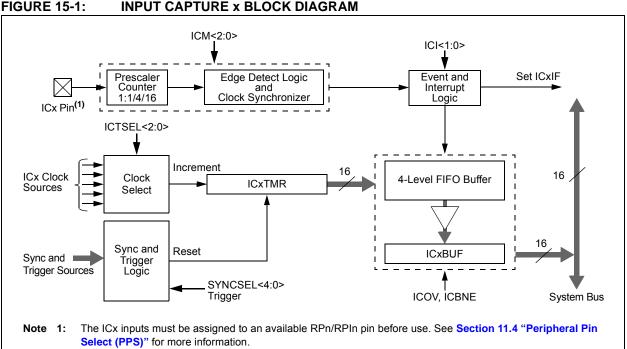
Devices in the PIC24FJ256GA412/GB412 family contain six independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

Key features of the input capture module include:

- · Hardware-Configurable for 32-Bit Operation in All Modes by Cascading Two Adjacent Modules
- · Synchronous and Trigger modes of Output compare Operation, with up to 30 User-Selectable Sync/Trigger Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to 6 Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter

The module is controlled through two registers: ICxCON1 (Register 15-1) and ICxCON2 (Register 15-2). A general block diagram of the module is shown in Figure 15-1.

15.1 General Operating Modes


15.1.1 SYNCHRONOUS AND TRIGGER MODES

When the input capture module operates in a Free-Running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSEL<4:0> bits (ICxCON2<4:0>) to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

15.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module, Input Capture x (ICx), provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module, Input Capture y (ICy), provides the Most Significant 16 bits. Wrap arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

15.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired sync/trigger source.
- 5. Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSELx bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICMx bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected sync/trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- 1. Set the IC32 bits for both modules (ICyCON2<8>) and (ICxCON2<8>), enabling the even numbered module first. This ensures that the modules will start functioning in unison.
- Set the ICTSELx and SYNCSELx bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bit settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- **Note:** For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired Capture mode.

The module is ready to capture events when the time base and the sync/trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

REGISTER 15-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0
—	ICI1	ICI0	ICOV	ICBNE	ICM2 ⁽¹⁾	ICM1 ⁽¹⁾	ICM0 ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	ritable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture x Module Stop in Idle Control bit
	1 = Input capture module halts in CPU Idle mode
	0 = Input capture module continues to operate in CPU Idle mode
bit 12-10	ICTSEL<2:0>: Input Capture x Timer Select bits
	111 = System clock (Fosc/2)
	110 = Reserved
	101 = Reserved 100 = Timer1
	011 = Timer5
	010 = Timer4
	001 = Timer2
	000 = Timer3
bit 9-7	Unimplemented: Read as '0'
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event 00 = Interrupt on every capture event
bit 4	ICOV: Input Capture x Overflow Status Flag bit (read-only)
	1 = Input capture overflow has occurred
	0 = No input capture overflow has occurred
bit 3	ICBNE: Input Capture x Buffer Empty Status bit (read-only)
	1 = Input capture buffer is not empty, at least one more capture value can be read
	0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture x Mode Select bits ⁽¹⁾
	111 = Interrupt mode: Input capture functions as an interrupt pin only when the device is in Sleep or Idle mode (rising edge detect only, all other control bits are not applicable)
	 110 = Unused (module is disabled) 101 = Prescaler Capture mode: Capture on every 16th rising edge
	101 = Prescaler Capture mode: Capture on every 16 Insing edge
	011 = Simple Capture mode: Capture on every rising edge
	010 = Simple Capture mode: Capture on every falling edge
	001 = Edge Detect Capture mode: Capture on every edge (rising and falling); ICI<1:0> bits do not
	control interrupt generation for this mode
	000 = Input capture module is turned off

Note 1: The ICx input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	_	IC32
bit 15 bit 8							

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7 bit 0							

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9	Unimplemented: Read as '0'
bit 8	IC32: Cascade Two IC Modules Enable bit (32-bit operation)
	 1 = ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules) 0 = ICx functions independently as a 16-bit module
bit 7	ICTRIG: ICx Sync/Trigger Select bit
	1 = Triggers ICx from the source designated by the SYNCSELx bits
	0 = Synchronizes ICx with the source designated by the SYNCSELx bits
bit 6	TRIGSTAT: Timer Trigger Status bit
	 1 = Timer source has been triggered and is running (set in hardware, can be set in software) 0 = Timer source has not been triggered and is being held clear
bit 5	Unimplemented: Read as '0'

- **Note 1:** Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an ICx module as its own trigger source by selecting this mode.

REGISTER 15-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits
 - 1111x = Reserved
 - 11101 = Reserved
 - 11100 = CTMU⁽¹⁾
 - 11011 = A/D⁽¹⁾
 - 11010 = Comparator $3^{(1)}_{(1)}$
 - $11001 = \text{Comparator } 2^{(1)}$
 - 11000 = Comparator 1⁽¹⁾
 - 10111 = SCCP5 capture/compare
 - 10110 = SCCP4 capture/compare
 - 10101 = MCCP3 capture/compare
 - 10100 = MCCP2 capture/compare
 - 10011 = MCCP1 capture/compare
 - 10010 =Input Capture $3^{(2)}$
 - 10001 =Input Capture $2^{(2)}$
 - 10000 = Input Capture 1⁽²⁾
 - 01111 = SCCP7 capture/compare
 - 01110 = SCCP6 capture/compare
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = SCCP7 sync/trigger 01001 = SCCP6 sync/trigger
 - 01000 = SCCP5 sync/trigger
 - 00111 = SCCP4 sync/trigger
 - 00110 = MCCP3 sync/trigger
 - 00101 = MCCP2 sync/trigger
 - 00100 = MCCP1 sync/trigger
 - 00011 = Output Compare 3
 - 00010 = Output Compare 2
 - 00001 = Output Compare 1
 - 00000 = Not synchronized to any other module
- Note 1: Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an ICx module as its own trigger source by selecting this mode.

NOTES:

16.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Output Compare with Dedicated Timer" (DS70005159). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ256GA412/GB412 family all feature six independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

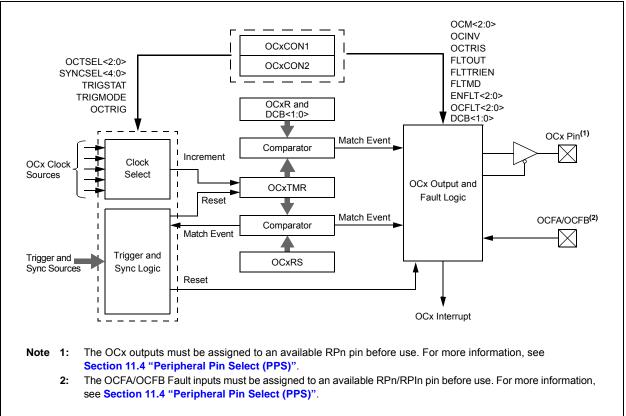
Key features of the output compare module include:

- Hardware-Configurable for 32-Bit Operation in All Modes by Cascading Two Adjacent Modules
- Synchronous and Trigger Modes of Output Compare Operation, with up to 31 User-Selectable Trigger/Sync Sources Available
- Two Separate Period Registers (a main register, OCxR, and a secondary register, OCxRS) for Greater Flexibility in Generating Pulses of Varying Widths
- Configurable for Single Pulse or Continuous Pulse Generation on an Output Event, or Continuous PWM Waveform Generation
- Up to 6 Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter

16.1 General Operating Modes

16.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a Free-Running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow. Its period is synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs.


In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSEL<4:0> bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

16.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module, Output Compare x (OCx), provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module, Output Compare y (OCy), provides the Most Significant 16 bits. Wrap arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more information on cascading, refer to the *"dsPIC33/PIC24 Family Reference Manual",* **"Output Compare with Dedicated Timer"** (DS70005159).

FIGURE 16-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

16.2 Compare Operations

In Compare mode (Figure 16-1), the output compare module can be configured for single-shot or continuous pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation ('0xx').
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no sync/trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bits for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a trigger source event occurs.

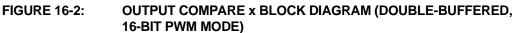
For 32-bit cascaded operation, these steps are also necessary:

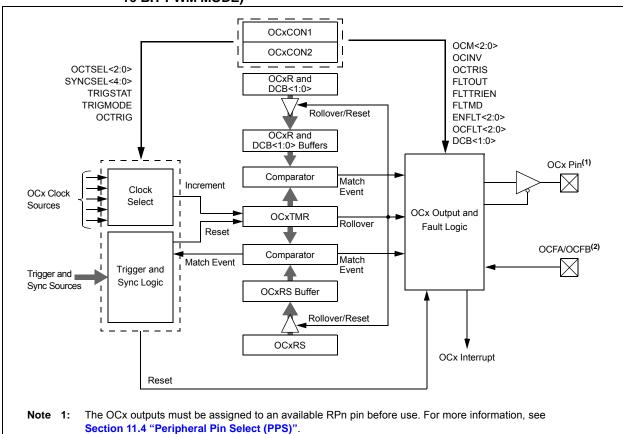
- Set the OC32 bits for both registers (OCyCON2<8>) and (OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSELx (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

16.3 Pulse-Width Modulation (PWM) Mode


In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).


To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing '0x1F' to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON1<12:10>).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 16-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

Note: Make sure the I/O ports are in Digital mode and the TRISx bits are configured for Output mode for the peripheral pin selected.

2: The OCFA/OCFB Fault inputs must be assigned to an available RPn/RPIn pin before use. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

16.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timery Period register. The PWM period can be calculated using Equation 16-1.

EQUATION 16-1: CALCULATING THE PWM PERIOD⁽¹⁾

PWM Period = $[(PRy) + 1] \bullet TCY \bullet (Timer Prescale Value)$

where: PWM Frequency = 1/[PWM Period]

Note 1: Based on Tcy = Tosc * 2; Doze mode and PLL are disabled. Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7 written into the PRy register, will yield a period consisting of 8 time base cycles.

16.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 16-1 for PWM mode timing details. Table 16-1 and Table 16-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 16-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

$$Maximum PWM Resolution (bits) = \frac{\left(\frac{FCY}{FPWM \bullet (Timer Prescale Value)}\right)}{\log_{10}^{(2)}} bits$$

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

EXAMPLE 16-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

TCY = 2 * TOSC = 62.5 ns

PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 ms

PWM Period = $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$

 $19.2 \ \mu s = (PR2 + 1) \cdot 62.5 \ ns \cdot 1$

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution = $log_{10}(FCY/FPWM)/log_{10}2)$ bits

 $= (\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2) \text{ bits}$

= 8.3 bits

Note 1: Based on Tcy = 2 * Tosc; Doze mode and PLL are disabled.

$(10^{-1} - 4)^{-1}$							
PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

TABLE 16-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

TABLE 16-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2 ⁽²⁾	ENFLT1 ⁽²⁾	
bit 15							bit	
R/W-0	,		R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	
ENFLT0	(2) OCFLT2 ^(2,3)	OCFLT1 ^(2,4)	OCFLT0 ^(2,4)	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾	
bit 7							bit	
Legend:		HSC = Hardw	are Settable/C	learable bit				
R = Read	able bit	W = Writable	bit	U = Unimplem	ented bit. read	l as '0'		
n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	nown	
bit 15-14	Unimplemer	ted: Read as ')'					
bit 13		tput Compare x	•					
		ompare x halts			ada			
	-	ompare x contir	-		ode			
oit 12-10		D>: Output Com oral clock (Ec)	-	elect bits				
	110 = Reser	ieral clock (Fcy ved)					
	101 = Reser							
		1 clock (only sy	nchronous cloc	k is supported)	1			
	011 = Timer							
	010 = Timer 001 = Timer							
	000 = Timer							
bit 9		It Input 2 Enab	le bit(2)					
		Comparator 1/2/		ed(3)				
	0 = Fault 2 is	•						
bit 8	ENFLT1: Fau	ilt Input 1 Enab	le bit ⁽²⁾					
		OCFB pin) is en	abled ⁽⁴⁾					
	0 = Fault 1 is							
bit 7		It Input 0 Enab						
	•	DCFA pin) is en	abled ⁽⁴⁾					
	0 = Fault 0 is							
bit 6		/M Fault 2 (Con		Condition Statu	IS DIT(2,0)			
		ult 2 has occurr Fault 2 has occ						
bit 5	OCFLT1: PW	OCFLT1: PWM Fault 1 (OCFB pin) Condition Status bit ^(2,4)						
		ult 1 has occurr						
	0 = No PWM	Fault 1 has occ	curred					
Note 1:	The OCx output		nfigured to an a	available RPn p	oin. For more ir	nformation, see	e Section 11.	
2:	The Fault input e	nable and Fault	status bits are	valid when OC	CM<2:0> = 111	or 110.		
3:	The Comparator channels; Compa				•	tput controls the	e OC3-OC4	
4:	The OCFA/OCFE	B Fault input mu	st also be confi	gured to an ava	ailable RPn/RP	In pin. For mor	e informatio	

4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 16-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 4 **OCFLT0:** PWM Fault 0 (OCFA pin) Condition Status bit^(2,4)
 - 1 = PWM Fault 0 has occurred
 - 0 = No PWM Fault 0 has occurred
- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on $OCx^{(2)}$
 - 110 = Edge-Aligned PWM mode on $OCx^{(2)}$
 - 101 = Double Compare Continuous Pulse mode: Initializes the OCx pin low; toggles the OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes the OCx pin low; toggles the OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low; compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - **2:** The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - **3:** The Comparator 1 output controls the OC1-OC2 channels; Comparator 2 output controls the OC3-OC4 channels; Comparator 3 output controls the OC5-OC6 channels.
 - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 16-2: **OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2** R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 DCB1⁽³⁾ DCB0⁽³⁾ **FLTMD** FLTOUT **FLTTRIEN** OCINV OC32 bit 15 bit 8 R/W-0 R/W-0, HS R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 bit 7 bit 0 Legend: HS = Hardware Settable bit W = Writable bit R = Readable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLTMD: Fault Mode Select bit 1 = Fault mode is maintained until the Fault source is removed and the corresponding OCFLT0 bit is cleared in software 0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts bit 14 FLTOUT: Fault Out bit 1 = PWM output is driven high on a Fault 0 = PWM output is driven low on a Fault bit 13 FLTTRIEN: Fault Output State Select bit 1 = Pin is forced to an output on a Fault condition 0 = Pin I/O condition is unaffected by a Fault **OCINV:** Output Compare x Invert bit bit 12 1 = OCx output is inverted 0 = OCx output is not inverted bit 11 Unimplemented: Read as '0' bit 10-9 DCB<1:0>: PWM Duty Cycle Least Significant bits⁽³⁾ 11 = Delays OCx falling edge by ³/₄ of the instruction cycle 10 = Delays OCx falling edge by $\frac{1}{2}$ of the instruction cycle 01 = Delays OCx falling edge by $\frac{1}{4}$ of the instruction cycle 00 = OCx falling edge occurs at the start of the instruction cycle bit 8 OC32: Cascade Two Output Compare Modules Enable bit (32-bit operation) 1 = Cascade module operation is enabled 0 = Cascade module operation is disabled bit 7 OCTRIG: Output Compare x Trigger/Sync Select bit 1 = Triggers OCx from the source designated by the SYNCSELx bits 0 = Synchronizes OCx with the source designated by the SYNCSELx bits TRIGSTAT: Timer Trigger Status bit bit 6 1 = Timer source has been triggered and is running 0 = Timer source has not been triggered and is being held clear bit 5 OCTRIS: Output Compare x Output Pin Direction Select bit 1 = OCx pin is tri-stated

- Note 1: Never use an OCx module as its own trigger source, either by selecting this mode or another equivalent
 - 2: Use these inputs as trigger sources only and never as sync sources.

0 = Output Compare Peripheral x is connected to an OCx pin

3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

SYNCSELx setting.

REGISTER 16-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = OCTRIG1 external input
 - 11101 = OCTRIG2 external input
 - $11100 = CTMU^{(2)}$
 - $11011 = A/D^{(2)}$
 - 11010 = Comparator 3⁽²⁾ 11001 = Comparator 2⁽²⁾
 - $11000 = \text{Comparator 1}^{(2)}$
 - 10111 = SCCP5 capture/compare
 - 10110 = SCCP4 capture/compare
 - 10101 = MCCP3 capture/compare
 - 10100 = MCCP2 capture/compare
 - 10011 = MCCP1 capture/compare
 - 10010 = Input Capture 3⁽²⁾
 - 10001 = Input Capture 2⁽²⁾
 - 10000 = Input Capture 1⁽²⁾
 - 01111 = SCCP7 capture/compare
 - 01110 = SCCP6 capture/compare
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = SCCP7 sync/trigger
 - 01001 = SCCP6 sync/trigger
 - 01000 = SCCP5 sync/trigger
 - 00111 = SCCP4 sync/trigger
 - 00110 = MCCP3 sync/trigger
 - 00101 = MCCP2 sync/trigger
 - 00100 = MCCP1 sync/trigger 00011 = Output Compare 5⁽¹⁾
 - 00011 = Output Compare 3(1)
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- **Note 1:** Never use an OCx module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

NOTES:

17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC24FJ256GA412/GB412 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136), which is available from the Microchip web site (www.microchip.com).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. All devices in the PIC24FJ256GA412/GB412 family include three SPI modules.

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Variable length data can be transmitted and received, from 2 to 32-bits.

Note:	Do not perform Read-Modify-Write opera-
	tions (such as bit-oriented instructions) on
	the SPIxBUF register in either Standard or
	Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- · Left Justified
- Right Justified
- PCM/DSP

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the master and the other is the slave. However, audio data can be transferred between two slaves. Because the audio protocols require free-running clocks, the master can be a third party controller. In either case, the master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC). The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - SPIRBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1

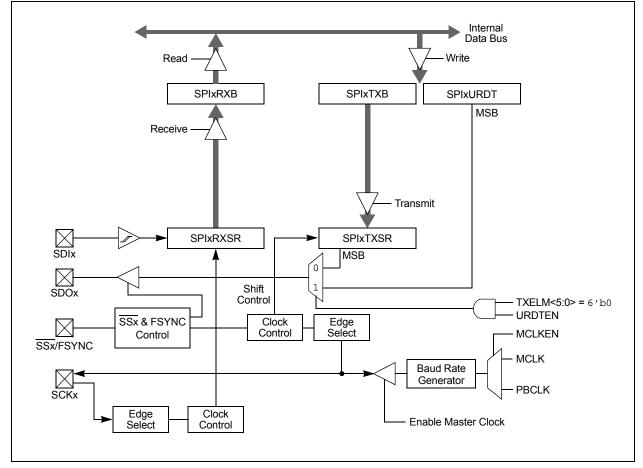
provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxIF. This event occurs when
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 17-1 and Figure 17-2.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules.

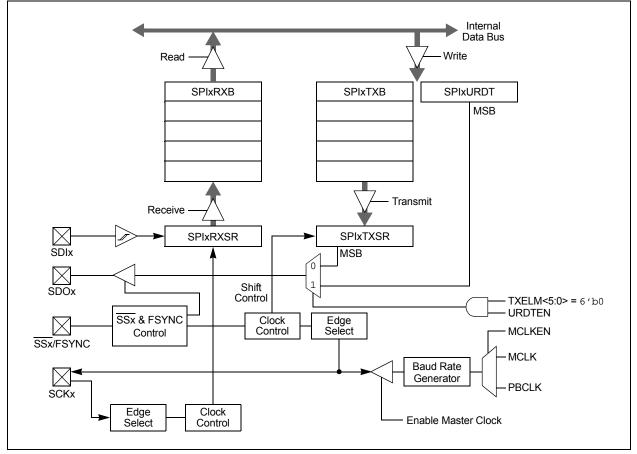

To set up the SPIx module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L and SPIxCON1H registers with the MSTEN bit (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 5. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF registers.
- 2. If using interrupts:
 - a) Clear the SPIxBUFL and SPIxBUFH registers.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1L<8>) is set, then the SSEN bit (SPIxCON1L<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- 7. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

FIGURE 17-1: SPIx MODULE BLOCK DIAGRAM (STANDARD MODE)


To set up the SPIx module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with MSTEN (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- 5. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- 7. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - a) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

REGISTER 17-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPIEN	—	SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾
bit 15					· · ·		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	СКР	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 SPIEN: SPIx On bit

- 1 = Enables module
- 0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications
- bit 14 Unimplemented: Read as '0'
- bit 13 SPISIDL: SPIx Stop in Idle Mode bit
 - 1 = Halts in CPU Idle mode
 - 0 = Continues to operate in CPU Idle mode

bit 12 **DISSDO:** Disable SDOx Output Port bit

- 1 = SDOx pin is not used by the module; pin is controlled by port function
- 0 = SDOx pin is controlled by the module

bit 11-10 MODE32 and MODE16: Serial Word Length Select bits^(1,4)

MODE32	MODE16	AUDEN	Communication
1	x		32-Bit
0	1	0	16-Bit
0	0		8-Bit
1	1		24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
1	0	1	32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	1	Ţ	16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	0		16-Bit FIFO, 16-Bit Channel/32-Bit Frame

Note 1: When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.

- 2: When FRMEN = 1, SSEN is not used.
- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 17-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 9	SMP: SPIx Data Input Sample Phase bit
	Master Mode:
	 1 = Input data is sampled at the end of data output time 0 = Input data is sampled at the middle of data output time
	Slave Mode:
	Input data is always sampled at the middle of data output time, regardless of the SMP setting.
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾
	 1 = Transmit happens on transition from active clock state to Idle clock state 0 = Transmit happens on transition from Idle clock state to active clock state
bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
	1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select input 0 = SSx pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6	CKP: Clock Polarity Select bit
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode 0 = Slave mode
bit 4	DISSDI: Disable SDIx Input Port bit
	 1 = SDIx pin is not used by the module; pin is controlled by port function 0 = SDIx pin is controlled by the module
bit 3	DISSCK: Disable SCKx Output Port bit
	 1 = SCKx pin is not used by the module; pin is controlled by port function 0 = SCKx pin is controlled by the module
bit 2	MCLKEN: Master Clock Enable bit ⁽³⁾
	 1 = MCLK is used by the BRG 0 = PBCLK is used by the BRG
bit 1	SPIFE: Frame Sync Pulse Edge Select bit
	 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0	ENHBUF: Enhanced Buffer Enable bit
	 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note 1:	When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.
2.	When FRMEN = 1 SSEN is not used

- When FRMEN 1, SSEN is not used. Ζ.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
AUDEN ⁽¹⁾	SPISGNEXT	IGNROV	IGNTUR	AUDMONO ⁽²⁾	URDTEN ⁽³⁾	AUDMOD1(4)	AUDMOD0(4			
bit 15		с					bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0			
bit 7		L	I				bit (
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpleme	ented bit, read	as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clear		x = Bit is unkn	iown			
							-			
bit 15	AUDEN: Audi	o Codec Supp	ort Enable bit(1)						
				ntrols the direction	n of both SCK	x and frame (a.I	k.a. LRC), and			
	•			, FRMSYNC = M		•				
		s of their actua								
	0 = Audio pro									
bit 14	SPISGNEXT: SPIx Sign-Extend RX FIFO Read Data Enable bit									
	1 = Data from RX FIFO is sign-extended 0 = Data from RX FIFO is not sign-extended									
bit 13			0	u						
	IGNROV: Ignore Receive Overflow bit 1 = A Receive Overflow (ROV) is NOT a critical error; during ROV, data in the FIFO is not overwritten									
	by the receive data									
	0 = A ROV is a critical error that stops SPI operation									
bit 12	IGNTUR: Ignore Transmit Underrun bit									
	1 = A Transmit Underrun (TUR) is NOT a critical error and data indicated by URDTEN is transmitted									
	until the SPIxTXB is not empty 0 = A TUR is a critical error that stops SPI operation									
			-	-						
bit 11	AUDMONO: Audio Data Format Transmit bit ⁽²⁾									
	 1 = Audio data is mono (i.e., each data word is transmitted on both left and right channels) 0 = Audio data is stereo 									
bit 10			n Data Enable	bit(3)						
bit to	URDTEN: Transmit Underrun Data Enable bit ⁽³⁾ 1 = Transmits data out of SPIxURDT register during Transmit Underrun conditions									
	0 = Transmits the last received data during Transmit Underrun conditions									
bit 9-8	AUDMOD<1:0>: Audio Protocol Mode Selection bits ⁽⁴⁾									
	11 = PCM/DSP mode									
	10 = Right Justified mode: This module functions as if SPIFE = 1, regardless of its actual value									
	01 = Left Justified mode: This module functions as if SPIFE = 1, regardless of its actual value $\frac{1}{2}$									
	$00 = I^2 S$ mode: This module functions as if SPIFE = 0, regardless of its actual value									
hit 7	FRMEN: Framed SPIx Support bit 1 = Framed SPIx support is enabled (SSx pin is used as the FSYNC input/output)									
bit 7	1 - Eromod O	Div current in	anablad (CCV	nin is used as the						
bit 7				pin is used as the		it/output)				
	0 = Framed SI	PIx support is	disabled	-		it/output)				
	0 = Framed Sl UDEN can only	Plx support is be written whe	disabled en the SPIEN I	oit = 0.						
Note 1: A 2: A	0 = Framed Sl UDEN can only	Plx support is be written whe	disabled en the SPIEN I when the SPI	-						

0 and is only valid when AUDEN = 1. When can only be written when the SPIEN bit 4:

NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit 6	FRMSYNC: Frame Sync Pulse Direction Control bit
	1 = Frame Sync pulse input (slave)
	0 = Frame Sync pulse output (master)
bit 5	FRMPOL: Frame Sync/Slave Select Polarity bit
	1 = Frame Sync pulse/slave select is active-high
	0 = Frame Sync pulse/slave select is active-low
bit 4	MSSEN: Master Mode Slave Select Enable bit
	 SPIx slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically driven during transmission in Master mode)
	0 = Slave select SPIx support is disabled (SSx pin will be controlled by port IO)
bit 3	FRMSYPW: Frame Sync Pulse-Width bit
	 1 = Frame Sync pulse is one serial word length wide (as defined by MODE<32,16>/WLENGTH<4:0>) 0 = Frame Sync pulse is one clock (SCK) wide
bit 2-0	FRMCNT<2:0>: Frame Sync Pulse Counter bits
	Controls the number of serial words transmitted per Sync pulse.
	111 = Reserved
	110 = Reserved
	101 = Generates a Frame Sync pulse on every 32 serial words
	100 = Generates a Frame Sync pulse on every 16 serial words
	011 = Generates a Frame Sync pulse on every 8 serial words
	010 = Generates a Frame Sync pulse on every 4 serial words
	001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)
	000 = Generates a Frame Sync pulse on each serial word

- **Note 1:** AUDEN can only be written when the SPIEN bit = 0.
 - 2: AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
 - **3:** URDTEN is only valid when IGNTUR = 1.
 - **4:** AUDMOD<1:0> can only be written when the SPIEN bit = 0 and is only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

REGISTER 17-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_		—					
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_			WI	_ENGTH<4:0>	(1,2)		
bit 7							bit 0	
Legend:								
R = Readat	hle hit	W = Writable	hit	U = Unimplen	nented bit, read	1 as '0'		
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr		
					arco		10111	
bit 15-5	Unimplomon	ted: Read as '	۰ ۲					
bit 4-0	=	I:0>: Variable V		:+_(1.2)				
DIL 4-0			vora Length b	its'',-'				
	11111 = 32-b 11110 = 31-b							
	11101 = 30-b							
	11100 = 29-b							
	11011 = 28-b							
	11010 = 27-b							
	11001 = 26-b							
	11000 = 25-b	it data						
	10111 = 24-b	it data						
	10110 = 23-b							
	10101 = 22-b							
		0 = 21-bit data						
	10011 = 20 -b							
	10010 = 19 -b							
	10001 = 18-b 10000 = 17-b							
	01111 = 16-b							
	01111 = 10-b 01110 = 15-b							
	01101 = 14 -b							
	01100 = 13-bit data							
	01011 = 12-bit data							
	01010 = 11-bit data							
	01001 = 10-b	it data						
	01000 = 9-bit	data						
	00111 = 8-bit							
	00110 = 7-bit							
	00101 = 6-bit							
	00100 = 5-bit							
	00011 = 4-bit							
	00010 = 3-bit							
	00001 = 2-bit	MODE<32,16	hite in SDIVC	ON11 <11.10				
	00000 - 366							

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

U-0	U-0	U-0	R/C-0, HS	R-0, HSC	U-0	U-0	R-0, HSC				
_	_	_	FRMERR	SPIBUSY	—	_	SPITUR ⁽¹⁾				
bit 15							bit 8				
			U-0		U-0						
R-0, HSC SRMT	R/C-0, HS SPIROV	R-1, HSC SPIRBE	0-0	R-1, HSC SPITBE	0-0	R-0, HSC SPITBF	R-0, HSC SPIRBF				
bit 7	SFIKOV	SFINDE	_	SFILL	_	SFILDE	bit (
Legend:		C = Clearable	bit	U = Unimplem	ented, read as	· '0'					
R = Readabl	e bit	W = Writable b	bit	HSC = Hardwa	are Settable/C	earable bit					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	red	HS = Hardwar	e Settable bit				
bit 15-13	Unimplemen	ted: Read as 'o	ı'								
bit 12	-										
		FRMERR: SPIx Frame Error Status bit 1 = Frame error is detected									
		error is detecte	ed								
bit 11	SPIBUSY: SPIx Activity Status bit										
	1 = Module is currently busy with some transactions										
	0 = No ongoir	ng transactions	(at time of rea	d)							
bit 10-9	Unimplemen	ted: Read as '0)'								
bit 8	SPITUR: SPIx Transmit Underrun Status bit ⁽¹⁾										
				nsmit Underrun nit Underrun co							
bit 7	SRMT: Shift Register Empty Status bit										
		nt or pending tra		, neither SPIxT	XB or SPIxTX	SR contains da	ta to transmit				
bit 6	SPIROV: SPI	x Receive Over	flow Status bit								
	1 = A new by 0 = No overflo		rd has been co	ompletely receiv	ved when the	SPIxRXB was f	ull				
bit 5	SPIRBE: SPIx RX Buffer Empty Status bit										
	1 = RX buffer is empty										
	0 = RX buffer is not empty										
	Standard Buffer Mode:										
	Automatically set in hardware when SPIxBUF is read from, reading SPIxRXB. Automatically cleared in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB.										
	Enhanced Bu Indicates RXE		0000								
		-100 - 00	0000.								

 SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 17-4: SPIx STATL: SPIx STATUS REGISTER LOW (CONTINUED)

bit 3	SPITBE: SPIx Transmit Buffer Empty Status bit
	1 = SPIxTXB is empty
	0 = SPIxTXB is not empty
	Standard Buffer Mode:
	Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically cleared in hardware when SPIxBUF is written, loading SPIxTXB.
	Enhanced Buffer Mode: Indicates TXELM<5:0> = 000000.
bit 2	Unimplemented: Read as '0'
bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	1 = SPIxTXB is full
	0 = SPIxTXB not full
	Standard Buffer Mode:
	Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR.
	Enhanced Buffer Mode:
	Indicates TXELM<5:0> = 111111.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	1 = SPIxRXB is full 0 = SPIxRXB is not full
	Standard Buffer Mode:
	Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically
	cleared in hardware when SPIxBUF is read from, reading SPIxRXB.
	Enhanced Buffer Mode:
	Indicates RXELM<5:0> = 111111.

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 17-5: SPIxSTATH: SPIx STATUS REGISTER HIGH

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	_	RXELM5 ⁽³⁾	RXELM4 ⁽²⁾	RXELM3 ⁽¹⁾	RXELM2	RXELM1	RXELM0
bit 15							bit 8

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	—	TXELM5 ⁽³⁾	TXELM4 ⁽²⁾	TXELM3 ⁽¹⁾	TXELM2	TXELM1	TXELM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RXELM<5:0>:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **TXELM<5:0>:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

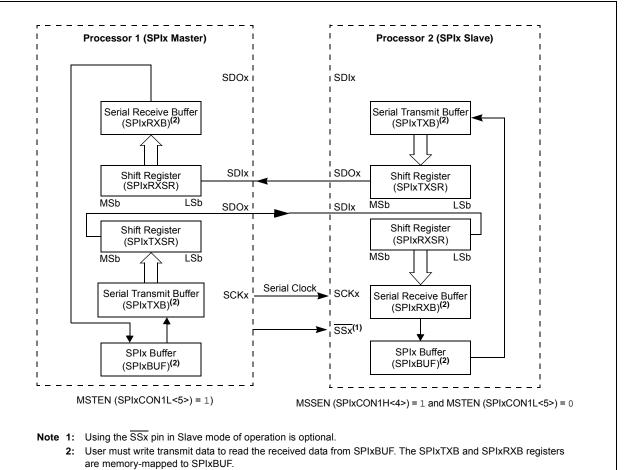
3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

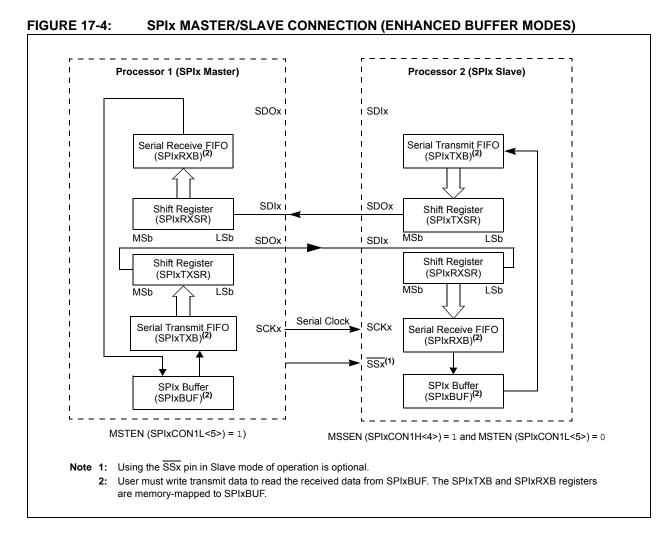
REGISTER 17-6: SPIxIMSKL: SPIx INTERRUPT MASK REGISTER LOW

U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0				
—	—	—	FRMERREN	BUSYEN	—		SPITUREN				
oit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0				
SRMTEN	SPIROVEN	SPIRBEN	—	SPITBEN		SPITBFEN	SPIRBFEN				
oit 7							bit C				
.egend: R = Readable	hit	W = Writable	hit	II – Unimplom	ontod hit roo	d aa '0'					
n = Value at		'1' = Bit is set		U = Unimplem '0' = Bit is clea		x = Bit is unkr					
			•		lieu						
oit 15-13	Unimplement	ted: Read as '	0'								
pit 12	-		ıpt Events via Fl	RMERR bit							
	1 = Frame err	or generates a	an interrupt ever	nt							
		•	enerate an interr	•							
bit 11	BUSYEN: Enable Interrupt Events via SPIBUSY bit										
	 1 = SPIBUSY generates an interrupt event 0 = SPIBUSY does not generate an interrupt event 										
oit 10-9	U = SPIBUSY does not generate an interrupt event Unimplemented: Read as '0'										
oit 8	•		• ot Events via SP	ITUR bit							
	1 = Transmit Underrun (TUR) generates an interrupt event										
	0 = Transmit l	0 = Transmit Underrun does not generate an interrupt event									
pit 7			Events via SRM								
	 1 = Shift Register Empty (SRMT) generates interrupt events 0 = Shift Register Empty does not generate interrupt events 										
oit 6	 Snift Register Empty does not generate interrupt events SPIROVEN: Enable Interrupt Events via SPIROV bit 										
	1 = SPIx Receive Overflow (ROV) generates an interrupt event										
	0 = SPIx Receive Overflow does not generate an interrupt event										
oit 5		•	Events via SPIF								
	 1 = SPIx RX buffer empty generates an interrupt event 0 = SPIx RX buffer empty does not generate an interrupt event 										
oit 4		ted: Read as '	-	e an interrupt e	veni						
bit 3	•		Events via SPIT	BE hit							
л Э					nt						
	 1 = SPIx transmit buffer empty generates an interrupt event 0 = SPIx transmit buffer empty does not generate an interrupt event 										
pit 2	Unimplement	ted: Read as '	0'								
	SPITBFEN: E	nable Interrup	t Events via SPI	TBF bit							
oit 1	1 = SPIx transmit buffer full generates an interrupt event										
JILI	0 = SPIx transmit buffer full does not generate an interrupt event										
	0 = SPIx trans	smit buffer full	does not genera	-	event						
pit O	0 = SPIx trans SPIRBFEN: E	smit buffer full Enable Interrup	-	IRBF bit	event						

REGISTER 17-7: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RXWIEN	—	RXMSK5 ⁽¹⁾	RXMSK4 ^(1,4)	RXMSK3 ^(1,3)	RXMSK2 ^(1,2)	RXMSK1 ⁽¹⁾	RXMSK0 ⁽¹⁾
bit 15							bit 8

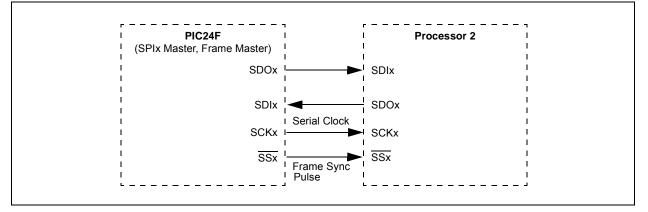
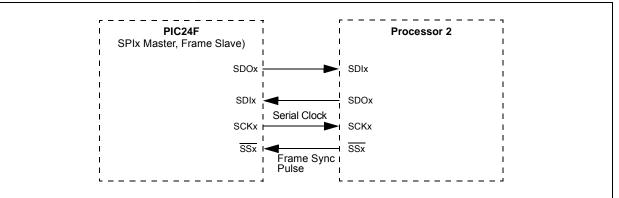
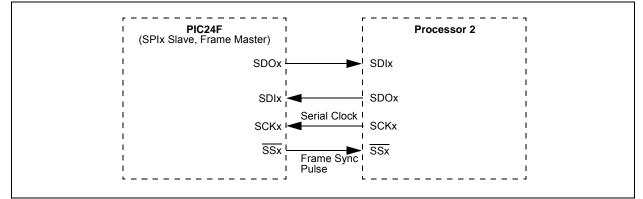

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXWIEN	—	TXMSK5 ⁽¹⁾	TXMSK4 ^(1,4)	TXMSK3 ^(1,3)	TXMSK2 ^(1,2)	TXMSK1 ⁽¹⁾	TXMSK0 ⁽¹⁾
bit 7							bit 0

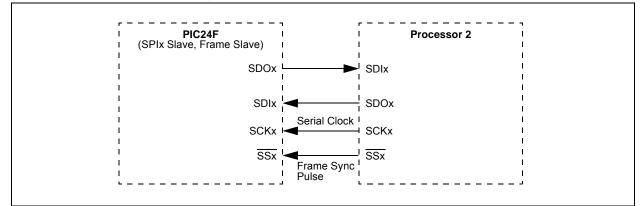

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	RXWIEN: Receive Watermark Interrupt Enable bit 1 = Triggers receive buffer element watermark interrupt when RXMSK<5:0> < RXELM<5:0> 0 = Disables receive buffer element watermark interrupt
bit 14	Unimplemented: Read as '0'
bit 13-8	RXMSK<5:0>: RX Buffer Mask bits ^(1,2,3,4)
	RX mask bits; used in conjunction with the RXWIEN bit.
bit 7	TXWIEN: Transmit Watermark Interrupt Enable bit
	 1 = Triggers transmit buffer element watermark interrupt when TXMSK<5:0> = TXELM<5:0> 0 = Disables transmit buffer element watermark interrupt
bit 6	Unimplemented: Read as '0'
bit 5-0	TXMSK<5:0>: TX Buffer Mask bits ^(1,2,3,4)
	TX mask bits; used in conjunction with the TXWIEN bit.
Note 1:	Mask values higher than FIFODEPTH are not valid. The module will not trigger a match for any value in

- **Note 1:** Mask values higher than FIFODEPTH are not valid. The module will not trigger a match for any value in this case.
 - **2:** RXMSK2 and TXMSK2 bits are only present when FIFODEPTH = 8 or higher.
 - 3: RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher.
 - 4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.

FIGURE 17-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM


FIGURE 17-6: SPIx MASTER, FRAME SLAVE CONNECTION DIAGRAM

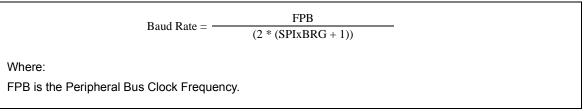

FIGURE 17-7: SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM

FIGURE 17-8: SPIX SLAVE, FRAME SLAVE CONNECTION DIAGRAM

EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPIx CLOCK SPEED

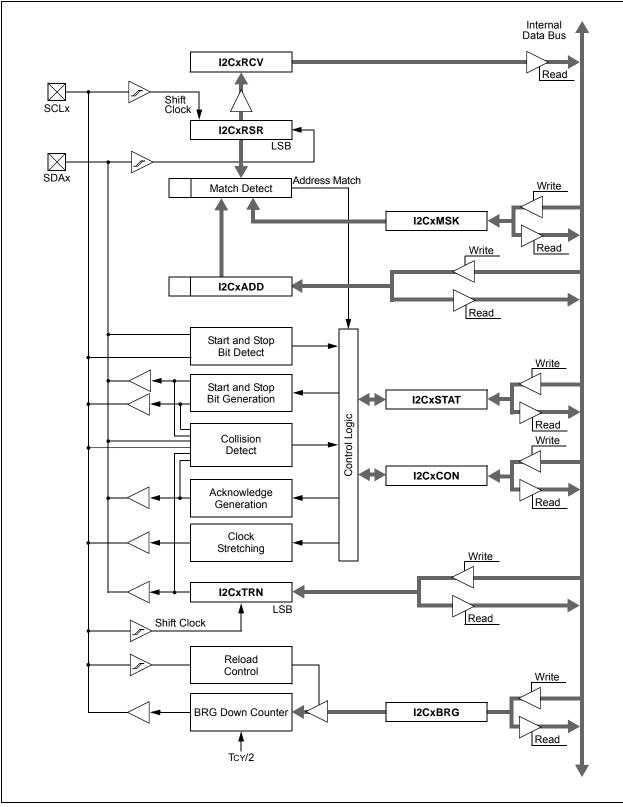
18.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Inter-Integrated Circuit™ (I²C™)" (DS70000195). The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated CircuitTM (I^2C^{TM}) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:

- Independent Master and Slave Logic
- · 7-Bit and 10-Bit Device Addresses
- General Call Address as Defined in the $\ensuremath{\mathsf{I}}^2\ensuremath{\mathsf{C}}$ Protocol
- Clock Stretching to Provide Delays for the Processor to Respond to a Slave Data Request
- · Both 100 kHz and 400 kHz Bus Specifications
- Configurable Address Masking
- Multi-Master Modes to Prevent Loss of Messages in Arbitration
- Bus Repeater mode, Allowing the Acceptance of All Messages as a Slave, Regardless of the Address
- Automatic SCL


A block diagram of the module is shown in Figure 18-1.

18.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

FIGURE 18-1: I2Cx BLOCK DIAGRAM

18.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 18-1.

EQUATION 18-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2)

or

$$F_{SCL} = \frac{F_{CY}}{2 \cdot (BRG + 2)}$$

$$BRG = \left(\frac{CT}{2 \cdot F_{SCL}}\right) - 2$$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

18.3 Slave Address Masking

The I2CxMSK register (Register 18-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the slave module will detect both addresses, '000000000' and '0010000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONH<11>).

Note: As a result of changes in the I²C[™] protocol, the addresses in Table 18-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Demained Queters Fact	Fair	I2CxB	RG Value	
Required System FSCL	FCY	(Decimal)	(Hexadecimal)	Actual FSCL
100 kHz	16 MHz	157	9D	100 kHz
100 kHz	8 MHz	78	4E	100 kHz
100 kHz	4 MHz	39	27	99 kHz
400 kHz	16 MHz	37	25	404 kHz
400 kHz	8 MHz	18	12	404 kHz
400 kHz	4 MHz	9	9	385 kHz
400 kHz	2 MHz	4	4	385 kHz
1 MHz	16 MHz	13	D	1.026 MHz
1 MHz	8 MHz	6	6	1.026 MHz
1 MHz	4 MHz	3	3	0.909 MHz

TABLE 18-1: I2Cx CLOCK RATES^(1,2)

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

TABLE 18-2: I2Cx RESERVED ADDRESSES⁽¹⁾

Slave Address	R/W Bit	Description				
0000 000	0	General Call Address ⁽²⁾				
0000 000	1	Start Byte				
0000 001	x	CBus Address				
0000 01x	x	Reserved				
0000 1xx	х	HS Mode Master Code				
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾				
1111 1xx	x	Reserved				

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

- 2: This address will be Acknowledged only if GCEN = 1.
- 3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

R/W-0	U-0	R/W-0, HC	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCKREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN
bit 15							bit 8
	DAMO						
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit
Legend:		HC = Hardwar	e Clearable bit				
R = Readabl	le bit	W = Writable I	pit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = Enables t	Enable bit (writa he I2Cx module the I2Cx module	and configures	s the SDAx and			i
bit 14	Unimplemen	ted: Read as 'o)'				
bit 13	I2CSIDL: I2C	x Stop in Idle M	lode bit				
		ues module ope			e mode		
bit 12		s module opera Lx Release Co			(1)		
	If STREN = 0 1 = Releases 0 = Forces closed If STREN = 1 1 = Releases	_ clock ock low (clock s <u>:</u>	tretch)		bit to '0'; clock	stretch at next	SCLx low
bit 11	STRICT: I2C>	Strict Reserve	d Address Rule	Enable bit			
	(In Slave that cate; (In Maste 0 = Reserved (In Slave When the	erved addressir Mode) – The d gory are NACK er Mode) – The d addressing wo e Mode) – The ere is a match w er Mode) – Rese	evice doesn't re ed. device is allowe ould be Acknow device will resp <i>i</i> th any of the re	spond to reserved to generate a ledged. ond to an addr	ved address sp addresses with ress falling in t	ace and addre reserved addr he reserved ac	ess space. Idress space
bit 10	A10M: 10-Bit	Slave Address	Flag bit				
	-	is a 10-bit slav s a 7-bit slave a					
bit 9	DISSLW: Sle	w Rate Control	Disable bit				
		control is disab control is enab				disabled for 1	MHz mode)
bit 8		us Input Levels					
		nput logic so the SMBus-specific		mpliant with the	e SMBus speci	fication	
	utomatically clea f slave receptior		e beginning of s	lave transmissi	on; automatica	ally cleared to '	o' at the end
• •		anad ta (o) at the					

REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

2: Automatically cleared to '0' at the beginning of slave transmission.

REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)
	 1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception 0 = General call address is disabled.
bit 6	STREN: SCLx Clock Stretch Enable bit
	In I ² C Slave mode only; used in conjunction with the SCKREL bit. 1 = Enables clock stretching 0 = Disables clock stretching
bit 5	ACKDT: Acknowledge Data bit
	In I^2C Master mode during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive. In I^2C Slave mode when AHEN = 1 or DHEN = 1. The value that the slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception.
	1 = NACK is sent 0 = ACK is sent
bit 4	ACKEN: Acknowledge Sequence Enable bit
	In I ² C Master mode only; applicable during Master Receive mode. 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit 0 = Acknowledge sequence is Idle
bit 3	RCEN: Receive Enable bit (I ² C Master mode only)
	1 = Enables Receive mode for I^2C ; automatically cleared by hardware at end of 8-bit receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (I ² C Master mode only)
	1 = Initiates Stop condition on SDAx and SCLx pins0 = Stop condition is Idle
bit 1	RSEN: Restart Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Restart condition on SDAx and SCLx pins 0 = Restart condition is Idle
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)
	1 = Initiates Start condition on SDAx and SCLx pins0 = Start condition is Idle
Note 1:	Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception.

2: Automatically cleared to '0' at the beginning of slave transmission.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0								
_	_	_	_	_	—	—	_								
bit 15							bit 8								
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0								
0-0	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN								
bit 7	TOIL	OOIL	DOLIN	ODAIT	ODODL	AILN	bit (
Legend:															
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'									
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own								
bit 15-7	Unimplemen	ted: Read as '	ı'												
bit 6	-			I ² C™ Slave mo	de only).										
		nterrupt on dete	• •												
		ction interrupts													
bit 5	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)														
	1 = Enables i	nterrupt on dete	ection of Start	or Restart cond	itions										
		ction interrupts													
bit 4		BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only)													
			0	nerated for a re	ceived address	/data byte, igno	oring the state								
		COV bit only if F / is only update		/ is clear											
bit 3		x Hold Time Se													
bit 0				after the falling	edge of SCL x										
				after the falling											
bit 2	SBCDE: Slav	e Mode Bus Co	ollision Detect	Enable bit (I ² C	Slave mode or	ly)									
				mpled low whe											
		and the bus g	oes Idle. This	detection mode	e is only valid d	uring data and	ACK transmi								
	sequences.	alave hus collisi	on interrunts												
	 = Enables slave bus collision interrupts 0 = Slave bus collision interrupts are disabled 														
	0 = Slave bus	collision interr	upts are disab	ed		AHEN: Address Hold Enable bit (l^2 C Slave mode only)									
bit 1			-												
bit 1	AHEN: Addre	ess Hold Enable	bit (I ² C Slave		ching received	address byte;	SCKREL bi								
bit 1	AHEN: Addre 1 = Following (I2CxCO	ess Hold Enable g the 8th fallin	bit (I ² C Slave g edge of SC e cleared and t	mode only)		address byte;	SCKREL bi								
bit 1 bit 0	AHEN: Addre 1 = Following (I2CxCO 0 = Address	ess Hold Enable g the 8th fallin NH<12>) will b	e bit (I ² C Slave g edge of SC e cleared and f bled	mode only) CLx for a mate the SCLx will be		address byte;	SCKREL bi								
	AHEN: Addre 1 = Following (I2CxCO 0 = Address DHEN: Data 1 = Following	ess Hold Enable g the 8th fallin NH<12>) will b holding is disat Hold Enable bit g the 8th falling	e bit (I ² C Slave g edge of SC e cleared and bled (I ² C Slave mo edge of SCLx f	mode only) CLx for a mate the SCLx will be ode only) for a received da	e held low										
	AHEN: Addre 1 = Following (I2CxCO 0 = Address DHEN: Data 1 = Following bit (I2CxC	ess Hold Enable g the 8th fallin NH<12>) will b holding is disat Hold Enable bit	e bit (I ² C Slave g edge of SC e cleared and bled (I ² C Slave mo edge of SCLx f d SCLx is held	mode only) CLx for a mate the SCLx will be ode only) for a received da	e held low										

R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC				
ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10				
bit 15							bit 8				
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
IWCOL	I2COV	D/A	P	S	R/W	RBF	TBF				
bit 7	12001	0				1.01	bit 0				
Legend:		C = Clearable	bit	HSC = Hardw	are Settable/Cl	earable bit					
R = Readable	e bit	W = Writable			nented bit, read						
-n = Value at		'1' = Bit is set		'0' = Bit is clea			re Settable bit				
bit 15		-			and Slave mod	les)					
	 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave 										
bit 14		•		ng as l ² C™ mas	ster; applicable	to master trans	smit operation)				
	1 = Master tra	ansmit is in pro	gress (8 bits +	•	2 I I		· ,				
bit 13		ansmit is not in knowledge Tim		lid in 1 ² C Slava	mode only)						
DIL 15					on 8th falling e	dae of SCL v c	lock				
					edge of SCLx c						
bit 12-11	Unimplemen	ted: Read as '	0'								
bit 10	BCL: Bus Collision Detect bit (Master/Slave mode; cleared when I^2C module is disabled, I2CEN = 0)										
				ig a master or s	slave transmit c	peration					
bit 9		ollision has bee		ftor Stop datas	tion						
DIL 9		neral Call Statu all address wa	-		uon)						
		all address wa									
bit 8	ADD10: 10-B	it Address Stat	us bit (cleared	after Stop dete	ction)						
		dress was mato									
L:1 7		dress was not n									
bit 7	IWCOL: I2Cx Write Collision Detect bit 1 = An attempt to write to the I2CxTRN register failed because the I ² C module is busy; must be cleared										
	in software										
	0 = No collisi	ion									
bit 6		Receive Overfl	-								
	•	as received whi Fransmit mode,		•	holding the pre	evious byte; I20	COV is a "don't				
	0 = No overfl		must be cleare								
bit 5		dress bit (wher	n operating as I	² C slave)							
		that the last by	• •								
		that the last by	te received or t	transmitted was	s an address						
bit 4	P: I2Cx Stop										
	1 = Indicates	n Start, Reset of that a Stop bit as not detected	has been deteo		nen the I ² C mo	dule is disable	d, I2CEN = 0.				
	•										

REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER

REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: I2Cx Start bit Updated when Start, Reset or Stop is detected; cleared when the I ² C module is disabled, I2CEN = 0. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 1 = Read: Indicates the data transfer is output from the slave 0 = Write: Indicates the data transfer is input to the slave
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full (8-bits of data) 0 = Transmit is complete, I2CxTRN is empty

REGISTER 18-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	MSK<9:8>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
MSK<7:0>									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

MSK<9:0>: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position
 0 = Disables masking for bit x; bit match is required in this position

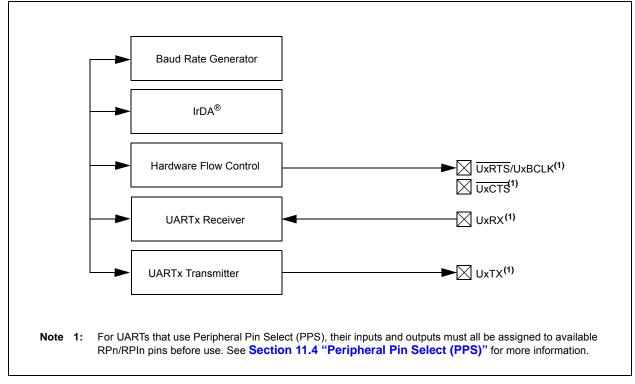
19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582). The information in this data sheet supersedes the information in the FRM.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins. The UART module includes IrDA[®] encoder/decoder unit.

The PIC24FJ256GA412/GB412 family devices are equipped with six UART modules, referred to as UART1 through UART6.

The primary features of the UARTx modules are:


- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with the UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler

- Baud Rates Range from up to 2.5 Mbps and Down to 38 Hz at 40 MIPS in 16x Mode
- Baud Rates Range from up to 10 Mbps and Down to 152 Hz at 40 MIPS in 4x Mode
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit Mode with Address Detect (9th bit = 1)
- Separate Transmit and Receive Interrupts
- Loopback Mode for Diagnostic Support
- Polarity Control for Transmit and Receive Lines
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- Includes DMA Support
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 19-1. The UARTx module consists of these key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver
- Note: Throughout this section, references to register and bit names that may be associated with a specific UART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTAL" might refer to the Status Low register for either UART1, UART2, UART3 or UART4.

FIGURE 19-1: UARTX SIMPLIFIED BLOCK DIAGRAM

19.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated, 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 19-1 shows the formula for computation of the baud rate when BRGH = 0.

EQUATION 19-1: UARTX BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate =
$$\frac{FCY}{16 \cdot (UxBRG + 1)}$$

UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: FCY denotes the instruction cycle clock frequency (FOSC/2).

2: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 19-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is Fcy/16 (for UxBRG = 0) and the minimum baud rate possible is Fcy/(16 * 65536).

Equation 19-2 shows the formula for computation of the baud rate when BRGH = 1.

EQUATION 19-2: UARTX BAUD RATE WITH BRGH = $1^{(1,2)}$

Baud Rate =
$$\frac{FCY}{4 \cdot (UxBRG + 1)}$$

UxBRG = $\frac{FCY}{4 \cdot Baud Rate} - 1$

- **Note 1:** FCY denotes the instruction cycle clock frequency.
 - 2: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 19-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate = FCY/(16 (UxBRG + 1))Solving for UxBRG Value: UxBRG = ((FCY/Desired Baud Rate)/16) - 1UxBRG = ((400000/9600)/16) - 1UxBRG = 25 Calculated Baud Rate = 4000000/(16(25+1))= 9615 = (Calculated Baud Rate – Desired Baud Rate) Error Desired Baud Rate = (9615 - 9600)/9600= 0.16%Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

19.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write a data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternatively, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bits, UTXISEL<1:0>.

19.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 19.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bits, UTXISELx.

19.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write 55h to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

19.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 19.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. Set the URXEN bit (UxSTAL<12>).
- 4. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL<1:0>.
- 5. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 6. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

19.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

19.7 Infrared Support

The UARTx module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

19.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. With UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UARTx module is enabled. It can be used to support the IrDA codec chip.

19.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0	
bit 15		USIDE		RIGNE		OLINI	bit 8	
bit 10							bit 0	
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	
bit 7							bit 0	
Legend:		HC = Hardware						
R = Readab		W = Writable b	bit	•	nented bit, read			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own	
bit 15	1 = UARTx is	RTx Enable bit ⁽ enabled; all UA disabled; all UAF	RTx pins are o					
bit 14	Unimplemen	ted: Read as '0	,					
bit 13		x Stop in Idle M						
		ues module ope module operat			e mode			
bit 12		Encoder and De						
51(12		der and decode		bit				
		der and decode						
bit 11		e Selection for						
		n is in Simplex i n is in Flow Cor						
bit 10	Unimplemen	ted: Read as '0	,					
bit 9-8		ARTx Enable b						
	10 = UxTX, U 01 = UxTX, U	xRX and UxBC xRX, UxCTS an xRX and UxRT d UxRX pins are	nd UxRTS pins S pins are ena	are enabled a abled a abled and used;	nd used UxCTS pin is o	controlled by po	rt latches	
bit 7	WAKE: Wake	-up on Start Bit	Detect During	Sleep Mode E	nable bit			
		ontinues to sam are on the follow			generated on t	the falling edge	, bit is cleared	
bit 6		RTx Loopback	Mode Select b	it				
bit 0	1 = Enables L	oopback mode mode is disable						
bit 5		-Baud Enable b						
	cleared ir	baud rate meas hardware upor measurement	n completion		er – requires re	ception of a Sy	nc field (55h);	
bit 4		RTx Receive Po		•				
	1 = UxRX Idle	e state is '0'	,					
		 0 = UxRX Idle state is '1' UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For ore information, see Section 11.4 "Peripheral Pin Select (PPS)". 						

REGISTER 19-1: UXMODE: UARTX MODE REGISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 19-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit 1 = High-Speed mode (4 BRG clock cycles per bit) 0 = Standard Speed mode (16 BRG clock cycles per bit)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits 0 = One Stop bit
- **Note 1:** If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see **Section 11.4 "Peripheral Pin Select (PPS)**".
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 19-2: UxSTAL: UARTx STATUS LOW AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	URXEN	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC	
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	
bit 7 bit (

Legend:	C = Clearable bit	HSC = Hardware Settable/C	Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
HS = Hardware Settable bit	HC = Hardware Clearable bit		

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: UARTx IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾

	For IREN = 0: 1 = UxTX Idle state is '0' 0 = UxTX Idle state is '1'
	For IREN = 1: 1 = UxTX Idle state is '1' 0 = UxTX Idle state is '0'
bit 12	URXEN: UARTx Receive Enable bit
	 1 = Receive is enabled, UxRX pin is controlled by UARTx 0 = Receive is disabled, UxRX pin is controlled by the port
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit ⁽²⁾
	 1 = Transmit is enabled, UxTX pin is controlled by UARTx 0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by the port
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
Note 1:	The value of this bit only affects the transmit properties of the module when the IrDA encoder is enabled

- **Note 1:** The value of this bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).
 - 2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 19-2: UxSTAL: UARTx STATUS LOW AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect) 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (the character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (the character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 → 0 transition) will reset the receive buffer and the RSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1:	The value of this bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

R/\//_0

R/\//_0

R/\//_0

REGISTER 19-3: UxSTAH: UARTx STATUS HIGH AND CONTROL REGISTER

R/\//_0

R/\//_0

processor during Address Detect mode.

R/W-0	R/W-U	R/W-0	R/W-0	R/W-U	R/W-0	R/W-0	R/VV-0		
ADMASK7	ADMASK6	ADMASK5	ADMASK4	ADMASK3	ADMASK2	ADMASK1	ADMASK0		
bit 15	·						bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADMADDR7	ADMADDR6	ADMADDR5	ADMADDR4	ADMADDR3	ADMADDR2	ADMADDR1	ADMADDR0		
bit 7	·		•	•	•	•	bit 0		
Legend:									
R = Readable	e bit	W = Writable b	oit	U = Unimplem	ented bit, read	as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-8	bit 15-8 ADMASK<7:0>: ADMADDR<7:0> Masking bits								
	1 = Correspor	nding ADMADE	Rx bit is used	to detect the ad	ddress match				
	0 = Correspor	nding ADMADE	Rx bit is not us	sed to detect th	e address mat	ch			
bit 7-0	ADMADDR<7	':0>: Address [Detect Task Off	-Load bits					
	Used with the	e ADMASK<7:(0> bits to off-lo	oad the task o	f detecting the	address chara	acter from the		

R/\//_0

R/\//_0

R/\//_0

REGISTER 19-4: UxTXREG: UARTx TRANSMIT REGISTER (NORMALLY WRITE-ONLY)

LAST ⁽¹⁾ — — — — TX8 bit 15 bit 8	W-x	U-0	U-0	U-0	U-0	U-0	U-0	W-x
bit 15 bit 8	LAST ⁽¹⁾	—	—	—	—	—		TX8
	bit 15							bit 8

W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0
bit 7							bit 0

Legend

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 LAST: Last Byte Indicator for Smart Card Support bit⁽¹⁾

bit 14-9 Unimplemented: Read as '0'

bit 8 **TX8:** Data of the Transmitted Character bit (in 9-bit mode)

bit 7-0 TX<7:0>: Data of the Transmitted Character bits

Note 1: This bit is only available for UART1 and UART2.

	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—		_	_	_		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	TXRPT1 ⁽²⁾	TXRPT0 ⁽²⁾	CONV	T0PD ⁽²⁾	PTRCL	SCEN bit 0		
bit 7									
Legend:									
R = Readat	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared							own		
bit 3	10 = Retran: 01 = Retran: 00 = Retran: CONV: Logid 1 = Inverse I	smits the error b smits the error b smits the error b smits the error b c Convention Se ogic convention	yte three times yte twice yte once						
bit 2		gic convention Down Duration fo	or T = 0 Error H	andling bit ⁽²⁾					
bit 1	PTRCL: Sm 1 = T = 1 pro	art Card Protoco otocol	ol Selection bit						
	0 = T = 0 pro	otocol							

REGISTER 19-5: UxSCCON: UARTx SMART CARD CONTROL REGISTER⁽¹⁾

2: These bits are applicable to T = 0 only, see the PTRCL bit (UxSCCON<1>).

REGISTER 19-6: UxSCINT: UARTx SMART CARD INTERRUPT REGISTER⁽¹⁾

	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_		RXRPTIF ⁽²⁾	TXRPTIF ⁽²⁾		_	WTCIF	GTCIF
oit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	PARIE ⁽²⁾	RXRPTIE ⁽²⁾	TXRPTIE ⁽²⁾	—	—	WTCIE	GTCIE
pit 7							bit
egend:							
R = Readabl	e bit	W = Writable	oit	U = Unimpler	nantad hit ra:	n, se pe	
n = Value at		'1' = Bit is set	JI	'0' = Bit is cle		x = Bit is unkr	nwn
oit 15-14	Unimpleme	nted: Read as ')'				
pit 13	-	Receive Repeat I		it(2)			
		ror has persisted			s been receiv	ed five times (fo	ur retransmits
	0 = Flag is c						
oit 12		ransmit Repeat I					
	1 = Line erro 0 = Flag is c	or has been dete leared	cted after the la	ast retransmit	per TXRPT<1	:0>, see Registe	er 19-5
oit 11-10	-	Unimplemented: Read as '0'					
oit 9	WTCIF: Wai	WTCIF: Waiting Time Counter (WTC) Interrupt Flag bit					
		Time Counter ha					
	0 = Waiting	Time Counter ha	s not reached	0			
bit 8		rd Time Counter	. , .	ot Flag bit			
		ime Counter has ime Counter has					
oit 7		nted: Read as '					
oit 6	PARIE: Pari	ty Interrupt Enab	le bit ⁽²⁾				
	1 = An inter	rrupt is invoked L<3>) in Registe	when a char		ved with a pa	arity error, see	the PERR b
oit 5	•	Receive Repeat I	nterrupt Enable	e bit ⁽²⁾			
	1 = An inter	rrupt is invoked	when a parity		rsisted after t	the same chara	cter has bee
		d five times (four	retransmits)				
oit 4	0 = Interrup	ransmit Repeat	ntorrunt Enabl	o hit(2)			
<i>n</i> t 4		rupt is invoked v	-		ofter the last r	etransmit ner the	
		been completed					
	0 = Interrup	t is disabled					
oit 3-2	Unimpleme	nted: Read as 'o)'				
pit 1		iting Time Count	-				
		Time Counter int Time Counter int					
	-		unupi is uisabi	cu -			
vit O	GTCIE: Gua	rd Time Counter	Interrunt Engl	ole hit			
pit O		ird Time Counter	-				

2: This bit is applicable to T = 0 only, see the PTRCL bit (UxSCCON<1>).

REGISTER 19-7: UXGTC: UARTX GUARD TIME COUNTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_		—	—	—	—	—	GTC8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			GT	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

bit 15-9 Unimplemented: Read as '0'

bit 8-0 **GTC<8:0>:** Guard Time Counter bits This counter is operated on the bit clock whose period is always equal to one ETU.

Note 1: This register is only available for UART1 and UART2.

REGISTER 19-8: UxWTCL: UARTx WAITING TIME COUNTER REGISTER (LOWER BITS)⁽¹⁾

WTC<15:8> bit 15 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 WTC<7:0> bit 7								
bit 15 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/M-0 WTC<7:0> bit 7	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
R/W-0				WTC<	<15:8>			
WTC<7:0> bit 7	bit 15							bit 8
WTC<7:0> bit 7								
bit 7	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				WTC	<7:0>			
Legend:	bit 7							bit 0
Legend:								
	Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 WTC<15:0>: Waiting Time Counter bits

This counter is operated on the bit clock whose period is always equal to one ETU.

Note 1: This register is only available for UART1 and UART2.

REGISTER 19-9: UxWTCH: WAITING TIME COUNTER REGISTER (UPPER BITS)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	WTC<23:16>							
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0

WTC<23:16>: Waiting Time Counter bits This counter is operated on the bit clock whose period is always equal to one ETU.

Note 1: This register is only available for UART1 and UART2.

NOTES:

20.0 UNIVERSAL SERIAL BUS WITH ON-THE-GO SUPPORT (USB OTG)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "USB On-The-Go (OTG)" (DS39721). The information in this data sheet supersedes the information in the FRM.

PIC24FJ256GB412 family devices contain a full-speed and low-speed compatible, On-The-Go (OTG) USB Serial Interface Engine (SIE). The OTG capability allows the device to act as either a USB peripheral device or as a USB embedded host with limited host capabilities. The OTG capability allows the device to dynamically switch from device to host operation using OTG's Host Negotiation Protocol (HNP).

For more details on OTG operation, refer to the "On-The-Go Supplement" to the "USB 2.0 Specification", published by the USB-IF. For more details on USB operation, refer to the "Universal Serial Bus Specification", v2.0.

Note:	USB	functionality	is	not	available	on
	PIC24FJ256GA412 family devices.					

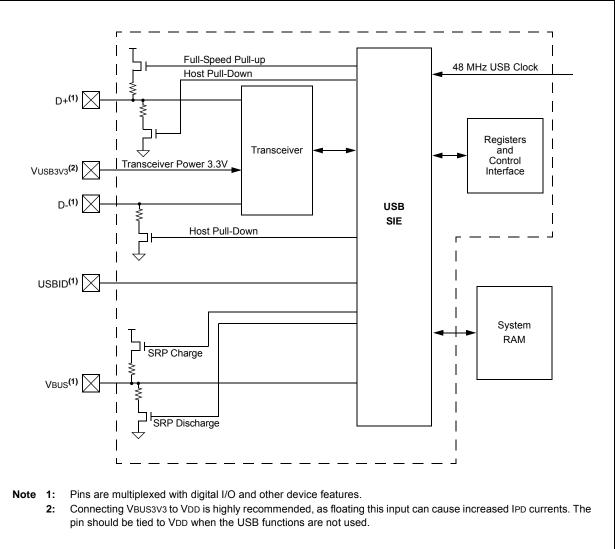
The USB OTG module offers these features:

- USB Functionality in Device and Host Modes, and OTG Capabilities for Application-Controlled Mode Switching
- Software-Selectable Module Speeds of Full Speed (12 Mbps) or Low Speed (1.5 Mbps, available in Host mode only)
- Support for All Four USB Transfer Types: Control, Interrupt, Bulk and Isochronous
- 16 Bidirectional Endpoints for a Total of 32 Unique Endpoints
- DMA Interface for Data RAM Access
- Queues up to Sixteen Unique Endpoint Transfers without Servicing
- Integrated, On-Chip USB Transceiver with Support for Off-Chip Transceivers via a Digital Interface
- Integrated VBUS Generation with On-Chip Comparators and Boost Generation, and Support of External VBUS Comparators and Regulators through a Digital Interface
- Configurations for On-chip Bus Pull-up and Pull-Down Resistors

A simplified block diagram of the USB OTG module is shown in Figure 20-1.

The USB OTG module can function as a USB peripheral device or as a USB host, and may dynamically switch between Device and Host modes under software control. In either mode, the same data paths and Buffer Descriptors (BDs) are used for the transmission and reception of data.

In discussing USB operation, this section will use a controller-centric nomenclature for describing the direction of the data transfer between the microcontroller and the USB. RX (Receive) will be used to describe transfers that move data from the USB to the microcontroller and TX (Transmit) will be used to describe transfers that move data from the microcontroller to the USB. Table 20-1 shows the relationship between data direction in this nomenclature and the USB tokens exchanged.


TABLE 20-1: CONTROLLER-CENTRIC DATA DIRECTION FOR USB HOST OR TARGET

USB Mode	Direction				
USB Wode	RX	ТХ			
Device	OUT or SETUP	IN			
Host	IN	OUT or SETUP			

This chapter presents the most basic operations needed to implement USB OTG functionality in an application. A complete and detailed discussion of the USB protocol and its OTG supplement are beyond the scope of this data sheet. It is assumed that the user already has a basic understanding of USB architecture and the latest version of the protocol.

Not all steps for proper USB operation (such as device enumeration) are presented here. It is recommended that application developers use an appropriate device driver to implement all of the necessary features. Microchip provides a number of application-specific resources, such as USB firmware and driver support. Refer to www.microchip.com/usb for the latest firmware and driver support.

20.1 Hardware Configuration

20.1.1 DEVICE MODE

20.1.1.1 D+ Pull-up Resistor

PIC24FJ256GA412/GB412 family devices have a built-in 1.5 kΩ resistor on the D+ line that is available when the microcontroller is operating in Device mode. This is used to signal an external host that the device is operating in Full-Speed Device mode. It is engaged by setting the USBEN bit (U1CON<0>) and powering up the USB module (USBPWR = 1). If the OTGEN bit (U1OTGCON<2>) is set, then the D+ pull-up is enabled through the DPPULUP bit (U1OTGCON<7>).

20.1.1.2 The VBUS Pin

In order to meet the USB 2.0 specification requirement, relating to the back drive voltage on the D+/D- pins, the USB module incorporates VBUS-level sensing comparators. When the comparators detect the VBUS level below the VA_SESS_VLD level, the hardware will automatically disable the D+ pull-up resistor described in Section 20.1.1.1 "D+ Pull-up Resistor". This allows the device to automatically meet the back drive requirement for D+ and D-, even if the application firmware does not explicitly monitor the VBUS level. Therefore, the VBUS microcontroller pin should not be left floating in USB Device mode application designs, and should normally be connected to the VBUS pin on the USB connector/cable (either directly or through a small resistance \leq 100 ohms).

20.1.1.3 Power Modes

Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are:

- · Bus Power Only mode
- · Self-Power Only mode
- Dual Power with Self-Power Dominance mode

Bus Power Only mode (Figure 20-2) is effectively the simplest method. All power for the application is drawn from the USB.

To meet the inrush current requirements of the *"USB 2.0 OTG Specification"*, the total effective capacitance, appearing across VBUS and ground, must be no more than 10 μ F.

In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5V VBUS line of the USB cable. During the USB Suspend mode, the D+ or Dpull-up resistor must remain active, which will consume some of the allowed suspend current.

In Self-Power Only mode (Figure 20-3), the USB application provides its own power, with very little power being pulled from the USB. Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering VBUS.

To meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives VBUS high. One of the 5.5V tolerant I/O pins may be used for this purpose.

The application should never source any current onto the 5V VBUS pin of the USB cable when the USB module is operated in USB Device mode.

The Dual Power with Self-Power Dominance mode (Figure 20-4) allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. Dual power devices must also meet all of the special requirements for inrush current and Suspend mode current previously described, and must not enable the USB module until VBUS is driven high.

FIGURE 20-2: BUS POWER ONLY INTERFACE EXAMPLE

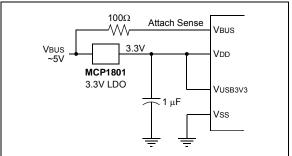


FIGURE 20-3: SELF-POWER ONLY

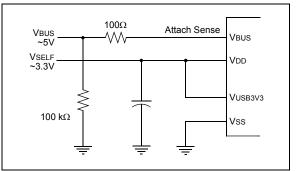
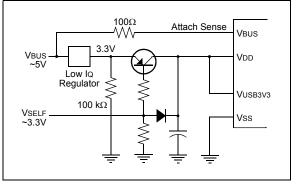
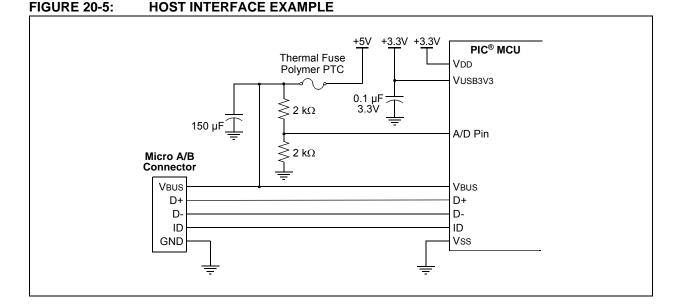



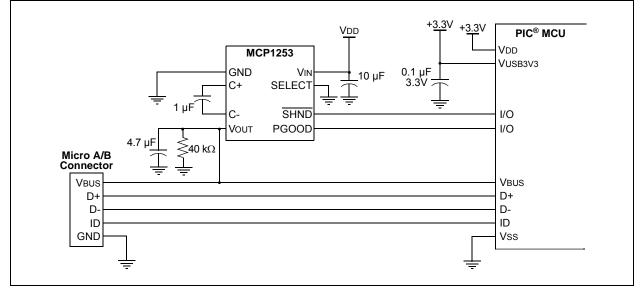
FIGURE 20-4:

DUAL POWER EXAMPLE

20.1.2 HOST AND OTG MODES


20.1.2.1 D+ and D- Pull-Down Resistors

PIC24FJ256GA412/GB412 family devices have a built-in 15 kΩ pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON<3>). If the OTGEN bit (U1OTGCON<2>) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>).


20.1.2.2 Power Configurations

In Host mode, as well as Host mode in On-The-Go operation, the *"USB 2.0 OTG Specification"* requires that the host application should supply power on VBUS. Since the microcontroller is running below VBUS, and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 20-5). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 20-6.

FIGURE 20-6: OTG INTERFACE EXAMPLE

20.1.3 CALCULATING TRANSCEIVER POWER REQUIREMENTS

The USB transceiver consumes a variable amount of current depending on the characteristic impedance of the USB cable, the length of the cable, the VUSB3V3 supply voltage and the actual data patterns moving across the USB cable. Longer cables have larger capacitances and consume more total energy when switching output states. The total transceiver current consumption will be application-specific.

Equation 20-1 can help estimate how much current actually may be required in full-speed applications. Refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"USB On-The-Go (OTG)**" (DS39721) for a complete discussion on transceiver power consumption.

EQUATION 20-1: ESTIMATING USB TRANSCEIVER CURRENT CONSUMPTION

 $Ixcvr = \frac{40 \text{ mA} \bullet \text{VUSB3V3} \bullet \text{PZERO} \bullet \text{Pin} \bullet \text{LCABLE}}{3.3V \bullet 5m} + I\text{PULLUP}$

Legend: VUSB3V3 – Voltage applied to the VUSB3V3 pin in volts (3.0V to 3.6V).

 P_{ZERO} – Percentage (in decimal) of the IN traffic bits sent by the PIC[®] microcontroller that are a value of '0'.

PIN – Percentage (in decimal) of total bus bandwidth that is used for IN traffic.

LCABLE – Length (in meters) of the USB cable. The *"USB 2.0 OTG Specification"* requires that full-speed applications use cables no longer than 5m.

IPULLUP – Current which the nominal, 1.5 k Ω pull-up resistor (when enabled) must supply to the USB cable.

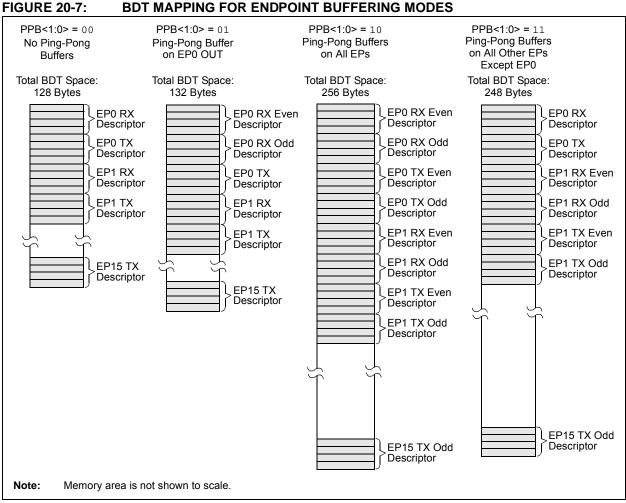
20.2 **USB Buffer Descriptors and the** BDT

Endpoint buffer control is handled through a structure called the Buffer Descriptor Table (BDT). This provides a flexible method for users to construct and control endpoint buffers of various lengths and configurations.

The BDT can be located in any available 512-byte, aligned block of data RAM. The BDT Pointer (U1BDTP1) contains the upper address byte of the BDT and sets the location of the BDT in RAM. The user must set this pointer to indicate the table's location.

The BDT is composed of Buffer Descriptors (BDs) which are used to define and control the actual buffers in the USB RAM space. Each BD consists of two 16-bit, "soft" (non-fixed address) registers, BDnSTAT and BDnADR, where n represents one of the 64 possible BDs (range of 0 to 63). BDnSTAT is the status register for BDn, while BDnADR specifies the starting address for the buffer associated with BDn.

Since BDnADR is a 16-bit register, only Note: the first 64 Kbytes of RAM can be accessed by the USB module.


Depending on the endpoint buffering configuration used, there are up to 64 sets of Buffer Descriptors, for a total of 256 bytes. At a minimum, the BDT must be at least 8 bytes long. This is because the "USB 2.0 OTG Specification" mandates that every device must have Endpoint 0 with both input and output for initial setup.

Endpoint mapping in the BDT is dependent on three variables:

- Endpoint number (0 to 15)
- Endpoint direction (RX or TX)
- Ping-pong settings (U1CNFG1<1:0>)

Figure 20-7 illustrates how these variables are used to map endpoints in the BDT.

In Host mode, only Endpoint 0 Buffer Descriptors are used. All transfers utilize the Endpoint 0 Buffer Descriptor and Endpoint Control register (U1EP0). For received packets, the attached device's source endpoint is indicated by the value of ENDPT<3:0> in the USB status register (U1STAT<7:4>). For transmitted packets, the attached device's destination endpoint is indicated by the value written to the USB Token register (U1TOK).

BDs have a fixed relationship to a particular endpoint, depending on the buffering configuration. Table 20-2 provides the mapping of BDs to endpoints. This relationship also means that gaps may occur in the BDT if endpoints are not enabled contiguously. This, theoretically, means that the BDs for disabled endpoints could be used as buffer space. In practice, users should avoid using such spaces in the BDT unless a method of validating BD addresses is implemented.

20.2.1 BUFFER OWNERSHIP

Because the buffers and their BDs are shared between the CPU and the USB module, a simple semaphore mechanism is used to distinguish which is allowed to update the BD and associated buffers in memory. This is done by using the UOWN bit as a semaphore to distinguish which is allowed to update the BD and associated buffers in memory. UOWN is the only bit that is shared between the two configurations of BDnSTAT.

When UOWN is clear, the BD entry is "owned" by the microcontroller core. When the UOWN bit is set, the BD entry and the buffer memory are "owned" by the USB peripheral. The core should not modify the BD or its

corresponding data buffer during this time. Note that the microcontroller core can still read BDnSTAT while the SIE owns the buffer and vice versa.

The Buffer Descriptors have a different meaning based on the source of the register update. Register 20-1 and Register 20-2 show the differences in BDnSTAT depending on its current "ownership".

When UOWN is set, the user can no longer depend on the values that were written to the BDs. From this point, the USB module updates the BDs as necessary, overwriting the original BD values. The BDnSTAT register is updated by the SIE with the token PID and the transfer count is updated.

20.2.2 DMA INTERFACE

The USB OTG module uses a dedicated DMA to access both the BDT and the endpoint data buffers. Since part of the address space of the DMA is dedicated to the Buffer Descriptors, a portion of the memory connected to the DMA must comprise a contiguous address space, properly mapped for the access by the module.

	BDs Assigned to Endpoint										
Endpoint	Mode 0 (No Ping-Pong)		Mode 1 (Ping-Pong on EP0 OUT)		Mode 2 (Ping-Pong on All EPs)		Mode 3 (Ping-Pong on All Other EPs, Except EP0)				
	Out	In	Out	In	Out	In	Out	In			
0	0	1	0 (E), 1 (O)	2	0 (E), 1 (O)	2 (E), 3 (O)	0	1			
1	2	3	3	4	4 (E), 5 (O)	6 (E), 7 (O)	2 (E), 3 (O)	4 (E), 5 (O)			
2	4	5	5	6	8 (E), 9 (O)	10 (E), 11 (O)	6 (E), 7 (O)	8 (E), 9 (O)			
3	6	7	7	8	12 (E), 13 (O)	14 (E), 15 (O)	10 (E), 11 (O)	12 (E), 13 (O)			
4	8	9	9	10	16 (E), 17 (O)	18 (E), 19 (O)	14 (E), 15 (O)	16 (E), 17 (O)			
5	10	11	11	12	20 (E), 21 (O)	22 (E), 23 (O)	18 (E), 19 (O)	20 (E), 21 (O)			
6	12	13	13	14	24 (E), 25 (O)	26 (E), 27 (O)	22 (E), 23 (O)	24 (E), 25 (O)			
7	14	15	15	16	28 (E), 29 (O)	30 (E), 31 (O)	26 (E), 27 (O)	28 (E), 29 (O)			
8	16	17	17	18	32 (E), 33 (O)	34 (E), 35 (O)	30 (E), 31 (O)	32 (E), 33 (O)			
9	18	19	19	20	36 (E), 37 (O)	38 (E), 39 (O)	34 (E), 35 (O)	36 (E), 37 (O)			
10	20	21	21	22	40 (E), 41 (O)	42 (E), 43 (O)	38 (E), 39 (O)	40 (E), 41 (O)			
11	22	23	23	24	44 (E), 45 (O)	46 (E), 47 (O)	42 (E), 43 (O)	44 (E), 45 (O)			
12	24	25	25	26	48 (E), 49 (O)	50 (E), 51 (O)	46 (E), 47 (O)	48 (E), 49 (O)			
13	26	27	27	28	52 (E), 53 (O)	54 (E), 55 (O)	50 (E), 51 (O)	52 (E), 53 (O)			
14	28	29	29	30	56 (E), 57 (O)	58 (E), 59 (O)	54 (E), 55 (O)	56 (E), 57 (O)			
15	30	31	31	32	60 (E), 61 (O)	62 (E), 63 (O)	58 (E), 59 (O)	60 (E), 61 (O)			

TABLE 20-2: ASSIGNMENT OF BUFFER DESCRIPTORS FOR THE DIFFERENT BUFFERING MODES

Legend: (E) = Even transaction buffer, (O) = Odd transaction buffer

REGISTER 20-1: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, USB MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	R/W-x, HSC					
UOWN	DTS	PID3	PID2	PID1	PID0	BC9	BC8
bit 15							bit 8

| R/W-x, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/C	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	UOWN: USB Own bit
	 1 = The USB module owns the BD and its corresponding buffer; the CPU must not modify the BD or the buffer
bit 14	DTS: Data Toggle Packet bit
	1 = Data 1 packet
	0 = Data 0 packet
bit 13-10	PID<3:0>: Packet Identifier bits (written by the USB module)
	In Device Mode:
	Represents the PID of the received token during the last transfer.
	In Host Mode:
	Represents the last returned PID or the transfer status indicator.
bit 9-0	BC<9:0>: Byte Count bits
	This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.

REGISTER 20-2: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, CPU MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	r-0	r-0	R/W-x	R/W-x	R/W-x, HSC	R/W-x, HSC
UOWN	DTS ⁽¹⁾	—	—	DTSEN	BSTALL	BC9	BC8
bit 15							bit 8

| R/W-x, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 | | | | | | | bit 0 |

Legend: r = Reserved bit		HSC = Hardware Settal	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	UOWN: USB Own bit
	0 = The microcontroller core owns the BD and its corresponding buffer; the USB module ignores all other fields in the BD
bit 14	DTS: Data Toggle Packet bit ⁽¹⁾
	1 = Data 1 packet
	0 = Data 0 packet
bit 13-12	Reserved: Maintain as '0'
bit 11	DTSEN: Data Toggle Synchronization Enable bit
	 1 = Data toggle synchronization is enabled; data packets with incorrect Sync value will be ignored 0 = No data toggle synchronization is performed
bit 10	BSTALL: Buffer STALL Enable bit
	 1 = Buffer STALL is enabled; STALL handshake issued if a token is received that would use the BD in the given location (UOWN bit remains set, BD value is unchanged); corresponding EPSTALL bit will get set on any STALL handshake 0 = Buffer STALL is disabled
bit 9-0	BC<9:0>: Byte Count bits
	This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.
Note 1:	This bit is ignored unless DTSEN = 1.

20.3 USB Interrupts

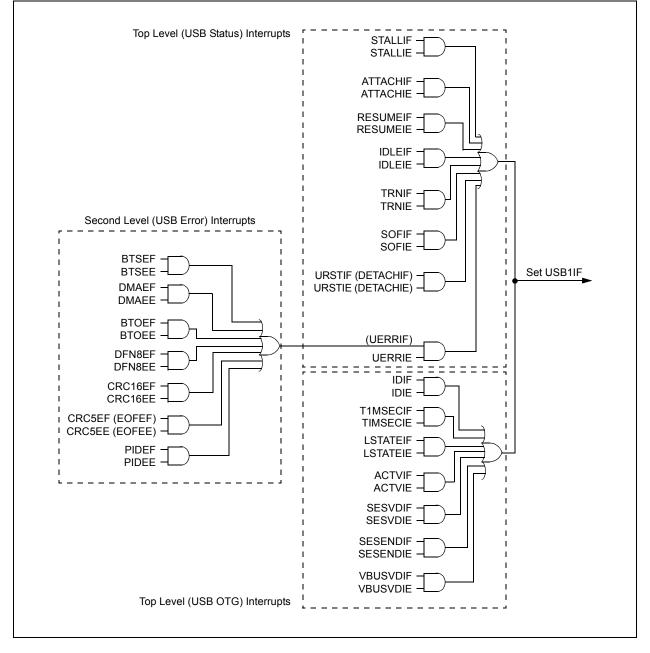
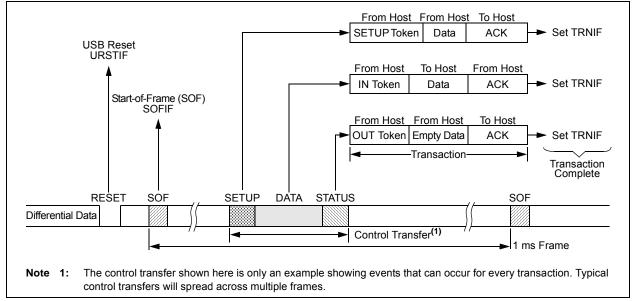

The USB OTG module has many conditions that can be configured to cause an interrupt. All interrupt sources use the same interrupt vector.

Figure 20-8 shows the interrupt logic for the USB module. There are two layers of interrupt registers in the USB module. The top level consists of overall USB status interrupts; these are enabled and flagged in the U1IE and U1IR registers, respectively. The second level consists of USB error conditions, which are enabled and flagged in the U1EIR and U1EIE registers.

An interrupt condition in any of these triggers a USB Error Interrupt Flag (UERRIF) in the top level. Unlike the device-level interrupt flags in the IFSx registers, USB interrupt flags in the U1IR registers can only be cleared by writing a '1' to the bit position.

Interrupts may be used to trap routine events in a USB transaction. Figure 20-9 provides some common events within a USB frame and their corresponding interrupts.

FIGURE 20-8: USB OTG INTERRUPT FUNNEL



20.3.1 CLEARING USB OTG INTERRUPTS

Unlike device-level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware settable only bits. Additionally, these bits can only be cleared in software by writing a '1' to their locations (i.e., performing a MOV type instruction). Writing a '0' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this data sheet, a bit that can only be cleared by writing a '1' to its location is referred to as "Write 1 to Clear". In register descriptions, this function is indicated by the descriptor, "K".

20.4 Device Mode Operation

The following section describes how to perform a common Device mode task. In Device mode, USB transfers are performed at the transfer level. The USB module automatically performs the status phase of the transfer.

20.4.1 ENABLING DEVICE MODE

- Reset the Ping-Pong Buffer Pointers by setting, then clearing, the Ping-Pong Buffer Reset bit, PPBRST (U1CON<1>).
- 2. Disable all interrupts (U1IE and U1EIE = 00h).
- 3. Clear any existing interrupt flags by writing FFh to U1IR and U1EIR.
- 4. Verify that VBUS is present (non-OTG devices only).

- 5. Enable the USB module by setting the USBEN bit (U1CON<0>).
- Set the OTGEN bit (U1OTGCON<2>) to enable OTG operation.
- Enable the endpoint zero buffer to receive the first setup packet by setting the EPRXEN and EPHSHK bits for Endpoint 0 (U1EP0<3,0> = 1).
- 8. Power up the USB module by setting the USBPWR bit (U1PWRC<0>).
- Enable the D+ pull-up resistor to signal an attach by setting the DPPULUP bit (U10TGCON<7>).

20.4.2 RECEIVING AN IN TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the *"USB 2.0 Specification"*.
- 2. Create a data buffer and populate it with the data to send to the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- When the USB module receives an IN token, it automatically transmits the data in the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Complete Interrupt Flag, TRNIF (U1IR<3>).

20.4.3 RECEIVING AN OUT TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the "USB 2.0 Specification".
- 2. Create a data buffer with the amount of data you are expecting from the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- 4. When the USB module receives an OUT token, it automatically receives the data sent by the host to the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Complete Interrupt Flag, TRNIF (U1IR<3>).

20.5 Host Mode Operation

The following sections describe how to perform common Host mode tasks. In Host mode, USB transfers are invoked explicitly by the host software. The host software is responsible for the Acknowledge portion of the transfer. Also, all transfers are performed using the USB Endpoint 0 Control register (U1EP0) and Buffer Descriptors.

20.5.1 ENABLE HOST MODE AND DISCOVER A CONNECTED DEVICE

- Enable Host mode by setting the HOSTEN bit (U1CON<3>). This causes the Host mode control bits in other USB OTG registers to become available.
- Enable the D+ and D- pull-down resistors by setting the DPPULDWN and DMPULDWN bits (U10TGCON<5:4>). Disable the D+ and Dpull-up resistors by clearing the DPPULUP and DMPULUP bits (U10TGCON<7:6>).
- At this point, SOF generation begins with the SOF counter loaded with 12,000. Eliminate noise on the USB by clearing the SOFEN bit (U1CON<0>) to disable Start-of-Frame (SOF) packet generation.
- 4. Enable the device attached interrupt by setting the ATTACHIE bit (U1IE<6>).
- Wait for the device attached interrupt (U1IR<6> = 1). This is signaled by the USB device changing the state of D+ or D- from '0' to '1' (SE0 to J-state). After it occurs, wait 100 ms for the device power to stabilize.
- Check the state of the JSTATE and SE0 bits in U1CON. If the JSTATE bit (U1CON<7>) is '0', the connecting device is low speed. If the connecting device is low speed, set the LSPDEN and LSPD bits (U1ADDR<7> and U1EP0<7>) to enable low-speed operation.
- Reset the USB device by setting the USBRST bit (U1CON<4>) for at least 50 ms, sending Reset signaling on the bus. After 50 ms, terminate the Reset by clearing USBRST.
- In order to keep the connected device from going into suspend, enable the SOF packet generation by setting the SOFEN bit.
- 9. Wait 10 ms for the device to recover from Reset.
- 10. Perform enumeration as described by Chapter 9 of the "USB 2.0 Specification".

20.5.2 COMPLETE A CONTROL TRANSACTION TO A CONNECTED DEVICE

- 1. Follow the procedure described in Section 20.5.1 "Enable Host Mode and Discover a Connected Device" to discover a device.
- Set up the Endpoint Control register for bidirectional control transfers by writing 0Dh to U1EP0 (this sets the EPCONDIS, EPTXEN and EPHSHK bits).
- 3. Place a copy of the device framework setup command in a memory buffer. See Chapter 9 of the *"USB 2.0 Specification"* for information on the device framework command set.
- Initialize the Buffer Descriptor (BD) for the current (even or odd) TX EP0 to transfer the eight bytes of command data for a device framework command (i.e., GET DEVICE DESCRIPTOR):
 - a) Set the BD Data Buffer Address (BD0ADR) to the starting address of the 8-byte memory buffer containing the command.
 - b) Write 8008h to BD0STAT (this sets the UOWN bit and sets a byte count of 8).
- Set the USB device address of the target device in the address register (U1ADDR<6:0>). After a USB bus Reset, the device USB address will be zero. After enumeration, it will be set to another value between 1 and 127.
- 6. Write D0h to U1TOK; this is a SETUP token to Endpoint 0, the target device's default control pipe. This initiates a SETUP token on the bus, followed by a data packet. The device handshake is returned in the PID field of BD0STAT after the packets are complete. When the USB module updates BD0STAT, a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). This completes the setup phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification".
- 7. To initiate the data phase of the setup transaction (i.e., get the data for the GET DEVICE DESCRIPTOR command), set up a buffer in memory to store the received data.

- 8. Initialize the current (even or odd) RX or TX (RX for IN, TX for OUT) EP0 BD to transfer the data.
 - a) Write C040h to BD0STAT. This sets the UOWN, configures Data Toggle (DTS) to DATA1 and sets the byte count to the length of the data buffer (64 or 40h in this case).
 - b) Set BD0ADR to the starting address of the data buffer.
- 9. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 90h to U1TOK for an IN token for a GET DEVICE DESCRIPTOR command). This initiates an IN token on the bus, followed by a data packet from the device to the host. When the data packet completes, the BD0STAT is written and a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). For control transfers with a single packet data phase, this completes the data phase of the setup transaction, as referenced in Chapter 9 of the "USB 2.0 Specification". If more data needs to be transferred, return to Step 8.
- 10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet.
- 11. Initialize the current (even or odd) TX EP0 BD to transfer the status data:
 - a) Set the BDT buffer address field to the start address of the data buffer.
 - b) Write 8000h to BD0STAT (set UOWN bit, configure DTS to DATA0 and set byte count to 0).
- 12. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 01h to U1TOK for an OUT token for a GET DEVICE DESCRIPTOR command). This initiates an OUT token on the bus, followed by a zero length data packet from the host to the device. When the data packet completes, the BD is updated with the hand-shake from the device and a Token Complete Interrupt Flag is asserted (the TRNIF flag is set). This completes the status phase of the setup transaction, as described in Chapter 9 of the "USB 2.0 Specification".

Note: Only one control transaction can be performed per frame.

20.5.3 SEND A FULL-SPEED BULK DATA TRANSFER TO A TARGET DEVICE

- Follow the procedure described in Section 20.5.1 "Enable Host Mode and Discover a Connected Device" and Section 20.5.2 "Complete a Control Transaction to a Connected Device" to discover and configure a device.
- To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD (U1EP0<7>) bit. If you want the hardware to automatically retry indefinitely if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0<6>).
- 3. Set up the BD for the current (even or odd) TX EP0 to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the address register (U1ADDR<6:0>).
- 5. Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data.
- 6. Wait for the Token Complete Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor and the transfer has completed. If the Retry Disable bit (RETRYDIS) is set, the handshake (ACK, NAK, STALL or ERROR (0Fh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than 2.5 µs), then the target has detached (U1IR<0> is set).
- Once the Token Complete Interrupt Flag occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to Step 2.
- **Note:** USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.

20.6 OTG Operation

20.6.1 SESSION REQUEST PROTOCOL (SRP)

An OTG A-device may decide to power down the VBUS supply when it is not using the USB link through the Session Request Protocol (SRP). Software may do this by configuring a GPIO pin to disable an external power transistor, or voltage regulator enable signal, which controls the VBUS supply. When the VBUS supply is powered down, the A-device is said to have ended a USB session.

An OTG A-device or embedded host may repower the VBUS supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device repower the VBUS supply (initiate a new session). This is accomplished via Session Request Protocol (SRP).

Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions:

- 1. VBUS supply is below the session valid voltage.
- 2. Both D+ and D- have been low for at least 2 ms.

The B-device will be notified of Condition 1 by the SESENDIF (U1OTGIR<2>) interrupt. Software will have to manually check for Condition 2.

Note:	When the A-device powers down the							
	VBUS supply, the B-device must discon-							
	nect its pull-up resistor from power. If the							
	device is self-powered, it can do this by							
	clearing DPPULUP (U1OTGCON<7>) and							
	DMPULUP (U1OTGCON<6>).							
	· · · · · · · · · · · · · · · · · · ·							

The B-device may aid in achieving Condition 1 by discharging the VBUS supply through a resistor. Software may do this by setting VBUSDIS (U1OTGCON<0>).

After these initial conditions are met, the B-device may begin requesting the new session. The B-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U10TGCON<7>). The data line should be held high for 5 to 10 ms.

The B-device then proceeds by pulsing the VBUS supply. Software should do this by setting PUVBUS (U1CNFG2<4>). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR<6>) interrupt or via the SESVDIF (U1OTGIR<3>) interrupt), the A-device must restore the VBUS supply by properly configuring the general purpose I/O port pin controlling the external power source.

The B-device should not monitor the state of the VBUS supply while performing VBUS supply pulsing. When the B-device does detect that the VBUS supply has been restored (via the SESVDIF (U10TGIR<3>) interrupt), the B-device must reconnect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP bit).

The A-device must complete the SRP by driving USB Reset signaling.

20.6.2 HOST NEGOTIATION PROTOCOL (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).

HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the "On-The-Go Supplement" to the "USB 2.0 Specification" for more information regarding HNP. HNP may only be initiated at full speed.

After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR<0>) interrupt), the A-device may allow the B-device to take over as host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.

If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition, via ATTACHIF (U1IR<6>), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.

When the B-device has finished in its role as host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power down the VBUS supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation and drives Reset signaling.

20.7 USB OTG Module Registers

There are a total of 37 memory-mapped registers associated with the USB OTG module. They can be divided into four general categories:

- USB OTG Module Control (12)
- USB Interrupt (7)
- USB Endpoint Management (16)
- USB VBUS Power Control (2)

This total does not include the (up to) 128 BD registers in the BDT. Their prototypes, described in Register 20-1 and Register 20-2, are shown separately in Section 20.2 "USB Buffer Descriptors and the BDT".

All USB OTG registers are implemented in the Least Significant Byte (LSB) of the register. Bits in the upper byte are unimplemented and have no function. Note that some registers are instantiated only in Host mode, while other registers have different bit instantiations and functions in Device and Host modes.

The registers described in the following sections are those that have bits with specific control and configuration features. The following registers are used for data or address values only:

- U1BDTP1: Specifies the 256-word page in data RAM used for the BDT; 8-bit value with bit 0 fixed as '0' for boundary alignment.
- U1FRML and U1FRMH: Contain the 11-bit byte counter for the current data frame.

20.7.1 USB OTG MODULE CONTROL REGISTERS

REGISTER 20-3: U1OTGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	_	_	—
bit 15	•						bit 8

R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC
ID		LSTATE	—	SESVD	SESEND	—	VBUSVD
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7	ID: ID Pin State Indicator bit
	 1 = No plug is attached or a Type B cable has been plugged into the USB receptacle 0 = A Type A plug has been plugged into the USB receptacle
bit 6	Unimplemented: Read as '0'
bit 5	LSTATE: Line State Stable Indicator bit
	 1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms 0 = The USB line state has not been stable for the previous 1 ms
bit 4	Unimplemented: Read as '0'
bit 3	SESVD: Session Valid Indicator bit
	1 = The VBUS voltage is above VA_SESS_VLD (as defined in the "USB 2.0 OTG Specification") on the A or B-device
	0 = The VBUS voltage is below VA_SESS_VLD on the A or B-device
bit 2	SESEND: B Session End Indicator bit
	 1 = The VBUS voltage is below VB_SESS_END (as defined in the "USB 2.0 OTG Specification") on the B-device
	0 = The VBUS voltage is above VB_SESS_END on the B-device
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVD: A VBUS Valid Indicator bit
	 1 = The VBUS voltage is above VA_VBUS_VLD (as defined in the "USB 2.0 OTG Specification") on the A-device
	0 = The VBUS voltage is below VA_VBUS_VLD on the A-device

REGISTER 20-4: U10TGCON: USB ON-THE-GO CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DPPULUP	DMPULUP	DPPULDWN ⁽¹⁾	DMPULDWN ⁽¹⁾	VBUSON	OTGEN ⁽¹⁾	VBUSCHG	VBUSDIS ⁽¹⁾
bit 7							bit 0

Legend:				
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimpley	mented: Dood op (0)		
	-	nented: Read as '0'		
bit 7		P: D+ Pull-up Enable bit	1.1	
		ata line pull-up resistor is enat ata line pull-up resistor is disal		
bit 6	DMPULU	P: D- Pull-up Enable bit		
		ata line pull-up resistor is enab		
		ata line pull-up resistor is disab		
bit 5	DPPULD	WN: D+ Pull-Down Enable bit	(1)	
		ata line pull-down resistor is e		
		ata line pull-down resistor is di		
bit 4		WN: D- Pull-Down Enable bit		
		ata line pull-down resistor is er ata line pull-down resistor is dis		
bit 3	VBUSON	: VBUS Power-on bit		
	1 = VBUS	line is powered		
	0 = VBUS	line is not powered		
bit 2	OTGEN:	OTG Features Enable bit ⁽¹⁾		
	0 = USB			abled olled in hardware by the setting
bit 1	VBUSCH	G: VBUS Charge bit		
	1 = VBUS	line is charged through a resi	stor	
		line is not charged		
bit 0	VBUSDIS	: VBUS Discharge Enable bit ⁽¹	1)	
		line is discharged through a r		
	0 = VBUS	line is not discharged		
Note 1:	These bits ar	e only used in Host mode; do	not use in Device mode.	

REGISTER 20-5: U1PWRC: USB POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R-x, HSC	U-0	U-0	R/W-0	U-0	U-0	R/W-0, HC	R/W-0		
UACTPND	—	—	USLPGRD	—	—	USUSPND	USBPWR		
bit 7	bit 7 bit 0								

Legend:	HC = Hardware Clearable bit HSC = Hardware Settable/Clearable bit		earable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7	UACTPND: USB Activity Pending bit
	 1 = Module should not be suspended at the moment (requires the USLPGRD bit to be set) 0 = Module may be suspended or powered down
bit 6-5	Unimplemented: Read as '0'
bit 4	USLPGRD: USB Sleep/Suspend Guard bit
	1 = Indicates to the USB module that it is about to be suspended or powered down0 = No suspend
bit 3-2	Unimplemented: Read as '0'
bit 1	USUSPND: USB Suspend Mode Enable bit
	1 = USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a low-power state
	0 = Normal USB OTG operation
bit 0	USBPWR: USB Operation Enable bit
	 1 = USB OTG module is enabled 0 = USB OTG module is disabled⁽¹⁾

Note 1: Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (U1CON<3,0> and U1OTGCON<2>) are all cleared.

REGISTER 20-6: U1STAT: USB STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

R-0, HSC	U-0	U-0					
ENDPT3	ENDPT2	ENDPT1	ENDPT0	DIR	PPBI ⁽¹⁾	_	—
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 Unimplemented: Read as '0'

bit 7-4	ENDPT<3:0>: Number of the Last Endpoint Activity bits (Represents the number of the BDT updated by the last USB transfer.)
	1111 = Endpoint 15 1110 = Endpoint 14
	•
	•
	•
	0001 = Endpoint 1
	0000 = Endpoint 0
bit 3	DIR: Last BD Direction Indicator bit
	1 = The last transaction was a transmit transfer (TX)
	0 = The last transaction was a receive transfer (RX)
bit 2	PPBI: Ping-Pong BD Pointer Indicator bit ⁽¹⁾
	1 = The last transaction was to the odd BD bank
	0 = The last transaction was to the even BD bank
bit 1-0	Unimplemented: Read as '0'

Note 1: This bit is only valid for endpoints with available even and odd BD registers.

REGISTER 20-7: U1CON: USB CONTROL REGISTER (DEVICE MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15 bit 8							

U-0	R-x, HSC	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	SE0	PKTDIS	—	HOSTEN	RESUME	PPBRST	USBEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-7	Unimplemented: Read as '0'
bit 6	SE0: Live Single-Ended Zero Flag bit
	 1 = Single-ended zero is active on the USB bus 0 = No single-ended zero is detected
bit 5	PKTDIS: Packet Transfer Disable bit
	 1 = SIE token and packet processing are disabled; automatically set when a SETUP token is received 0 = SIE token and packet processing are enabled
bit 4	Unimplemented: Read as '0'
bit 3	HOSTEN: Host Mode Enable bit
	 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled
bit 2	RESUME: Resume Signaling Enable bit
	1 = Resume signaling is activated
	0 = Resume signaling is disabled
bit 1	PPBRST: Ping-Pong Buffers Reset bit
	 1 = Resets all Ping-Pong Buffer Pointers to the even BD banks 0 = Ping-Pong Buffer Pointers are not reset
bit 0	USBEN: USB Module Enable bit
	 1 = USB module and supporting circuitry are enabled (device attached); D+ pull-up is activated in hardware 0 = USB module and supporting circuitry are disabled (device detached)

REGISTER 20-8: U1CON: USB CONTROL REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	_	—
bit 15							bit 8

R-x, HSC	R-x, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'		d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'
bit 7	JSTATE: Live Differential Receiver J-State Flag bit
	 1 = J-state (differential '0' in low speed, differential '1' in full speed) is detected on the USB 0 = No J-state is detected
bit 6	SE0: Live Single-Ended Zero Flag bit
	1 = Single-ended zero is active on the USB bus0 = No single-ended zero is detected
bit 5	TOKBUSY: Token Busy Status bit
	1 = Token is being executed by the USB module in On-The-Go state0 = No token is being executed
bit 4	USBRST: USB Module Reset bit
	1 = USB Reset has been generated for a software Reset; application must set this bit for 50 ms, then clear it
	0 = USB Reset is terminated
bit 3	HOSTEN: Host Mode Enable bit
	 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled
bit 2	RESUME: Resume Signaling Enable bit
	1 = Resume signaling is activated; software must set bit for 10 ms and then clear to enable remote wake-up
	0 = Resume signaling is disabled
bit 1	PPBRST: Ping-Pong Buffers Reset bit
	1 = Resets all Ping-Pong Buffer Pointers to the even BD banks
	0 = Ping-Pong Buffer Pointers are not reset
bit 0	SOFEN: Start-of-Frame Enable bit
	 1 = Start-of-Frame token is sent every one 1 ms 0 = Start-of-Frame token is disabled

REGISTER 20-9: U1ADDR: USB ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15 bit 8								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LSPDEN ⁽¹⁾	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0
bit 7 bit 0							

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'
bit 7	LSPDEN: Low-Speed Enable Indicator bit ⁽¹⁾
	 1 = USB module operates at low speed 0 = USB module operates at full speed
bit 6-0	ADDR<6:0>: USB Device Address bits

Note 1: Host mode only. In Device mode, this bit is unimplemented and read as '0'.

REGISTER 20-10: U1TOK: USB TOKEN REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PID3 | PID2 | PID1 | PID0 | EP3 | EP2 | EP1 | EP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-4PID<3:0>: Token Type Identifier bits1101 = SETUP (TX) token type transaction(1)1001 = IN (RX) token type transaction(1)0001 = OUT (TX) token type transaction(1)bit 3-0EP<3:0>: Token Command Endpoint Address bits

This value must specify a valid endpoint on the attached device.

Note 1: All other combinations are reserved and are not to be used.

REGISTER 20-11: U1SOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | CNT | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 CNT<7:0>: Start-of-Frame Size bits

Value represents 10 + (packet size of n bytes). For example:

0100 1010 = 64-byte packet

0010 1010 = 32-byte packet 0001 0010 = 8-byte packet

REGISTER 20-12: U1CNFG1: USB CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_			_	_		_						
bit 15							bit 8					
R/W-0	R/W-0		R/W-0 U-0 R/W-0 U-0 U-0						R/W-0 U-0 R/W-0 U-0 U-0	U-0 U-0	R/W-0	R/W-0
UTEYE	UOEMON ⁽¹⁾		USBSIDL	<u> </u>		PPB1	PPB0					
bit 7							bit C					
Legend: R = Readab	le hit	W = Writable	hit	U = Unimpler	pented bit re	ad as '0'						
-n = Value a		'1' = Bit is set		$0^{\circ} = \text{Bit is clear}$		x = Bit is unkr						
			•				101111					
bit 15-8	Unimplemen	ted: Read as '	0'									
bit 7	UTEYE: USB											
		ern test is enab										
	0 = Eye patte	ern test is disal	oled									
bit 6	UOEMON: US											
	1 = OE signa 0 = OE signa		dicates interval	s during which	the D+/D- lin	es are driving						
bit 5	Unimplemen	ted: Read as '	0'									
bit 4	USBSIDL: US	SB OTG Stop i	n Idle Mode bit									
			peration when t ation in Idle mo	he device enter de	rs Idle mode							
bit 3-2	Unimplemen	ted: Read as '	0'									
bit 1-0	PPB<1:0>: Pi	ing-Pong Buffe	ers Configuratio	n bits								
				abled for Endpo								
				abled for all enc abled for OUT E								
			Buffers are dis									

Note 1: This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.

REGISTER 20-13: U1CNFG2: USB CONFIGURATION REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0	U-0	U-0	r-0	r-0
—	—	—	PUVBUS ⁽¹⁾	_	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'
--

- bit 4 **PUVBUS:** VBUS Pull-Up Enable bit⁽¹⁾
 - 1 = Pull-up on VBUS pin is enabled
 - 0 = Pull-up on VBUS pin is disabled
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 Reserved: Maintain as '0'

Note 1: Never change this bit while the USBPWR bit is set (U1PWRC<0> = 1).

20.7.2 USB INTERRUPT REGISTERS

REGISTER 20-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	K = Write '1' to Clear bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	IDIF: ID State Change Indicator bit
	1 = Change in ID state is detected
	0 = No ID state change is detected
bit 6	T1MSECIF: 1 Millisecond Timer bit
	1 = The 1 millisecond timer has expired
	0 = The 1 millisecond timer has not expired
bit 5	LSTATEIF: Line State Stable Indicator bit
	1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from
	the last time
	0 = USB line state has not been stable for 1 ms
bit 4	ACTVIF: Bus Activity Indicator bit
	1 = Activity on the D+/D- lines or VBUS is detected = Ne activity on the D+/D- lines or VBUS is detected
h :+ 0	0 = No activity on the D+/D- lines or VBUS is detected
bit 3	SESVDIF: Session Valid Change Indicator bit
	1 = VBUS has crossed VA_SESS_END (as defined in the <i>"USB 2.0 OTG Specification"</i>) ⁽¹⁾ 0 = VBUS has not crossed VA_SESS_END
bit 2	SESENDIF: B-Device VBUS Change Indicator bit
5112	1 = VBUS change on B-device is detected; VBUS has crossed VB SESS END (as defined in the "USB 2.0
	OTG Specification") ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVDIF: A-Device VBUS Change Indicator bit
	1 = VBUS change on A-device is detected; VBUS has crossed VA_VBUS_VLD (as defined in the "USB 2.0 OTG Specification") ⁽¹⁾
	0 = No VBUS change on A-device is detected
Note 1:	VBUS threshold crossings may either be rising or falling.

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

REGISTER 20-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimple	mented: Read as '0'		
bit 7	IDIE: ID I	Interrupt Enable bit		
		rupt is enabled		
		rupt is disabled		
bit 6		IE: 1 Millisecond Timer Inter	rupt Enable bit	
		rupt is enabled		
bit 5		rupt is disabled	t Enabla bit	
DIL D		E: Line State Stable Interrup rupt is enabled		
		rupt is disabled		
bit 4		Bus Activity Interrupt Enable	e bit	
		rupt is enabled		
	0 = Inter	rupt is disabled		
bit 3	SESVDIE	E: Session Valid Interrupt Ena	able bit	
		rupt is enabled		
	0 = Inter	rupt is disabled		
bit 2	SESEND	IE: B-Device Session End In	iterrupt Enable bit	
		rupt is enabled		
		rupt is disabled		
bit 1	•	mented: Read as '0'		
bit 0		DIE: A-Device VBUS Valid Inte	errupt Enable bit	
		rupt is enabled		
	0 = inter	rupt is disabled		

REGISTER 20-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—			—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
STALLIF	—	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF
bit 7							bit 0

Legend:	HS = Hardware Settable b	it			
R = Readable bit	K = Write '1' to Clear bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknowr		

bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	 1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in Device mode
	0 = A STALL handshake has not been sent
bit 6	Unimplemented: Read as '0'
bit 5	RESUMEIF: Resume Interrupt bit
	1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed)
	0 = No K-state is observed
bit 4	IDLEIF: Idle Detect Interrupt bit
	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of the current token is complete; read the U1STAT register for endpoint information 0 = Processing of the current token is not complete; clear the U1STAT register or load the next token from STAT (clearing this bit causes the STAT FIFO to advance)
bit 2	SOFIF: Start-of-Frame Token Interrupt bit
	1 = A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold is reached by the host
	0 = No Start-of-Frame token is received or threshold reached
bit 1	UERRIF: USB Error Condition Interrupt bit
	 1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit
	0 = No unmasked error condition has occurred
bit 0	URSTIF: USB Reset Interrupt bit
	 1 = Valid USB Reset has occurred for at least 2.5 μs; Reset state must be cleared before this bit can be reasserted
	0 = No USB Reset has occurred; individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise oper- ations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared
	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause

REGISTER 20-17: U1IR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8


| R/K-0, HS |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| STALLIF | ATTACHIF | RESUMEIF | IDLEIF | TRNIF | SOFIF | UERRIF | DETACHIF |
| bit 7 | | | | | | | bit 0 |

Legend:	HS = Hardware Settable bit					
R = Readable bit	K = Write '1' to Clear bit	U = Unimplemented bit, read	l as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	 1 = A STALL handshake was sent by the peripheral device during the handshake phase of the transaction in Device mode 0 = A STALL handshake has not been sent
bit 6	
DILO	ATTACHIF: Peripheral Attach Interrupt bit 1 = A peripheral attachment has been detected by the module; it is set if the bus state is not SE0 and
	 The perpheral attachment has been detected by the module, it is set if the bus state is not SE0 and there has been no bus activity for 2.5 μs 0 = No peripheral attachment has been detected
bit 5	RESUMEIF: Resume Interrupt bit
	 1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed) 0 = No K-state is observed
bit 4	IDLEIF: Idle Detect Interrupt bit
DIL 4	1 = Idle condition is detected (constant Idle state of 3 ms or more)
	0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of the current token is complete; read the U1STAT register for endpoint information 0 = Processing of the current token is not complete; clear the U1STAT register or load the next token from U1STAT
bit 2	SOFIF: Start-of-Frame Token Interrupt bit
	 1 = A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold is reached by the host 0 = No Start-of-Frame token is received or threshold reached
bit 1	UERRIF: USB Error Condition Interrupt bit
	 1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit 0 = No unmasked error condition has occurred
bit 0	DETACHIF: Detach Interrupt bit
	 1 = A peripheral detachment has been detected by the module; Reset state must be cleared before this bit can be reasserted
	0 = No peripheral detachment is detected. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause
	all set bits, at the moment of the write, to become cleared.

REGISTER 20-18: U1IE: USB INTERRUPT ENABLE REGISTER (ALL USB MODES)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—				_	—		_
bit 15		L					bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STALLIE	ATTACHIE ⁽¹⁾	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE
							DETACHIE
bit 7							bit
Legend: R = Readat	alo hit	M = M/ritabla b		II – Unimplom	opted bit rea	1 00 '0'	
r = Readad -n = Value a		W = Writable b '1' = Bit is set	nt	U = Unimplem '0' = Bit is clea		x = Bit is unkr	2014/2
	al FOR	I – DILIS SEL			areu		IOWII
bit 15-8	Unimplement	ted: Read as '0	,				
bit 7	-	ALL Handshake		ble bit			
	1 = Interrupt i						
	0 = Interrupt i						
bit 6		eripheral Attach	n Interrupt bit ((Host mode only	y) ⁽¹⁾		
	1 = Interrupt i						
	0 = Interrupt i						
bit 5		Resume Interru	ot bit				
	1 = Interrupt i 0 = Interrupt i						
bit 4	•	Detect Interrupt	bit				
	1 = Interrupt i	•					
	0 = Interrupt i	is disabled					
bit 3		Processing Co	mplete Interru	upt bit			
	1 = Interrupt i						
	0 = Interrupt i	is disabled					
h:+ 0	SOFIE: Start-of-Frame Token Interrupt bit						
bit 2			Interrupt bit				
bit 2	1 = Interrupt i	is enabled	Interrupt bit				
bit 2 bit 1	1 = Interrupt i 0 = Interrupt i	is enabled is disabled					
	1 = Interrupt i 0 = Interrupt i	is enabled is disabled 3 Error Conditio					
	1 = Interrupt i 0 = Interrupt i UERRIE: USE	is enabled is disabled 3 Error Conditio is enabled					
	1 = Interrupt i 0 = Interrupt i UERRIE: USE 1 = Interrupt i 0 = Interrupt i For Device Ma	is enabled is disabled 3 Error Conditio is enabled is disabled	n Interrupt bit				
bit 1	1 = Interrupt i 0 = Interrupt i UERRIE: USE 1 = Interrupt i 0 = Interrupt i For Device Ma URSTIE: USE	is enabled is disabled 3 Error Conditio is enabled is disabled <u>ode:</u> 3 Reset Interrup <u>e:</u>	n Interrupt bit t Enable bit				
bit 1	1 = Interrupt i 0 = Interrupt i UERRIE: USE 1 = Interrupt i 0 = Interrupt i For Device Ma URSTIE: USE	is enabled is disabled 3 Error Conditio is enabled is disabled <u>ode:</u> 3 Reset Interrup <u>e:</u> JSB Detach Inte	n Interrupt bit t Enable bit	Dit			

REGISTER 20-19: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
BTSEF	—	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF
						EOFEF	
bit 7			•	•	•		bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	K = Write '1' to Clear bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	BTSEF: Bit Stuff Error Flag bit
	1 = Bit stuff error has been detected
	0 = No bit stuff error has been detected
bit 6	Unimplemented: Read as '0'
bit 5	DMAEF: DMA Error Flag bit
	 1 = A USB DMA error condition is detected; the data size indicated by the BD byte count field is less than the number of received bytes, the received data is truncated 0 = No DMA error
bit 4	BTOEF: Bus Turnaround Time-out Error Flag bit
-	1 = Bus turnaround time-out has occurred
	0 = No bus turnaround time-out has occurred
bit 3	DFN8EF: Data Field Size Error Flag bit
	1 = Data field was not an integral number of bytes
	0 = Data field was an integral number of bytes
bit 2	CRC16EF: CRC16 Failure Flag bit
	1 = CRC16 failed
	0 = CRC16 passed
bit 1	For Device Mode:
	CRC5EF: CRC5 Host Error Flag bit
	1 = Token packet is rejected due to CRC5 error
	 0 = Token packet is accepted (no CRC5 error) For Host Mode:
	EOFEF: End-of-Frame (EOF) Error Flag bit
	1 = End-of-Frame error has occurred
	0 = End-of-Frame interrupt is disabled
bit 0	PIDEF: PID Check Failure Flag bit
	1 = PID check failed
	0 = PID check passed
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause
1	all set bits, at the moment of the write, to become cleared.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_		—			_	_
bit 15	·						bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BTSEE	—	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE
						EOFEE	L : L /
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable I	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkno	own
bit 15-8	•	ted: Read as '0					
bit 7		tuff Error Interro	upt Enable bit				
	1 = Interrupt 0 = Interrupt						
bit 6		ted: Read as '()'				
bit 5	-	A Error Interrup					
	1 = Interrupt						
	0 = Interrupt						
bit 4		Turnaround Tin	ne-out Error In	terrupt Enable	bit		
	1 = Interrupt 0 = Interrupt						
bit 3	-	ta Field Size Er	ror Interrupt Fi	hable bit			
	1 = Interrupt						
	0 = Interrupt						
bit 2	CRC16EE: C	RC16 Failure Ir	nterrupt Enable	e bit			
	1 = Interrupt						
bit 1	0 = Interrupt For Device M						
		C5 Host Error	Interrupt Enabl	e bit			
	1 = Interrupt		·				
	0 = Interrupt						
	For Host Mod	<u>e:</u> ₀of-Frame (EOF) Error interru	ot Enable hit			
	1 = Interrupt						
	0 = Interrupt						
bit 0	PIDEE: PID C	Check Failure Ir	iterrupt Enable	bit			
	1 = Interrupt						
	0 = Interrupt	is disabled					

REGISTER 20-20: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

20.7.3 USB ENDPOINT MANAGEMENT REGISTERS

REGISTER 20-21: U1EPn: USB ENDPOINT n CONTROL REGISTERS (n = 0 to 15)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LSPD ⁽¹⁾	RETRYDIS ⁽¹⁾		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	LSPD: Low-Speed Direct Connection Enable bit (U1EP0 only) ⁽¹⁾
	 1 = Direct connection to a low-speed device is enabled 0 = Direct connection to a low-speed device is disabled
bit 6	RETRYDIS: Retry Disable bit (U1EP0 only) ⁽¹⁾
	 1 = Retry NAK transactions are disabled 0 = Retry NAK transactions are enabled; retry is done in hardware
bit 5	Unimplemented: Read as '0'
bit 4	EPCONDIS: Bidirectional Endpoint Control bit
	If EPTXEN and EPRXEN = 1: 1 = Disables Endpoint n from control transfers; only TX and RX transfers are allowed 0 = Enables Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed
	For All Other Combinations of EPTXEN and EPRXEN:
1.11.0	This bit is ignored.
bit 3	EPRXEN: Endpoint Receive Enable bit
	 1 = Endpoint n receive is enabled 0 = Endpoint n receive is disabled
bit 2	EPTXEN: Endpoint Transmit Enable bit
	 1 = Endpoint n transmit is enabled 0 = Endpoint n transmit is disabled
bit 1	EPSTALL: Endpoint STALL Status bit
	 1 = Endpoint n was stalled 0 = Endpoint n was not stalled
bit 0	EPHSHK: Endpoint Handshake Enable bit
	1 = Endpoint handshake is enabled
	0 = Endpoint handshake is disabled (typically used for isochronous endpoints)
Note 1:	These bits are available only for U1EP0 and only in Host mode. For all other U1EPn registers, these bits are always unimplemented and read as '0'.

NOTES:

21.0 ENHANCED PARALLEL MASTER PORT (EPMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Enhanced Parallel Master Port (EPMP)" (DS39730). The information in this data sheet supersedes the information in the FRM.

The Enhanced Parallel Master Port (EPMP) module provides a parallel, 4-bit (Master mode only), 8-bit (Master and Slave modes) or 16-bit (Master mode only) data bus interface to communicate with off-chip modules, such as memories, FIFOs, LCD controllers and other microcontrollers. This module can serve as either the master or the slave on the communication bus.

For EPMP Master modes, all external addresses are mapped into the internal Extended Data Space (EDS). This is done by allocating a region of the EDS for each Chip Select (CS), and then assigning each Chip Select to a particular external resource, such as a memory or external controller. This region should not be assigned to another device resource, such as RAM or SFRs. To perform a write or read on an external resource, the CPU simply performs a write or read within the address range assigned for the EPMP.

Key features of the EPMP module are:

- Extended Data Space (EDS) Interface allows Direct Access from the CPU
- Up to 23 Programmable Address Lines
- Up to 2 Chip Select Lines
- Up to 2 Acknowledgment Lines (one per Chip Select)
- 4-Bit, 8-Bit or 16-Bit Wide Data Bus

- Programmable Strobe Options (per Chip Select):
 - Individual Read and Write Strobes or;
 Read/Write Strobe with Enable Strobe
- Programmable Address/Data Multiplexing
- Programmable Address Wait States
- Programmable Data Wait States (per Chip Select)
- Programmable Polarity on Control Signals (per Chip Select)
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer

21.1 Specific Package Variations

While all PIC24FJ256GA412/GB412 family devices implement the EPMP, I/O pin constraints place some limits on 16-Bit Master mode operations in some package types. This is reflected in the number of dedicated Chip Select pins implemented and the number of dedicated address lines that are available. The differences are summarized in Table 21-1. All available EPMP pin functions are summarized in Table 21-2.

For 64-pin devices, the dedicated Chip Select pins (PMCS1 and PMCS2) are not implemented. In addition, only 16 address lines (PMA<15:0>) are available. If required, PMA14 and PMA15 can be remapped to function as PMCS1 and PMCS2, respectively.

The memory space addressable by the device depends on the number of address lines available, as well as the number of Chip Select signals required for the application. Devices with lower pin counts are more affected by Chip Select requirements, as these take away address lines. Table 21-1 shows the maximum addressable range for each pin count.

Device	Dedicated	Chip Select	Address Lines	Address Range (bytes)		
Device	CS1	CS2		No CS	1 CS	2 CS
PIC24FJXXXGX406 (64-pin)	_	—	16	64K	32K	16K
PIC24FJXXXGX410 (100-pin)	Х	Х	23	16M		
PIC24FJXXXGX412 (121-pin)	Х	Х	23	16M		

TABLE 21-1: EPMP FEATURE DIFFERENCES BY DEVICE PIN COUNT

Pin Name (Alternate Function) Type		Description				
PMA<22:16>	0	Address Bus bits<22:16>				
PMA15	0	Address Bus bit 15				
PIVIATS	I/O	Data Bus bit 15 (16-bit port with Multiplexed Addressing)				
(PMCS2)	0	Chip Select 2 (alternate location)				
PMA14	0	Address Bus bit 14				
PIVIA 14	I/O	Data Bus bit 14 (16-bit port with Multiplexed Addressing)				
(PMCS1)	0	Chip Select 1 (alternate location)				
DMA <12:0>	0	Address Bus bits<13:8>				
PMA<13:8>	I/O	Data Bus bits<13:8> (16-bit port with Multiplexed Addressing)				
PMA<7:3>	0	Address Bus bits<7:3>				
PMA2	0	Address Bus bit 2				
(PMALU)	0	Address Latch Upper Strobe for Multiplexed Address				
PMA1	I/O	Address Bus bit 1				
(PMALH)	0	Address Latch High Strobe for Multiplexed Address				
PMA0	I/O	Address Bus bit 0				
(PMALL)	0	Address Latch Low Strobe for Multiplexed Address				
PMD<15:8>	I/O	Data Bus bits<15:8> (Demultiplexed Addressing)				
PMD<7:4>	I/O	Data Bus bits<7:4>				
	0	Address Bus bits<7:4> (4-bit port with 1-Phase Multiplexed Addressing)				
PMD<3:0>	I/O	Data Bus bits<3:0>				
PMCS1 ⁽¹⁾	I/O	Chip Select 1				
PMCS2 ⁽¹⁾	0	Chip Select 2				
PMWR	I/O	Write Strobe ⁽²⁾				
(PMENB)	I/O	Enable Signal ⁽²⁾				
PMRD	I/O	Read Strobe ⁽²⁾				
(PMRD/PMWR)	I/O	Read/Write Signal ⁽²⁾				
PMBE1	0	Byte Indicator				
PMBE0	0	Nibble or Byte Indicator				
PMACK1	1	Acknowledgment Signal 1				
PMACK2		Acknowledgment Signal 2				

Note 1: These pins are implemented in 100-pin and 121-pin devices only.

2: Signal function depends on the setting of the MODE<1:0> and SM bits (PMCON1<9:8> and PMCSxCF<8>).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
PMPEN	_	PSIDL	ADRMUX1	ADRMUX0	_	MODE1	MODE0			
bit 15			•				bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
CSF1	CSF0	ALP	ALMODE		BUSKEEP	IRQM1	IRQM0			
bit 7							bit (
Legend:										
R = Readab		W = Writable		-	nented bit, read					
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	Iown			
bit 15		allel Master Po	rt Enchlo hit							
	1 = EPMP is		IT ENADIE DIL							
	1 = EPMP is 0 = EPMP is									
bit 14		ted: Read as	0'							
bit 13	-		Stop in Idle Mc	ode bit						
			•		lle mode					
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 									
bit 12-11	ADRMUX<1:	0>: Address/D	ata Multiplexing	Selection bits						
	ADRMUX<1:0>: Address/Data Multiplexing Selection bits 11 = Lower address bits are multiplexed with data bits using 3 address phases									
	10 = Lower address bits are multiplexed with data bits using 2 address phases									
	01 = Lower address bits are multiplexed with data bits using 1 address phase 00 = Address and data appear on separate pins									
			-	e pins						
bit 10	-	ted: Read as								
bit 9-8			Node Select bits	5						
	11 = Master mode									
	10 = Enhanced PSP; pins used are PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0> 01 = Buffered PSP; pins used are PMRD, PMWR, PMCS and PMD<7:0>									
	01 = Buffered PSP; pins used are PMRD, PMWR, PMCS and PMD<7:0> 00 = Legacy Parallel Slave Port; pins used are PMRD, PMWR, PMCS and PMD<7:0>									
bit 7-6		hip Select Fun	-							
	11 = Reserved									
	10 = PMA15 is used for Chip Select 2, PMA14 is used for Chip Select 1									
	01 = PMA15 is used for Chip Select 2, PMCS1 is used for Chip Select 1									
1.1. E	00 = PMCS2 is used for Chip Select 2, PMCS1 is used for Chip Select 1 ALP: Address Latch Polarity bit									
bit 5			•							
	1 = Active-high (PMALL, PMALH and PMALU) 0 = Active-low (PMALL, PMALH and PMALU)									
bit 4		,		_0)						
	ALMODE: Address Latch Strobe Mode bit									
	1 = Enables "smart" address strobes (each address phase is only present if the current access would cause a different address in the latch than the previous address)									
	0 = Disables "smart" address strobes									
bit 3	Unimplemented: Read as '0'									
bit 2	BUSKEEP: B	us Keeper bit								
	1 = Data bus keeps its last value when not actively being driven									
	0 = Data bus is in a high-impedance state when not actively being driven									
bit 1-0		Interrupt Requ								
	11 = Interrupt is generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode), or on a read or write operation when PMA<1:0> = 11 (Addressable PSP mode only)									
	or on a i	read or write o	peration when F	-MA<1:0> = 11	L (Addressable	PSP mode on	V)			
					`		J /			
	10 = Reserve	ed	at the end of a ı				<i></i>			

REGISTER 21-1: PMCON1: EPMP CONTROL REGISTER 1

R-0, HSC	U-0	R/C-0, HS	R/C-0, HS	U-0	U-0	U-0	U-0		
BUSY	—	ERROR	TIMEOUT	—	—	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
RADDR23 ⁽¹⁾	RADDR22 ⁽¹⁾	RADDR21 ⁽¹⁾	RADDR20 ⁽¹⁾	RADDR19 ⁽¹⁾	RADDR18 ⁽¹⁾	RADDR17 ⁽¹⁾	RADDR16 ⁽¹⁾		
bit 7		•	•		•	•	bit 0		
Legend:		C = Clearable	bit	HSC = Hardw	are Settable/Cl	earable bit			
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		HS = Hardware Settable bit			
bit 15	BUSY: Busy b	oit (Master mod	e only)						
	1 = Port is bu								
	0 = Port is no	,							
bit 14	Unimplement	ted: Read as '0)'						
bit 13	ERROR: Error bit								
	1 = Transaction error (illegal transaction was requested)								
	0 = Transaction completed successfully								
bit 12	TIMEOUT: Time-out bit								
	1 = Transacti								
	0 = Transacti	on completed s	successfully						
bit 11-8	Unimplemented: Read as '0'								
bit 7-0	7-0 RADDR<23:16>: Parallel Master Port Reserved Address Space bits ⁽¹⁾								

REGISTER 21-2: PMCON2: EPMP CONTROL REGISTER 2

Note 1: If RADDR<23:16> = 00000000, then the last EDS address for Chip Select 2 will be FFFFFFh.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
PTWREN	PTRDEN	PTBE1EN	PTBE0EN	—	AWAITM1	AWAITM0	AWAITE		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	PTEN22 ⁽¹⁾	PTEN21 ⁽¹⁾	PTEN20 ⁽¹⁾	PTEN19 ⁽¹⁾	PTEN18 ⁽¹⁾	PTEN17 ⁽¹⁾	PTEN16 ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
				_ . . _					
bit 15		arallel Master Po		le Strobe Port E	Enable bit				
 1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled 									
bit 14		•		Strobe Port En	able hit				
Dit 14	PTRDEN: Parallel Master Port Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is enabled								
0 = PMRD/PMWR port is disabled									
bit 13	PTBE1EN: Pa	arallel Master F	ort High Nibble	e/Byte Enable F	Port Enable bit				
		oort is enabled							
	•	oort is disabled							
bit 12			ort Low Nibble	e/Byte Enable F	Byte Enable Port Enable bit				
		oort is enabled							
h:+ 11	-		,						
bit 11 bit 10-9	-	ted: Read as 'd		Chataa hita					
bit 10-9	11 = Wait of 3		ch Strobe Wait	States bits					
	10 = Wait of 2								
	01 = Wait of 1	1½ TCY							
	00 = Wait of 1	∕₂ TCY							
bit bit 8		fress Hold After	Address Latc	h Strobe Wait S	States bit				
$1 = \text{Wait of } 1\frac{1}{4} \text{ Tcy}$									
bit 7	$0 = Wait of \frac{1}{4}$	ted: Read as '0	, [,]						
	-	: EPMP Addre		hito(1)					
bit 6-0		: EPIMP Addre :16> function as							
		:16> function as		55 11165					
		t eveileble in Cr	•						

REGISTER 21-3: PMCON3: EPMP CONTROL REGISTER 3

Note 1: These bits are not available in 64-pin devices (PIC24FJXXXGA406/GB406).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PTEN15	PTEN14		PTEN<13:8>							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		PTEN<7:3>				PTEN<2:0>				
bit 7							bit 0			
Legend:										
R = Readable	a hit	W = Writable b	.it	U = Unimplem	antad hit raa	d oo '0'				
		'1' = Bit is set	Л	'0' = Bit is clea		x = Bit is unkr				
	FUR	I – DILIS SEL			areu		IUWII			
bit 15	PTEN15: PM	1A15 Port Enable	e bit							
		functions as eithe functions as port		ine 15 or Chip S	elect 2					
bit 14	PTEN14: PM	A14 Port Enable	e bit							
		functions as eithe		ine 14 or Chip S	elect 1					
		functions as port								
bit 13-3		EPMP Address								
	1 = PMA<13:3> function as EPMP address lines 0 = PMA<13:3> function as port I/Os									
	() = PMA<1	PTEN<2:0>: PMALU/PMALH/PMALL Strobe Enable bits								
bit 2-0				be Enable bits						
bit 2-0	PTEN<2:0>:		I/PMALL Stro		alatch strobes					

REGISTER 21-4: PMCON4: EPMP CONTROL REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
CSDIS	CSP	CSPTEN	BEP	—	WRSP	RDSP	SM				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
ACKP	PTSZ1	PTSZ0	_	_	_	_	_				
bit 7	11021	11020					bit (
Legend:	L 14		L :1	l l l la incale a		l (0)					
R = Readable		W = Writable		-	nented bit, read						
-n = Value at I	JOR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15	1 = Disables	Select x Disable the Chip Select the Chip Select	t x functionalit								
bit 14	CSP: Chip S	CSP: Chip Select x Polarity bit									
	1 = Active-hi 0 = Active-lo										
bit 13	CSPTEN: PN	ICSx Port Enab	ole bit								
	1 = PMCSx port is enabled										
		port is disabled									
bit 12	1 = Nibble/b	elect x Nibble/B yte enable is ac yte enable is ac	tive-high <u>(</u> PMI	BE0, PMBE1)							
bit 11		ited: Read as '	•								
bit 10	-	Select x Write		/ bit							
	For Slave Modes and Master Mode when SM = 0: 1 = Write strobe is active-high (PMWR) 0 = Write strobe is active-low (PMWR)										
	For Master Mode when SM = 1: 1 = Enable strobe is active-high (PMENB) 0 = Enable strobe is active-low (PMENB)										
bit 9	-	Select x Read S	-								
	For Slave Modes and Master Mode when SM = 0: 1 = Read strobe is active-high (PMRD) 0 = Read strobe is active-low (PMRD)										
	For Master Mode when SM = 1: 1 = Read/write strobe is active-high (PMRD/PMWR) 0 = Read/Write strobe is active-low (PMRD/PMWR)										
bit 8	1 = Read/wr	lect x Strobe Mo ite and enable s d write strobes	strobes (PMRI	D/PMWR and P MWR)	MENB)						
bit 7	ACKP: Chip Select x Acknowledge Polarity bit										
	1 = ACK is a	ctive-high <u>(PM</u> ctive-low (PMA	ACK1)								
bit 6-5		Chip Select x P	,								
	11 = Reserve 10 = 16-bit p 01 = 4-bit po	ed ort size (PMD< rt size (PMD<3:	15:0>) :0>)								
	00 = 0-0100	rt size (PMD<7:	.0-)								

REGISTER 21-5: PMCSxCF: EPMP CHIP SELECT x CONFIGURATION REGISTER

REGISTER 21-6: PMCSxBS: EPMP CHIP SELECT x BASE ADDRESS REGISTER⁽²⁾

R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾
			BASE	<23:16>			
bit 15							bit 8
R/W ⁽¹⁾	U-0	U-0	U-0	U-0	U-0	U-0	U-0
BASE15	_	—	_	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = E		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-7 BASE<23:15>: Chip Select x Base Address bits⁽¹⁾

bit 6-0 Unimplemented: Read as '0'

Note 1: The value at POR is 0080h for PMCS1BS and 0880h for PMCS2BS.

2: If the whole PMCS2BS register is written together as 0000h, then the last EDS address for Chip Select 1 will be FFFFFFh. In this case, Chip Select 2 should not be used. PMCS1BS has no such feature.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
ACKM1	ACKM0	AMWAIT2	AMWAIT1	AMWAIT0		_				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	-		-							
DWAITB1 bit 7	DWAITB0	DWAITM3	DWAITM2	DWAITM1	DWAITM0	DWAITE1	DWAITE0 bit 0			
							5110			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 15-14	ACKM~1.0~.	Chip Select x	Acknowledge N	lode hits						
51115-14	11 = Reserve	-		noue bits						
	 II = Reserved I0 = PMACKx is used to determine when a read/write operation is complete 									
	 I) = PMACKX is used to determine when a read/write operation is complete I) = PMACKX is used to determine when a read/write operation is complete with time-out 									
	(If DWAITM<3:0> = 0000, the maximum time-out is 255 Tcy or else it is DWAITM<3:0> cycles.) 00 = PMACKx is not used									
bit 13-11	00 = PMACKx is not used AMWAIT<2:0>: Chip Select x Alternate Master Wait States bits									
		f 10 alternate m								
		.								
		f 4 alternate ma f 3 alternate ma								
bit 10-8	Unimplemen	ted: Read as ')'							
bit 7-6	DWAITB<1:0	>: Chip Select	x Data Setup E	Before Read/Wr	ite Strobe Wait	t States bits				
	11 = Wait of $3\frac{1}{4}$ TCY									
	10 = Wait of 2¼ Tcy 01 = Wait of 1¼ Tcy									
	$00 = \text{Wait of } \frac{1}{4} \text{ Tcy}$									
bit 5-2	DWAITM<3:0>: Chip Select x Data Read/Write Strobe Wait States bits									
	For Write Operations:									
	1111 = Wait of 15½ Tcy									
	0001 = Wait of 1½ Tcy									
	0000 = Wait of ½ TCY									
	For Read Operations:									
	1111 = Wait of 15¾ Tcy									
	0001 = Wait of 1¾ Tcy									
	$0000 = $ Wait of $\frac{3}{4}$ TCY									
bit 1-0	DWAITE<1:0>: Chip Select x Data Hold After Read/Write Strobe Wait States bits									
	For Write Operations:									
	11 = Wait of 3¼ Tcy 10 = Wait of 2¼ Tcy									
		2¼ TCY								
	10 = Wait of 2	2¼ TCY 1¼ TCY								
	10 = Wait of 2 01 = Wait of 2 00 = Wait of 2 For Read Ope	2¼ TCY 1¼ TCY ¼ TCY erations:								
	10 = Wait of 2 01 = Wait of 2 00 = Wait of 2 <u>For Read Ope</u> 11 = Wait of 2	2¼ TCY 1¼ TCY ¼ TCY <u>erations:</u> 3 TCY								
	10 = Wait of 2 01 = Wait of 2 00 = Wait of 2 For Read Ope	2¼ TCY 1¼ TCY ¼ TCY <u>erations:</u> 3 TCY 2 TCY								

REGISTER 21-7: PMCSxMD: EPMP CHIP SELECT x MODE REGISTER

REGISTER 21-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

R-0, HSC	R/W-0, HS	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	
IBF	IBOV	—	_	IB3F ⁽¹⁾	IB2F ⁽¹⁾	IB1F ⁽¹⁾	IB0F ⁽¹⁾	
bit 15							bit a	
R-1, HSC	R/W-0, HS	U-0	U-0	R-1, HSC	R-1, HSC	R-1, HSC	R-1, HSC	
OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	
bit 7							bit	
Legend:		HS = Hardware	e Settable bit	HSC = Hardw	are Settable/C	learable bit		
R = Readable	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 14	 0 = Some or all of the writable Input Buffer registers are empty IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full Input register occurred (must be cleared in software) 0 = No overflow occurred 							
bit 13-12		ted: Read as '0	,					
bit 11-8	•	put Buffer x Sta						
	1 = Input buff		ead data (read	ling the buffer w ata	ill clear this bit)		
bit 7	OBE: Output	Buffer Empty St	atus bit					
		ble Output Buffe all of the readal		e empty fer registers are	full			
bit 6	OBUF: Outpu	it Buffer Underfl	ow Status bit					
	1 = A read or 0 = No under		empty Output	Buffer register	(must be cleare	ed in software)		
	Unimplemented: Read as '0'							
bit 5-4	Unimplemen	ted: Read as '0	,					
bit 5-4 bit 3-0	-	ted: Read as '0 Output Buffer >		' bits				

Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1, or Byte 2 and 3) get cleared, even on byte reading.

REGISTER 21-9: PADCON: PAD CONFIGURATION CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
IOCON —		—		_	_	_	_
bit 15					-	bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—		_	—	—	PMPTTL
bit 7						-	bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15 **IOCON:** Interrupt-on-Change Enable bit

Not used by the EPMP; see Register 11-9 for definition.

bit 14-1 Unimplemented: Read as '0'

bit 0 PMPTTL: EPMP Module TTL Input Buffer Select bit

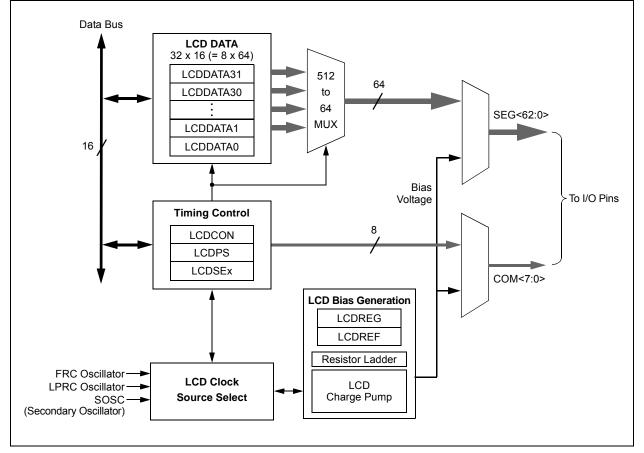
1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers

NOTES:

22.0 LIQUID CRYSTAL DISPLAY (LCD) CONTROLLER

Note: This data sheet summarizes the features of the PIC24FJ256GA412/GB412 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Liquid Crystal Display (LCD)" (DS30009740) which is available from the Microchip web site (www.microchip.com).


The Liquid Crystal Display (LCD) Controller generates the data and timing control required to directly drive a static or multiplexed LCD panel. The module can drive up to 8 Commons signals on all devices, and from 34 to 64 Segments, depending on the specific device.

Note: To be driven by the LCD controller, pins must be set as analog inputs. For the port corresponding to the desired Common or Segment pin, set TRISx = 1 and ANSx = 1. The LCD Controller has these features:

- Direct Driving of LCD Panel
- Three LCD Clock Sources with Selectable
 Prescaler
- Up to Eight Commons:
 - Static (one Common)
 - 1/2 multiplex (two Commons)
 - 1/3 multiplex (three Commons)
 - 1/8 multiplex (eight Commons)
- Ability to Drive up to 34 (in 64-pin USB devices), 35 (64-pin non-USB devices) or up to 64 (all other devices) Segments, depending on the Multiplexing Mode Selected
- Static, 1/2 or 1/3 LCD Bias
- On-Chip Bias Generator with Dedicated Charge Pump to Support a Range of Fixed and Variable Bias Options
- Internal Resistors for Bias Voltage Generation
- Software Contrast Control for LCD using Internal Biasing

A simplified block diagram of the module is shown in Figure 22-1.

22.1 Registers

The LCD Controller has up to 40 registers:

- LCD Control Register (LCDCON)
- LCD Charge Pump Control Register (LCDREG)
- LCD Phase Register (LCDPS)

- LCD Voltage Ladder Control Register (LCDREF)
- Four LCD Segment Enable Registers (LCDSE3:LCDSE0)
- Up to 32 LCD Data Registers (LCDDATA31:LCDDATA0)

REGISTER 22-1: LCDCON: LCD CONTROL REGISTER

LCDEN — LCDSIDL — … <th…< th=""> … … <th…< th=""><th>R/W-0</th><th>U-0</th><th>R/W-0</th><th>U-0</th><th>U-0</th><th>U-0</th><th>U-0</th><th>U-0</th></th…<></th…<>	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit 8	LCDEN	—	LCDSIDL	—	—	—	—	—

U-0	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	SLPEN	WERR	CS1	CS0	LMUX2	LMUX1	LMUX0
bit 7 bit 0							

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	LCDEN: LCD Driver Enable bit 1 = LCD driver module is enabled 0 = LCD driver module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	LCDSIDL: Stop LCD Drive in CPU Idle Mode Control bit
	 1 = LCD driver halts in CPU Idle mode 0 = LCD driver continues to operate in CPU Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	SLPEN: LCD Driver Enable in Sleep Mode bit
	 1 = LCD driver module is disabled in Sleep mode 0 = LCD driver module is enabled in Sleep mode
bit 5	WERR: LCD Write Failed Error bit
	 1 = LCDDATAx register is written while WA (LCDPS<4>) = 0 (must be cleared in software) 0 = No LCD write error
bit 4-3	CS<1:0>: Clock Source Select bits
	1x = SOSC 01 = LPRC 00 = FRC
hit 2-0	LMUX-2:05 - LCD Commons Solact hits

bit 2-0 LMUX<2:0>: LCD Commons Select bits

LMUX<2:0>	•		
111	1/8 MUX (COM<7:0>) ⁽¹⁾	1/3	
110	110 1/7 MUX (COM<6:0>) ⁽¹⁾		
101	101 1/6 MUX (COM<5:0>) ⁽¹⁾		
100	1/5 MUX (COM<4:0>) ⁽¹⁾	1/3	
011	1/4 MUX (COM<3:0>)	1/3	
010	1/3 MUX (COM<2:0>)	1/2 or 1/3	
001	1/2 MUX (COM<1:0>)	1/2 or 1/3	
000	Static (COM0)	Static	

Note 1: On 64-pin and 100-pin devices, COM4 through COM7 also have Segment functionality. If the COM is enabled in multiplexing, the Segment will not be available on that pin.

REGISTER 22-2: LCDREG: LCD CHARGE PUMP CONTROL REGISTER

RW-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
CPEN	—	—	—	—	—	—	—
bit 15				•	•	•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	RW-0	RW-0
—	—	—	—	—	—	CKSEL1	CKSEL0
bit 7				•	•	•	bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

bit 15 **CPEN:** 3.6V Charge Pump Enable bit

1 = The regulator generates the highest (3.6V) voltage

0 = Highest voltage in the system is supplied externally (AVDD)

bit 14-2 Unimplemented: Read as '0'

bit 1-0 CLKSEL<1:0>: Regulator Clock Select Control bits

11 = SOSC

10 = 8 MHz FRC

01 = 31 kHz LPRC

00 = Disables regulator and floats regulator voltage output

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	_				
bit 15							bit				
R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0				
bit 7	DIAGIVID	LODA	VVA				bit				
Legend:	. 1. 11		,			(0)					
R = Readabl		W = Writable		-	nented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-8	Unimplemer	ted: Read as 'o)'								
bit 7	-	orm Type Select									
	1 = Type-B v	vaveform (phase	e changes on	each frame bou							
bit 6		as Mode Select	•	thin each Comm	on type)						
	When LMUX<2:0> = 000 or 011 through 111:										
		is mode (do not									
	When LMUX<2:0> = 001 or 010:										
	1 = 1/2 Bias mode										
	0 = 1/3 Bias I										
bit 5		LCDA: LCD Active Status bit 1 = LCD driver module is active									
		er module is act er module is ina	-								
bit 4	WA: LCD Wr	ite Allow Status	bit								
	1 = Write inte	o the LCDDATA o the LCDDATA	x registers is								
bit 3-0	LP<3:0>: LC	D Prescaler Sel	lect bits								
	1111 = 1:16										
	1110 = 1:15										
	1101 = 1:14										
	1100 = 1:13										
	1011 = 1.12 1010 = 1:11	1011 = 1:12 1010 = 1:11									
	1010 = 1.11 1001 = 1.10										
	1000 = 1:9										
	0111 = 1:8										
	0110 = 1:7 0101 = 1:6										
	0101 = 1.0 0100 = 1.5										
	0011 = 1:4										
	0010 = 1 :3										
	0010 = 1:3 0001 = 1:2										

REGISTER 22-4: LCDSEx: LCD SEGMENT x ENABLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SE(n+15) ^(1,2)	SE(n+14)	SE(n+13)	SE(n+12)	SE(n+11)	SE(n+10)	SE(n+9)	SE(n+8)
bit 15							bit 8

R/W-0	R/W-0						
SE(n+7)	SE(n+6)	SE(n+5)	SE(n+4)	SE(n+3)	SE(n+2)	SE(n+1)	SE(n)
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 **SE(n+15):SE(n)**: Segment Enable bits

For LCDSE0: n = 0For LCDSE1: n = 16For LCDSE2: n = 32For LCDSE3: $n = 48^{(1,2)}$

 $\ensuremath{\mathtt{1}}$ = Segment function of the pin is enabled, digital I/O is disabled

0 = Segment function of the pin is disabled, digital I/O is enabled

Note 1: SE63 (LCDSE3<15>) is not implemented.

2: For the SEG49 to work correctly, the JTAG needs to be disabled.

REGISTER 22-5: LCDDATAX: LCD DATA x REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
S(n+15)Cy	S(n+14)Cy	S(n+13)Cy	S(n+12)Cy	S(n+11)Cy	S(n+10)Cy	S(n+9)Cy	S(n+8)Cy
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
S(n+7)Cv	S(n+6)Cv	S(n+5)Cv	S(n+4)Cv	S(n+3)Cv	S(n+2)Cv	S(n+1)Cv	S(n)Cv

bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0	S(n+15)Cy:S(n)Cy: Pixel On bits
	<u>For Registers, LCDDATA0 through LCDDATA3: n = (16x), y = 0</u>
	<u>For Registers, LCDDATA4 through LCDDATA7: n = (16(x – 4)), y = 1</u>
	<u>For Registers, LCDDATA8 through LCDDATA11: n = (16(x – 8)), y = 2</u>
	<u>For Registers, LCDDATA12 through LCDDATA15: n = (16(x – 12)), y = 3</u>
	<u>For Registers, LCDDATA16 through LCDDATA19: n = (16(x – 16)), y = 4</u>
	<u>For Registers, LCDDATA20 through LCDDATA23: n = (16(x – 20)), y = 5</u>
	<u>For Registers, LCDDATA24 through LCDDATA27: n = (16(x – 24)), y = 6</u>
	<u>For Registers, LCDDATA28 through LCDDATA31: n = (16(x – 28)), y = 7</u>
	1 = Pixel is on
	0 = Pixel is off

bit 7

CONLines		Segr	nents	
COM Lines	0 to 15	16 to 31	32 to 47	48 to 64
0	LCDDATA0	LCDDATA1	LCDDATA2	LCDDATA3
	S00C0:S15C0	S16C0:S31C0	S32C0:S47C0	S48C0:S63C0
1	LCDDATA4	LCDDATA5	LCDDATA6	LCDDATA7
	S00C1:S15C1	S16C1:S31C1	S32C1:S47C1	S48C1:S63C1
2	LCDDATA8	LCDDATA9	LCDDATA10	LCDDATA11
	S00C2:S15C2	S16C2:S31C2	S32C2:S47C2	S48C2:S63C2
3	LCDDATA12	LCDDATA13	LCDDATA14	LCDDATA15
	S00C3:S15C3	S16C3:S31C3	S32C3:S47C3	S48C3:S63C3
4	LCDDATA16	LCDDATA17	LCDDATA18	LCDDATA19
	S00C4:S15C4	S16C4:S31C4	S32C4:S47C4	S48C4:S59C4
5	LCDDATA20	LCDDATA21	LCDDATA22	LCDDATA23
	S00C5:S15C5	S16C5:S31C5	S32C5:S47C5	S48C5:S69C5
6	LCDDATA24	LCDDATA25	LCDDATA26	LCDDATA27
	S00C6:S15C6	S16C6:S31C6	S32C6:S47C6	S48C6:S59C6
7	LCDDATA28	LCDDATA29	LCDDATA30	LCDDATA31
	S00C7:S15C7	S16C7:S31C7	S32C7:S47C7	S48C7:S59C7

TABLE 22-1: LCDDATA REGISTERS AND BITS FOR SEGMENT AND COM COMBINATIONS

REGISTER 22-6: LCDREF: LCD REFERENCE LADDER CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
LCDIRE	_	LCDCST2	LCDCST1	LCDCST0	VLCD3PE	VLCD2PE	VLCD1PE					
bit 15							bit					
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
LRLAP1	LRLAP0	LRLBP1	LRLBP0	—	LRLAT2	LRLAT1	LRLAT0					
bit 7							bit					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	nown					
L:4 7				•1								
bit 15	1 = Internal L) Internal Refer .CD reference i .CD reference i	s enabled and	connected to th	ne internal con	trast control cire	cuit					
bit 14	Unimplemen	ted: Read as '0)'									
bit 13-11	-	>: LCD Contra										
				t Control Resist	or Ladder:							
	Selects the Resistance of the LCD Contrast Control Resistor Ladder: 111 = Resistor ladder is at maximum resistance (minimum contrast)											
		110 = Resistor ladder is at 6/7th of maximum resistance										
	101 = Resistor ladder is at 5/7th of maximum resistance 100 = Resistor ladder is at 4/7th of maximum resistance											
	100 = Resiste	or ladder is at 4	/7th of maximu	ım resistance								
	011 = Resistor ladder is at 3/7th of maximum resistance											
	010 = Resistor ladder is at 2/7th of maximum resistance 001 = Resistor ladder is at 1/7th of maximum resistance											
					ddor io oborto	4						
h:+ 10	000 = Minimum resistance (maximum contrast); resistor ladder is shorted											
bit 10		VLCD3PE: LCD Bias 3 Pin Enable bit 1 = Bias 3 level is connected to the external pin, LCDBIAS3										
		vel is internal (i		•	53							
bit 9	VLCD2PE: LO	CD Bias 2 Pin E	Enable bit									
				al pin, LCDBIAS	62							
	VLCD1PE: LO	0 = Bias 2 level is internal (internal resistor ladder)										
bit 8	VLCD1PE: LCD Bias 1 Pin Enable bit 1 = Bias 1 level is connected to the external pin, LCDBIAS1											
bit 8		vel is connected	d to the externa	al pin, LCDBIAS	51							
	0 = Bias 1 lev	vel is connected vel is internal (i	d to the externanternal resistor	al pin, LCDBIAS ladder)								
	0 = Bias 1 le [,] LRLAP<1:0>	vel is connected vel is internal (i : LCD Reference	d to the externanternal resistor	al pin, LCDBIAS								
	0 = Bias 1 le [,] LRLAP<1:0> During Time I	vel is connecter vel is internal (i : LCD Reference nterval A:	d to the externanternal resistor ternal resistor te Ladder A Tir	al pin, LCDBIAS ladder) me Power Cont	rol bits							
	0 = Bias 1 lev LRLAP<1:0> During Time I 11 = Internal	vel is connecter vel is internal (i : LCD Reference <u>nterval A:</u> LCD reference	d to the externanternal resistor ce Ladder A Tir ladder is powe	al pin, LCDBIAS ladder)	rol bits wer mode							
	0 = Bias 1 lev LRLAP<1:0> <u>During Time I</u> 11 = Internal 10 = Internal 01 = Internal	vel is connecter vel is internal (i : LCD Reference <u>nterval A:</u> LCD reference LCD reference LCD reference	d to the externanternal resistor ce Ladder A Tin ladder is power ladder is power ladder is power	al pin, LCDBIAS ladder) me Power Cont ered in High-Po ered in Medium ered in Low-Pov	rol bits wer mode Power mode ver mode							
	0 = Bias 1 lev LRLAP<1:0> <u>During Time I</u> 11 = Internal 10 = Internal 01 = Internal	vel is connecter vel is internal (i : LCD Reference <u>nterval A:</u> LCD reference LCD reference LCD reference	d to the externanternal resistor ce Ladder A Tin ladder is power ladder is power ladder is power	al pin, LCDBIAS ladder) me Power Cont ered in High-Pot ered in Medium	rol bits wer mode Power mode ver mode							
bit 7-6	0 = Bias 1 lev LRLAP<1:0> During Time I 11 = Internal 10 = Internal 01 = Internal 00 = Internal	vel is connected vel is internal (i : LCD Reference <u>nterval A:</u> LCD reference LCD reference LCD reference LCD reference	d to the externanternal resistor ce Ladder A Tin ladder is power ladder is power ladder is power ladder is power	al pin, LCDBIAS ladder) me Power Cont ered in High-Po ered in Medium ered in Low-Pov	rol bits wer mode Power mode ver mode unconnected							
bit 7-6	0 = Bias 1 lev LRLAP<1:0> During Time I 11 = Internal 10 = Internal 01 = Internal 00 = Internal LRLBP<1:0> During Time I	vel is connected vel is internal (i : LCD Reference LCD reference LCD reference LCD reference LCD reference : LCD Reference : LCD Reference	d to the externa- nternal resistor ce Ladder A Tin ladder is powe ladder is powe ladder is powe adder is powe ce Ladder B Tin	al pin, LCDBIAS ladder) me Power Cont ered in High-Pot ered in Medium ered in Low-Pov ered down and u me Power Cont	rol bits wer mode Power mode ver mode unconnected rol bits							
bit 7-6	0 = Bias 1 lev LRLAP<1:0> During Time I 11 = Internal 10 = Internal 01 = Internal 00 = Internal LRLBP<1:0> During Time I 11 = Internal	vel is connected vel is internal (i : LCD Reference LCD reference LCD reference LCD reference LCD reference : LCD Reference tCD Reference : LCD Reference	d to the externa- nternal resistor ce Ladder A Tin ladder is powe ladder is powe ladder is powe ce Ladder B Tin ladder is powe	al pin, LCDBIAS ladder) me Power Cont ered in High-Poy ered in Medium ered in Low-Poy ered down and i me Power Cont ered in High-Poy	rol bits wer mode Power mode ver mode unconnected rol bits wer mode							
bit 7-6	0 = Bias 1 lev LRLAP<1:0> <u>During Time I</u> 11 = Internal 10 = Internal 01 = Internal 00 = Internal LRLBP<1:0> <u>During Time I</u> 11 = Internal 10 = Internal	vel is connected vel is internal (i : LCD Reference LCD reference LCD reference LCD reference LCD reference LCD Reference : LCD Reference terval B: LCD reference LCD reference	d to the externanternal resistor ce Ladder A Tin ladder is power ladder is power ladder is power ladder is power ladder B Tin ladder is power ladder is power	al pin, LCDBIAS ladder) me Power Cont ered in High-Por ered in Medium ered in Low-Pov ered down and u me Power Cont ered in High-Por ered in Medium	rol bits wer mode Power mode ver mode unconnected rol bits wer mode Power mode							
bit 7-6	0 = Bias 1 lev LRLAP<1:0> <u>During Time I</u> 11 = Internal 10 = Internal 01 = Internal 00 = Internal <u>LRLBP<1:0></u> <u>During Time I</u> 11 = Internal 10 = Internal 01 = Internal 01 = Internal	vel is connected vel is internal (i : LCD Reference LCD reference LCD reference LCD reference LCD reference : LCD Reference : LCD Reference LCD reference LCD reference LCD reference	d to the externanternal resistor ce Ladder A Tin ladder is power ladder is power	al pin, LCDBIAS ladder) me Power Cont ered in High-Por ered in Medium ered in Low-Pov ered down and u me Power Cont ered in High-Por ered in Medium ered in Low-Pov	rol bits wer mode Power mode ver mode unconnected rol bits wer mode Power mode ver mode							
bit 7-6 bit 5-4 bit 3	0 = Bias 1 lev LRLAP<1:0> During Time I 11 = Internal 10 = Internal 00 = Internal LRLBP<1:0> During Time I 11 = Internal 10 = Internal 00 = Internal 00 = Internal 00 = Internal	vel is connected vel is internal (i : LCD Reference LCD reference LCD reference LCD reference LCD reference : LCD Reference : LCD Reference LCD reference LCD reference LCD reference	d to the externa- nternal resistor ce Ladder A Tin ladder is powe ladder is powe ladder is powe ce Ladder B Tin ladder is powe ladder is powe ladder is powe ladder is powe ladder is powe	al pin, LCDBIAS ladder) me Power Cont ered in High-Por ered in Medium ered in Low-Pov ered down and u me Power Cont ered in High-Por ered in Medium	rol bits wer mode Power mode ver mode unconnected rol bits wer mode Power mode ver mode							

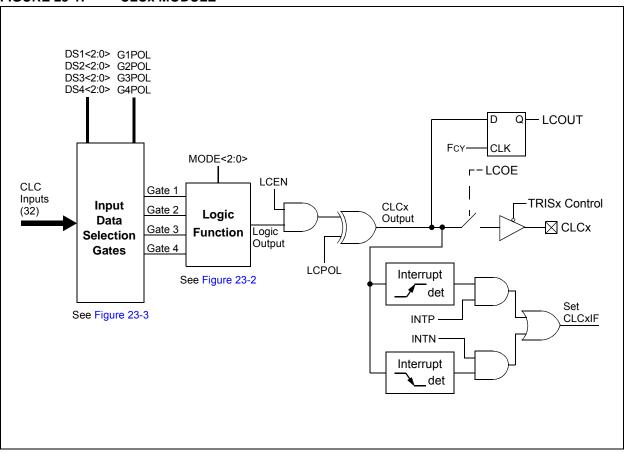
REGISTER 22-6: LCDREF: LCD REFERENCE LADDER CONTROL REGISTER (CONTINUED)

bit 2-0 LRLAT<2:0>: LCD Reference Ladder A Time Interval Control bits

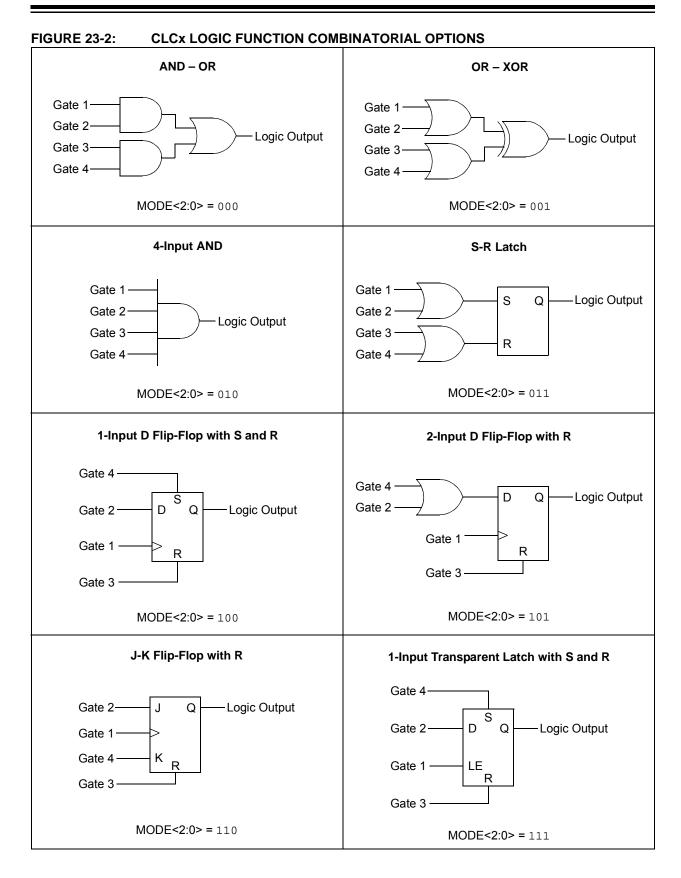
Sets the number of 32 clock counts when the A Time Interval Power mode is active.

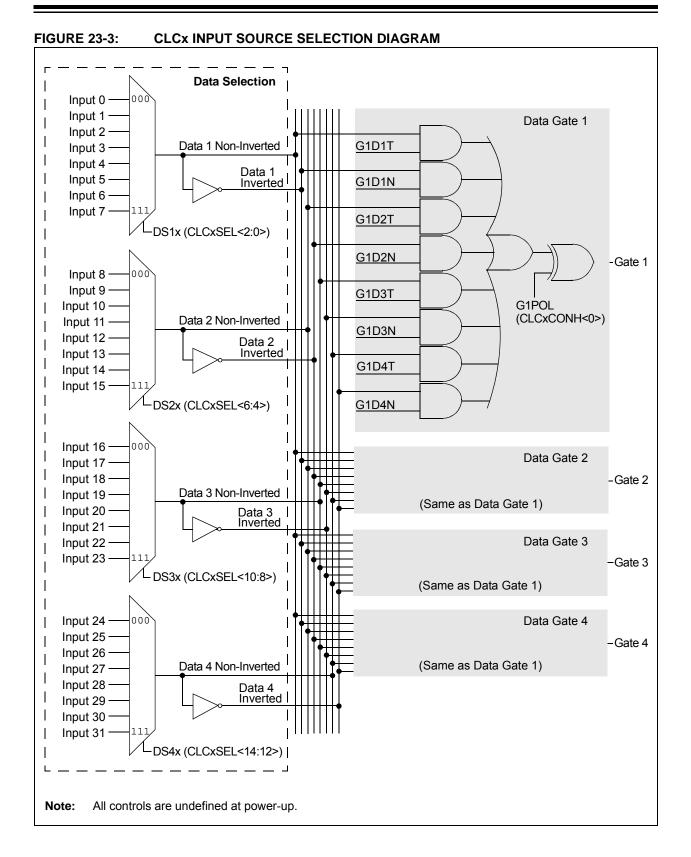
For Type-A Waveforms (WFT = 0):

111 = Internal LCD reference ladder is in A Power mode for 7 clocks and B Power mode for 9 clocks 110 = Internal LCD reference ladder is in A Power mode for 6 clocks and B Power mode for 10 clocks 101 = Internal LCD reference ladder is in A Power mode for 5 clocks and B Power mode for 11 clocks 100 = Internal LCD reference ladder is in A Power mode for 4 clocks and B Power mode for 12 clocks 111 = Internal LCD reference ladder is in A Power mode for 3 clocks and B Power mode for 13 clocks 112 = Internal LCD reference ladder is in A Power mode for 3 clocks and B Power mode for 13 clocks 113 = Internal LCD reference ladder is in A Power mode for 2 clocks and B Power mode for 14 clocks 114 = Internal LCD reference ladder is in A Power mode for 1 clock and B Power mode for 14 clocks 115 = Internal LCD reference ladder is in A Power mode for 1 clock and B Power mode for 15 clocks 116 = Internal LCD reference ladder is always in B Power mode


For Type-B Waveforms (WFT = 1):

111 = Internal LCD reference ladder is in A Power mode for 7 clocks and B Power mode for 25 clocks 110 = Internal LCD reference ladder is in A Power mode for 6 clocks and B Power mode for 26 clocks 101 = Internal LCD reference ladder is in A Power mode for 5 clocks and B Power mode for 27 clocks 100 = Internal LCD reference ladder is in A Power mode for 4 clocks and B Power mode for 28 clocks 111 = Internal LCD reference ladder is in A Power mode for 3 clocks and B Power mode for 29 clocks 112 = Internal LCD reference ladder is in A Power mode for 3 clocks and B Power mode for 29 clocks 113 = Internal LCD reference ladder is in A Power mode for 2 clocks and B Power mode for 30 clocks 114 = Internal LCD reference ladder is in A Power mode for 1 clock and B Power mode for 31 clocks 115 = Internal LCD reference ladder is always in B Power mode


23.0 CONFIGURABLE LOGIC CELL (CLC)


The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flex-ibility and potential in embedded designs since the CLC module can operate outside the limitations of software execution and supports a vast amount of output designs.

There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 23-1 shows an overview of the module. Figure 23-3 shows the details of the data source multiplexers and logic input gate connections.

FIGURE 23-1: CLCx MODULE

23.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Input MUX Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Input Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

REGISTER 23-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

R/W-0	U-0									
	0-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0			
LCEN		—	_	INTP	INTN	—	—			
bit 15							bit 8			
R-0	R-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
LCOE	LCOUT	LCPOL	—	—	MODE2	MODE1	MODE0			
bit 7							bit 0			
Logondu										
Legend: R = Readabl	o hit	M = Mritable k	\it	II – Unimplon	nented bit, read	d ac 'O'				
-n = Value at				'0' = Bit is clea		x = Bit is unkr				
	PUR	I – BILIS SEL			areu		IOWIT			
bit 15	LCEN: CLCx	Enable bit								
		enabled and mix	kina input siar	nals						
		disabled and ha								
bit 14-12	Unimplemer	ted: Read as '0	,							
bit 11	INTP: CLCx	Positive Edge In	terrupt Enabl	e bit						
		will be generate will not be gene		ng edge occurs	on LCOUT					
h:+ 40	INTN: CLCx Negative Edge Interrupt Enable bit									
bit 10	INTN: CLUX	 1 = Interrupt will be generated when a falling edge occurs on LCOUT 0 = Interrupt will not be generated 								
DIL TU	1 = Interrupt	will be generate	d when a fall		on LCOUT					
bit 9-8	1 = Interrupt 0 = Interrupt	will be generate	ed when a fall rated		on LCOUT					
	1 = Interrupt 0 = Interrupt Unimplemer	will be generate will not be gene	d when a fall rated		on LCOUT					
bit 9-8	1 = Interrupt 0 = Interrupt Unimplemer LCOE: CLC× 1 = CLCx por	will be generate will not be gene ated: Read as '0 c Port Enable bit rt pin output is e	ed when a fall rated , nabled		on LCOUT					
bit 9-8 bit 7	1 = Interrupt 0 = Interrupt Unimplemer LCOE: CLC× 1 = CLCx poi 0 = CLCx poi	will be generate will not be gene ated: Read as '0 Port Enable bit of pin output is e of pin output is d	ed when a fall rated nabled isabled		on LCOUT					
bit 9-8	1 = Interrupt 0 = Interrupt Unimplemen LCOE: CLCx 1 = CLCx poi 0 = CLCx poi LCOUT: CLC	will be generate will not be gene ated: Read as '0 Port Enable bit output is e the pin output is d x Data Output S	ed when a fall rated nabled isabled		on LCOUT					
bit 9-8 bit 7	1 = Interrupt 0 = Interrupt Unimplemen LCOE: CLCx 1 = CLCx poi 0 = CLCx poi LCOUT: CLC 1 = CLCx out	will be generate will not be gene ated: Read as '0 r Port Enable bit rt pin output is e rt pin output is d cx Data Output S tput high	ed when a fall rated nabled isabled		on LCOUT					
bit 9-8 bit 7	1 = Interrupt 0 = Interrupt Unimplemer LCOE: CLC× 1 = CLC× poi 0 = CLC× poi LCOUT: CLC 1 = CLC× out 0 = CLC× out	will be generate will not be gene nted: Read as '0 a Port Enable bit of pin output is e the pin output is d a Data Output S aput high toput low	ed when a fall rated nabled isabled status bit		on LCOUT					
bit 9-8 bit 7 bit 6	1 = Interrupt 0 = Interrupt Unimplemen LCOE: CLCx 1 = CLCx poi 0 = CLCx poi LCOUT: CLC 1 = CLCx out 0 = CLCx out 0 = CLCx out LCPOL: CLC	will be generate will not be gene ated: Read as '0 r Port Enable bit rt pin output is e rt pin output is d cx Data Output S tput high	ed when a fall rated nabled isabled itatus bit y Control bit		on LCOUT					
bit 9-8 bit 7 bit 6	1 = Interrupt 0 = Interrupt Unimplemen LCOE: CLC× 1 = CLC× poi 0 = CLC× poi LCOUT: CLC 1 = CLC× out 0 = CLC× out 1 = CLC× out	will be generate will not be gene ated: Read as '0 c Port Enable bit rt pin output is e rt pin output is d cx Data Output S tput high tput low cx Output Polarit	ed when a fall rated nabled isabled status bit y Control bit e is inverted	ing edge occurs	on LCOUT					

REGISTER 23-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

- bit 2-0 MODE<2:0>: CLCx Mode bits
 - 111 = Single input transparent latch with S and R
 - 110 = JK flip-flop with R
 - 101 = Two-input D flip-flop with R
 - 100 = Single input D flip-flop with S and R
 - 011 = SR latch
 - 010 = Four-input AND
 - 001 = Four-input OR-XOR
 - 000 = Four-input AND-OR

REGISTER 23-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7							bit 0

Legend.

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	1 = Channel 4 logic output is inverted when applied to the logic cell0 = Channel 4 logic output is not inverted
bit 2	G3POL: Gate 3 Polarity Control bit
	1 = Channel 3 logic output is inverted when applied to the logic cell0 = Channel 3 logic output is not inverted
bit 1	G2POL: Gate 2 Polarity Control bit
	1 = Channel 2 logic output is inverted when applied to the logic cell0 = Channel 2 logic output is not inverted
bit 0	G1POL: Gate 1 Polarity Control bit
	1 = Channel 1 logic output is inverted when applied to the logic cell0 = Channel 1 logic output is not inverted

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
_	DS42	DS41	DS40	—	DS32	DS31	DS30				
bit 15							bita				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
_	DS22	DS21	DS20	_	DS12	DS11	DS10				
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15	Unimplemer	nted: Read as '	0'								
bit 14-12	-	Data Selection N		Selection bits							
		P3 Compare Ev	•								
		P1 Compare Ev	ent Flag (CCP	1IF)							
	101 = Unimp										
	100 = CTMU A/D trigger 011 = SPIx Input (SDIx) corresponding to CLCx module (see Table 23-1)										
	010 = Comparator 3 output										
	001 = Module-specific CLC output (see Table 23-1) 000 = CLCINB I/O pin										
bit 11	Unimpleme	nted: Read as '	0'								
bit 10-8	DS3<2:0>: Data Selection MUX 3 Signal Selection bits										
	111 = MCCP3 Compare Event Flag (CCP3IF)										
	110 = MCCP2 Compare Event Flag (CCP2IF) 101 = DMA Channel 1 interrupt										
		x RX output co		CLCx module	(see Table 23-1)					
	011 = SPIx (Output (SDOx)									
	010 = Comparator 2 output										
	001 = CLCx output (see Table 23-1) 000 = CLCINA I/O pin										
bit 7		nted: Read as '	0'								
bit 6-4	DS2<2:0>: Data Selection MUX 2 Signal Selection bits										
	111 = MCCP2 Compare Event Flag (CCP2IF)										
	110 = MCCP1 Compare Event Flag (CCP1IF)										
		Channel 0 interi onversion done									
		x TX input corre		CLCx module (s	ee Table 23-1)						
		arator 1 output									
	001 = CLCx output (see Table 23-1) 000 = CLCINB I/O pin										
bit 3		nted: Read as '	0'								
bit 2-0	DS1<2:0>: [
		3 match event									
	110 = Timer2 match event										
	101 = Unimp	plemented									
	101 = Unimp 100 = REFO 011 = INTRO	olemented) output C/LPRC clock se	ource								
	101 = Unimp 100 = REFO 011 = INTRO 010 = SOSC	olemented output	ource								

Bit Field		Input Source							
DIT FIEIC		CLC1	CLC2	CLC3	CLC4				
DS4<2:0>	011 SDI1		SDI2	SDI3	SDI4				
	001	CLC2 Output	CLC1 Output	CLC4 Output	CLC3 Output				
DS3<2:0>	100	U1RX	U2RX	U3RX	U4RX				
011		SDO1	SDO2	SDO3	SDO4				
	001	CLC1 Output	CLC2 Output	CLC3 Output	CLC4 Output				
DS2<2:0>	011	U1TX	U2TX	U3TX	U4TX				
	001	CLC2 Output	CLC1 Output	CLC4 Output	CLC3 Output				

TABLE 23-1: MODULE-SPECIFIC INPUT DATA SOURCES

REGISTER 23-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| G1D4T | G1D4N | G1D3T | G1D3N | G1D2T | G1D2N | G1D1T | G1D1N |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15	G2D4T: Gate 2 Data Source 4 True Enable bit 1 = Data Source 4 inverted signal is enabled for Gate 2 0 = Data Source 4 inverted signal is disabled for Gate 2
bit 14	G2D4N: Gate 2 Data Source 4 Negated Enable bit
	 1 = Data Source 4 inverted signal is enabled for Gate 2 0 = Data Source 4 inverted signal is disabled for Gate 2
bit 13	G2D3T: Gate 2 Data Source 3 True Enable bit
	 1 = Data Source 3 inverted signal is enabled for Gate 2 0 = Data Source 3 inverted signal is disabled for Gate 2
bit 12	G2D3N: Gate 2 Data Source 3 Negated Enable bit
	 1 = Data Source 3 inverted signal is enabled for Gate 2 0 = Data Source 3 inverted signal is disabled for Gate 2
bit 11	G2D2T: Gate 2 Data Source 2 True Enable bit
	 1 = Data Source 2 inverted signal is enabled for Gate 2 0 = Data Source 2 inverted signal is disabled for Gate 2
bit 10	G2D2N: Gate 2 Data Source 2 Negated Enable bit
	 1 = Data Source 2 inverted signal is enabled for Gate 2 0 = Data Source 2 inverted signal is disabled for Gate 2
bit 9	G2D1T: Gate 2 Data Source 1 True Enable bit
	 1 = Data Source 1 inverted signal is enabled for Gate 2 0 = Data Source 1 inverted signal is disabled for Gate 2

REGISTER 23-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)

bit 8	G2D1N: Gate 2 Data Source 1 Negated Enable bit 1 = Data Source 1 inverted signal is enabled for Gate 2 0 = Data Source 1 inverted signal is disabled for Gate 2
bit 7	G1D4T: Gate 1 Data Source 4 True Enable bit
	 1 = Data Source 4 inverted signal is enabled for Gate 1 0 = Data Source 4 inverted signal is disabled for Gate 1
bit 6	G1D4N: Gate 1 Data Source 4 Negated Enable bit
	 1 = Data Source 4 inverted signal is enabled for Gate 1 0 = Data Source 4 inverted signal is disabled for Gate 1
bit 5	G1D3T: Gate 1 Data Source 3 True Enable bit
	 1 = Data Source 3 inverted signal is enabled for Gate 1 0 = Data Source 3 inverted signal is disabled for Gate 1
bit 4	G1D3N: Gate 1 Data Source 3 Negated Enable bit
	 1 = Data Source 3 inverted signal is enabled for Gate 1 0 = Data Source 3 inverted signal is disabled for Gate 1
bit 3	G1D2T: Gate 1 Data Source 2 True Enable bit
	 1 = Data Source 2 inverted signal is enabled for Gate 1 0 = Data Source 2 inverted signal is disabled for Gate 1
bit 2	G1D2N: Gate 1 Data Source 2 Negated Enable bit
	 1 = Data Source 2 inverted signal is enabled for Gate 1 0 = Data Source 2 inverted signal is disabled for Gate 1
bit 1	G1D1T: Gate 1 Data Source 1 True Enable bit
	 1 = Data Source 1 inverted signal is enabled for Gate 1 0 = Data Source 1 inverted signal is disabled for Gate 1
bit 0	G1D1N: Gate 1 Data Source 1 Negated Enable bit
	 1 = Data Source 1 inverted signal is enabled for Gate 1 0 = Data Source 1 inverted signal is disabled for Gate 1

REGISTER 23-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

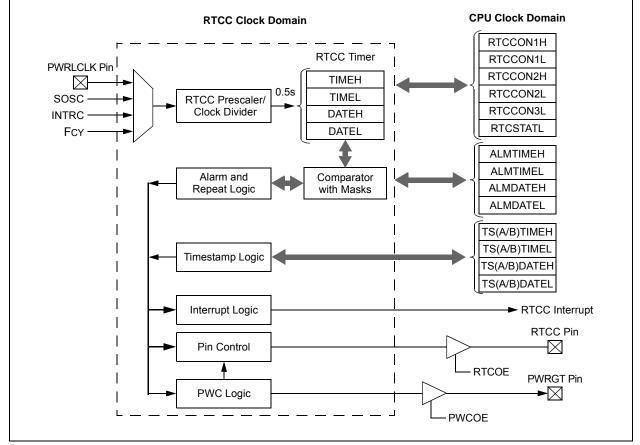
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	
bit 15			1				bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	
bit 7	G3D4N	63031	GSDSN	GSD21	GSDZN	GSDTT	bit (
Louondi								
Legend:	. 1. 14		L :1			-l (O)		
R = Readable		W = Writable		•	nented bit, rea			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	G4D4T: Gate	4 Data Source	4 True Enable	e bit				
	1 = Data Sou	rce 4 inverted s	signal is enable	ed for Gate 4				
		rce 4 inverted s	•					
bit 14	G4D4N: Gate	e 4 Data Source	e 4 Negated Ei	nable bit				
		rce 4 inverted s rce 4 inverted s						
bit 13	G4D3T: Gate	4 Data Source	3 True Enable	e bit				
		rce 3 inverted s rce 3 inverted s						
bit 12		e 4 Data Source	-					
51(12								
	 1 = Data Source 3 inverted signal is enabled for Gate 4 0 = Data Source 3 inverted signal is disabled for Gate 4 							
bit 11	G4D2T: Gate	4 Data Source	2 True Enable	e bit				
		rce 2 inverted s						
bit 10	 0 = Data Source 2 inverted signal is disabled for Gate 4 G4D2N: Gate 4 Data Source 2 Negated Enable bit 							
	1 = Data Source 2 inverted signal is enabled for Gate 4 0 = Data Source 2 inverted signal is disabled for Gate 4							
bit 9		4 Data Source	•					
bit 0	1 = Data Sou	rce 1 inverted s	signal is enable	ed for Gate 4				
bit 8		e 4 Data Source	-					
	1 = Data Sou	rce 1 inverted s	signal is enable	ed for Gate 4				
hit 7		3 Data Source	0					
bit 7	1 = Data Sou	rce 4 inverted s	signal is enable	ed for Gate 3				
L:1 0		rce 4 inverted s	•					
bit 6	1 = Data Sou	e 3 Data Source rce 4 inverted s	signal is enable	ed for Gate 3				
		rce 4 inverted s	-					
bit 5		3 Data Source						
		rce 3 inverted s rce 3 inverted s						
bit 4	G3D3N: Gate	e 3 Data Source	e 3 Negated Ei	nable bit				
		rce 3 inverted s						

REGISTER 23-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit
	1 = Data Source 2 inverted signal is enabled for Gate 3
	0 = Data Source 2 inverted signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = Data Source 2 inverted signal is enabled for Gate 3
	0 = Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	1 = Data Source 1 inverted signal is enabled for Gate 3
	0 = Data Source 1 inverted signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = Data Source 1 inverted signal is enabled for Gate 3
	0 = Data Source 1 inverted signal is disabled for Gate 3

24.0 REAL-TIME CLOCK AND CALENDAR (RTCC) WITH TIMESTAMP

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "dsPIC33/PIC24 Family Reference Manual", "RTCC with Timestamp" (DS70005193). The information in this data sheet supersedes the information in the FRM.


The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.

Key features of the RTCC module are:

- Time (Hours, Minutes and Seconds) in 24-Hour (Military Time) Format
- Calendar (Weekday, Date, Month and Year)
- Year range from 2000 to 2099 with automatic Leap Year correction

- Alarm with Configurable Mask and Repeat
 Options
- BCD Format for Compact Firmware
- Optimized for Low-Power Operation
- Multiple Clock Input Options, Including:
- 32.768 kHz crystal
- External Real-Time Clock (RTC)
- 50/60 Hz power line clock
- 31.25 kHz LPRC clock
- System clock, up to 32 MHz
- User Calibration with a Range of 2 ppm when using 32 kHz Source
- · Interrupt on Alarm and Timestamp Events
- Optional Timestamp Capture for Tamper Pin or Other Events
- User-Configurable Power Control with Dedicated Output Pin to Periodically Wake External Devices

FIGURE 24-1: RTCC HIGH-LEVEL BLOCK DIAGRAM

24.1 RTCC Source Clock

The RTCC clock divider block converts the incoming oscillator source into an accurate 1/2 second clock for the RTCC timer. The clock divider is optimized to work with four different oscillator sources:

- System clock, up to 32 MHz
- 32.768 kHz crystal oscillator
- 31 kHz Low-Power RC Oscillator (LPRC)
- External 50 Hz or 60 Hz power line frequency

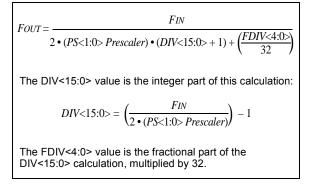
An asynchronous prescaler, PS<1:0> (RTCCON2L<5:4>), is provided that allows the RTCC to work with higher speed clock sources, such as the system clock. Divide ratios of 1:16, 1:64 or 1:256 may be selected, allowing sources up to 32 MHz to clock the RTCC.

24.1.1 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected using the CLKSEL<1:0> bits in the RTCCON2L register. When the bits are set to '00', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are '01', LPRC is used as the reference clock. When CLKSEL<1:0> = 10, the external power line (50 Hz and 60 Hz) is used as the clock source. When CLKSEL<1:0> = 11, the system clock is used as the clock source.

24.1.2 COARSE FREQUENCY DIVISION

The clock divider block has a 16-bit counter used to divide the input clock frequency. The divide ratio is set by the DIV<15:0> register bits (RTCCON2H<15:0>). The DIV<15:0> bits should be programmed with a value to produce a nominal 1/2 second clock divider count period.


24.1.3 FINE FREQUENCY DIVISION

The fine frequency division is set using the FDIV<4:0> (RTCCON2L<15:11>) bits. Increasing the FDIVx value will lengthen the overall clock divider period.

If FDIV<4:0> = 00000, the fine frequency division circuit is effectively disabled. Otherwise, it will optionally remove a clock pulse from the input of the clock divider every 1/2 second. This functionality will allow the user to remove up to 31 pulses over a fixed period of 16 seconds, depending on the value of FDIVx.

The value for DIV<15:0> is calculated as shown in Equation 24-1. The fractional remainder of the DIV<15:0> calculation result can be used to calculate the value for FDIV<4:0>.

EQUATION 24-1: RTCC CLOCK DIVIDER OUTPUT FREQUENCY

24.1.4 CLOCK SOURCE CALIBRATION

A crystal oscillator that is connected to the RTCC may be calibrated to provide an accurate 1-second clock in two ways. First, coarse frequency adjustment is performed by adjusting the value written to the DIV<15:0> bits. Secondly, a 5-bit value can be written to the FDIV<4:0> control bits to perform a fine clock division.

The DIVx and FDIVx values can be concatenated and considered as a 21-bit prescaler value. If the oscillator source is slightly faster than ideal, the FDIV<4:0> value can be increased to make a small decrease in the RTC frequency. The value of DIV<15:0> should be increased to make larger decreases in the RTC frequency. If the oscillator source is slower than ideal, FDIV<4:0> may be decreased for small calibration changes and DIV<15:0> may need to be decreased to make larger calibration changes.

Before calibration, the user must determine the error of the crystal. This should be done using another timer resource on the device or an external timing reference. It is up to the user to include in the error value the initial error of the crystal, drift due to temperature and drift due to crystal aging.

24.2 Alarm

The RTCC alarm includes these features:

- Configurable from half second to one year
- One-time alarm and repeat alarm options available

24.2.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 24-2, the interval selection of the alarm is configured through the AMASK<3:0> bits (RTCCON1H<11:8>). These bits determine which, and how many, digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ALMRPT<7:0> bits (RTCCON1H<7:0>). When the value of the ALMRPTx bits equals 00h and the CHIME bit (RTCCON1H<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated, up to 255 times, by loading ALMRPT<7:0> with FFh.

After each alarm is issued, the value of the ALMRPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ALMRPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

24.2.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours Minutes Seconds
0000 - Every half second 0001 - Every second			
0010 - Every 10 seconds			
0011 - Every minute			
0100 - Every 10 minutes			
0101 - Every hour			
0110 - Every day			h h ; m m ; s s
0111 - Every week	d		h h ; m m ; s s
1000 - Every month		/ dd	h h ; m m ; s s
1001 - Every year ⁽¹⁾		m m / d d	h h ; m m ; s s
Note 1: Annually, except when co	onfigured fo	r February 29.	

FIGURE 24-2: ALARM MASK SETTINGS

24.3 Power Control

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake from the current lower power mode.

To use this feature:

- 1. Enable the RTCC (RTCEN = 1).
- 2. Set the PWCEN bit (RTCCON1L<10>).
- 3. Configure the RTCC pin to drive the PWC control signal (RTCOE = 1 and OUTSEL<2:0> = 011).

The polarity of the PWC control signal is selected by the PWCPOL bit (RTCCON1L<9>). An active-low or active-high signal may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin, in order to drive the ground pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

Once the RTCC and PWC are enabled and running, the PWC logic will generate a control output and a sample gate output. The control output is driven out on the RTCC pin (when RTCOE = 1 and OUTSEL<2:0> = 011) and is used to power-up or power-down the device, as described above.

Once the control output is asserted, the Stability Window begins, in which the external device is given enough time to power-up and provide a stable output.

Once the output is stable, the RTCC provides a sample gate during the Sample Window. The use of this sample gate depends on the external device being used, but typically, it is used to mask out one or more wake-up signals from the external device.

Finally, both the Stability and the Sample Windows close after the expiration of the Sample Window, and the external device is powered down.

24.3.1 POWER CONTROL CLOCK SOURCE

The Stability and Sample Windows are controlled by the PWCSAMP<7:0> and PWCSTAB<7:0> bits field in the RTCCON3L register (RTCCON3L<15:8> and <7:0>, respectively). As both the Stability and Sample Windows are defined in terms of the RTCC clock, their absolute values vary by the value of the PWC clock base period. The 8-bit magnitude of PWCSTABx and PWCSAMPx allows for a window size of 0 to 255 clock periods.

The period of the PWC clock can also be adjusted with a 1:1, 1:16, 1:64 or 1:256 prescaler, determined by the PWCPS<1:0> bits (RTCCON2L<7:6>).

In addition, certain values for the PWCSTABx and PWCSAMPx fields have specific control meanings in determining power control operations. If either bit field is 00h, the corresponding window is inactive. In addition, if the PWCSTABx field is FFh, the Stability Window remains active continuously, even if power control is disabled.

24.4 Event Timestamping

The RTCC includes two sets of Timestamp registers that may be used for the capture of Time and Date register values when an external input signal is received. The RTCC triggers the timestamps for two events:

- For Timestamp A, a falling edge on the TMPR pin
- For Timestamp B, when the devices transition from VDD to VBAT power

24.4.1 TIMESTAMP OPERATION

The event input is enabled for timestamping using the TSAEN bit (RTCCON1L<0>). When the timestamp event occurs, the present time and date values are stored in the TSATIMEL/H and TSADATEL/H registers, the TSAEVT status bit (RTCSTATL<3>) becomes set and an RTCC interrupt occurs. A new timestamp capture event cannot occur until the user clears the TSAEVT status bit.

```
Note 1: The TSATIMEL/H and TSADATEL/H
register pairs can be used for data
storage when TSAEN = 0. The values of
TSATIMEL/H and TSADATEL/H will be
maintained throughout all types of
non-power Resets (MCLR, WDT, etc).
```

24.4.2 MANUAL TIMESTAMP

The current time and date may be captured in the TSATIMEL/H and TSADATEL/H registers by writing a '1' to the TSAEVT bit location while the timestamp functionality is enabled (TSAEN = 1). This write will not set the TSAEVT bit, but it will initiate a timestamp capture. The TSAEVT bit will be set when the capture operation is complete. The user must poll the TSAEVT bit to determine when the capture operation is complete.

After the Timestamp registers have been read, the TSAEVT bit should be cleared to allow further hardware or software timestamp capture events.

24.5 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control and Status registers
- Time/Alarm/Timestamp Value registers
- Date/Alarm/Timestamp registers

All Date and Time registers are directly mapped to memory and are individually addressable. In addition, the Date and Time registers for the RTCC timer, the alarm and the timestamps are identical in format.

24.5.1 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the WRLOCK bit (RTCCON1L<11>) must be cleared (see Example 24-1).

Note: To avoid accidental writes to the timer, it is recommended that the WRLOCK bit be set at any other time. For the WRLOCK bit to be cleared, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of WRLOCK; therefore, it is recommended that code follow the procedure in Example 24-1.

EXAMPLE 24-1: SETTING THE WRLOCK BIT

<pre>void RTCC_Unlock(void) {</pre>
asm volatile ("DISI #6");
asm volatile ("MOV #NVMKEY, W1");
asm volatile ("MOV #0x55, W2");
<pre>asm volatile ("MOV W2, [W1]");</pre>
asm volatile ("MOV #0xAA, W3");
<pre>asm volatile ("MOV W3, [W1]");</pre>
<pre>asm volatile ("BCLR RTCCON1L, #WRLOCK");</pre>
}
<pre>void RTCC_Lock(void) {</pre>
asm volatile ("DISI #6");
asm volatile ("MOV #NVMKEY, W1");
asm volatile ("MOV #0x55, W2");
asm volatile ("MOV W2, [W1]");
asm volatile ("MOV #0xAA, W3");
<pre>asm volatile ("MOV W3, [W1]");</pre>
<pre>asm volatile ("BSET RTCCON1L, #WRLOCK");</pre>
}

24.5.2 RTCC CONTROL AND STATUS REGISTERS

REGISTER 24-1: RTCCON1L: RTCC CONTROL REGISTER 1 (LOW)

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
RTCEN	—	—	—	WRLOCK	PWCEN	PWCPOL	PWCPOE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
RTCOE	OUTSEL2	OUTSEL1	OUTSEL0	—		TSBEN	TSAEN
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15	RTCEN: RTCC Enable bit
	 1 = RTCC is enabled and counts from selected clock source 0 = RTCC is not enabled
bit 14-12	Unimplemented: Read as '0'
bit 11	WRLOCK: RTCC Register Write Lock bit
	 1 = RTCC registers are locked 0 = RTCC registers may be written by the user
bit 10	PWCEN: Power Control Enable bit
	1 = Power control is enabled0 = Power control is disabled
bit 9	PWCPOL: Power Control Polarity bit
	1 = Power control output is active-high
b # 0	0 = Power control output is active-low
bit 8	PWCPOE: Power Control Output Enable bit 1 = Power control output pin is enabled
	0 = Power control output pin is disabled
bit 7	RTCOE: RTCC Output Enable bit
	1 = RTCC output is enabled0 = RTCC output is disabled
bit 6-4	OUTSEL<2:0>: RTCC Output Signal Selection bits
	11x = Unused
	101 = Unused 100 = Timestamp A event
	011 = Power control
	010 = RTCC input clock
	001 = Second clock 000 = Alarm event
bit 3-2	Unimplemented: Read as '0'
bit 1	TSBEN: Timestamp Source B Enable bit
	 1 = Timestamp Source B signal generates a timestamp event 0 = Timestamp Source B is disabled
bit 0	TSAEN: Timestamp Source A Enable bit
	1 = Timestamp Source A event is generated when a low pulse is detected on the $\overline{\text{TMPR}}$ pin 0 = Timestamp Source A is disabled

REGISTER 2	24-2: RTCC	ON1H: RTCO	CONTROL	REGISTER 1	(HIGH)		
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	—	_	AMASK3	AMASK2	AMASK1	AMASK0
bit 15		·				•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALMRPT7	ALMRPT6	ALMRPT5	ALMRPT4	ALMRPT3	ALMRPT2	ALMRPT1	ALMRPT0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	CHIME = 0 = Alarm is c	enabled (cleare 0) disabled	d automatically	y after an alarn	n event whenev	ver ALMRPT<7	′:0> = 00h and
bit 14		e Enable bit enabled; ALMR disabled; ALMF					
bit 13-12	Unimplement	ted: Read as '0	,				
bit 11-8	11xx = Reser	a week a day hour 10 minutes minute 10 seconds second	9		ed for Februar	y 29th)	
bit 7-0	ALMRPT<7:0 11111111 = / 11111110 = / 00000010 = / 0000001 = /	>: Alarm Repe Alarm will repea Alarm will repea Alarm will repea Alarm will repea Alarm will not re	at 255 more tin at 254 more tin at 2 more times at 1 more time	nes nes			

REGISTER 24-2: RTCCON1H: RTCC CONTROL REGISTER 1 (HIGH)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
FDIV4	FDIV3	FDIV2	FDIV1	FDIV0	_	_			
bit 15			FDIV2 FDIV1 FDIV0 — — RW-0 R/W-0 U-0 U-0 R/W-0 PS1 PS0 — — CLKSEL1 Writable bit U = Unimplemented bit, read as '0' : : Bit is set '0' = Bit is cleared x = Bit is unknow conal Clock Divide bits : : : riod increases by 31 RTCC input clock cycles every 16 seconds : : riod increases by 2 RTCC input clock cycles every 16 seconds : : riod increases by 2 RTCC input clock cycles every 16 seconds : : riod increases by 1 RTCC input clock cycles every 16 seconds : : riod increases by 1 RTCC input clock cycles every 16 seconds : : riod increases by 1 RTCC input clock cycles every 16 seconds : : riod increases by 1 RTCC input clock cycles every 16 seconds : : riod increases by 2 RTCC input clock cycles every 16 seconds : : riod increases by 1 RTCC input clock cycles every 16 seconds : : riod increases by 2 RTCC input clock cycles every 16 seconds : : riod increases by 3 r	bit					
R/W-0	R/W-0	R/W-0	R/W-0	11-0	11-0	R/W/-0	R/W-0		
PWCPS1	PWCPS0	-	-			-	CLKSELO		
bit 7	1 WCI 30	101	1.00			OLNOLLI	bit		
Legend:									
R = Readabl				•					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-11	FDIV <4:0>: Fractional Clock Divide bits 11111 = Clock period increases by 31 RTCC input clock cycles every 16 seconds 11101 = Clock period increases by 30 RTCC input clock cycles every 16 seconds 								
	00000 = Clock period increases by 2 RTCC input clock cycles every 16 seconds 00000 = Clock period increases by 1 RTCC input clock cycle every 16 seconds 00000 = No fractional clock division								
bit 10-8	Unimplemer	nted: Read as '	0'						
bit 7-6	PWCPS<1:0>: Power Control Prescale Select bits								
	11 = 1:256 10 = 1:64 01 = 1:16 00 = 1:1								
bit 5-4	PS<1:0>: Pre	escale Select bi	ts						
	11 = 1:256 10 = 1:64 01 = 1:16 00 = 1:1								
bit 3-2	Unimplemer	ted: Read as '	0'						
bit 1-0		D>: Clock Selec ral clock (Fcy) CLK input pin	t bits						

REGISTER 24-4: RTCCON2H: RTCC CONTROL REGISTER 2 (HIGH)⁽¹⁾

					· · /		
R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			DIV	<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			DIV	/<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-0 DIV<15:0>: Clock Divide bits

Sets the period of the clock divider counter; value should cause a nominal 1/2 second underflow.

Note 1: A write to this register is only allowed when WRLOCK = 1.

REGISTER 24-5: RTCCON3L: RTCC CONTROL REGISTER 3 (LOW)⁽¹⁾

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSAMP7 | PWCSAMP6 | PWCSAMP5 | PWCSAMP4 | PWCSAMP3 | PWCSAMP2 | PWCSAMP1 | PWCSAMP0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	PWCSAMP<7:0>: Power Control Sample Time Window bits 11111111 = Sample input is always allowed (not gated) 11111110 = Sample Time Window is 254 TPWC
	00000010 = Sample Time Window is 2 TPWC 00000001 = Sample Time Window is 1 TPWC 00000000 = Sample input is always gated
bit 7-0	PWCSTAB<7:0>: Power Control Stability Time bits 1111111 = Stability Time Window is 255 TPWC 11111110 = Stability Time Window is 254 TPWC
	00000010 = Stability Time Window is 2 TPWC 00000001 = Stability Time Window is 1 TPWC 00000000 = No Stability Time Window

Note 1: The Sample Window always starts when the Stability Window timer expires, except when its initial value is 00h.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	_	—	_	
bit 15							bit 8	
U-0	U-0							
_		ALMEVT	TSBEVT ⁽¹⁾	TSAEVT ⁽¹⁾	SYNC	ALMSYNC	HALFSEC ⁽²⁾	
bit 7							bit 0	
Legend:		C = Clearable	bit	HSC = Hardwa	are Settable/Cle	earable bit		
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-6	Unimplemer	nted: Read as '	כי					
bit 5		arm Event bit						
		event has occu						
L:1 4		event has not o						
bit 4		nestamp B Ever amp B event ha						
		amp B event ha						
bit 3		nestamp A Ever						
		amp A event ha						
		amp A event ha						
bit 2	SYNC: Sync	hronization Stat	us bit					
		isters may chan		vare read				
	-	isters may be re	-					
bit 1		Alarm Synchror						
		gisters (ALMTIN (ALRMEN, ALI					Alarm Contro	
		gisters and Ala						
bit 0		Half Second Sta	•	,,				
		nalf of 1-second						
		of 1-second pe	•					
 Note 1: User software may write a '1' to this location to initiate a Timestamp A event; timestamp capture is not valid until TSAEVT reads as '1'. 								

REGISTER 24-6: RTCSTATL: RTCC STATUS REGISTER (LOW)

- valid until TSAEVT reads as '1'.
 - 2: This bit is read-only; it is cleared to '0' on a write to the SECONE<3:0> bits in Register 24-7.

24.5.3 TIME/ALARM/TIMESTAMP VALUE REGISTERS

REGISTER 24-7: TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL: TIME REGISTER (LOW)

SECT.						
	EN2 SECTEN	1 SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 15						bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		—	—
bit 7 bit 0							

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 14-12	SECTEN<2:0>: Binary Coded Decimal Value of Seconds '10' Digit bits
	Contains a value from 0 to 5.
bit 11-8	SECONE<3:0>: Binary Coded Decimal Value of Seconds '1' Digit bits
	Contains a value from 0 to 9.

bit 7-0 Unimplemented: Read as '0'

REGISTER 24-8: TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH: TIME REGISTER (HIGH)

	D 444 0	D 444 0	D (14)	D 44/	D 4 4 /	D 44/	D 444
bit 15							bit 8
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
U-0	U-0	R/W-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
						· · · ·	

	U-0	R/W-0	R/W-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
b	oit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-12	HRTEN<1:0>: Binary Coded Decimal Value of Hours '10' Digit bits
	Contains a value from 0 to 2.
bit 11-8	HRONE<3:0>: Binary Coded Decimal Value of Hours '1' Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	MINTEN<2:0>: Binary Coded Decimal Value of Minutes '10' Digit bits
	Contains a value from 0 to 5.
bit 3-0	MINONE<3:0>: Binary Coded Decimal Value of Minutes '1' Digit bits
	Contains a value from 0 to 9.

© 2015 Microchip Technology Inc.

24.5.4 DATE/ALARM/TIMESTAMP VALUE REGISTERS

REGISTER 24-9: DATEL/ALMDATEL/TSADATEL/TSBDATEL: DATE REGISTER (LOW)							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 15					•	•	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

REGISTER 24-9: DATEL/ALMDATEL/TSADATEL/TSBDATEL: DATE REGISTER (LOW)

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- bit 13-12 **DAYTEN<1:0>:** Binary Coded Decimal Value of Days '10' Digit bits Contains a value from 0 to 3.
- bit 11-8 **DAYONE<3:0>:** Binary Coded Decimal Value of Days '1' Digit bits Contains a value from 0 to 9.
- bit 7-3 Unimplemented: Read as '0'
- bit 2-0 **WDAY<2:0>:** Binary Coded Decimal Value of Weekdays '1' Digit bits Contains a value from 0 to 6.

REGISTER 24-10: DATEH/ALMDATEH/TSADATEH/TSBDATEH: DATE REGISTER (HIGH)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	R/W-x	R/W-x	R/W-x
YRTEN3	YRTEN2	YRTEN1	YRTEN0	YRONE3	YRONE2	YRONE1	YRONE0
bit 15							bit 8

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	YRTEN<3:0>: Binary Coded Decimal Value of Years '10' Digit bits

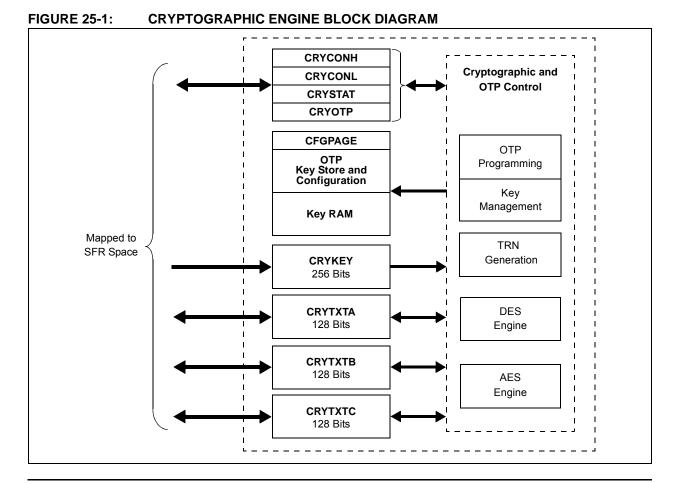
bit 11-8 **YRONE<3:0>:** Binary Coded Decimal Value of Years '1' Digit bits

bit 7-5 **Unimplemented:** Read as '0'

- bit 4 MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit Contains a value from 0 to 1.
- bit 3-0 MTHONE<3:0>: Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.

25.0 CRYPTOGRAPHIC ENGINE

Note: This data sheet summarizes the features of the PIC24FJ256GA412/GB412 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Cryptographic Engine" (DS70005133) which is available from the Microchip web site (www.microchip.com).


The Cryptographic Engine provides a new set of data security options. Using its own free-standing state machines, the engine can independently perform NIS standard encryption and decryption of data independently of the CPU. This eliminates the concerns of excessive CPU or program memory overhead that encryption and decryption would otherwise require, while enhancing the application's security.

The primary features of the Cryptographic Engine are:

- Memory-Mapped, 128-Bit and 256-Bit Memory Spaces for Encryption/Decryption Data
- Multiple Options for Key Storage, Selection and Management
- · Support for Internal Context Saving
- Session Key Encryption and Loading

- Half-Duplex Operation
- DES and Triple DES (3DES) Encryption and Decryption (64-bit block size):
 - Supports 64-bit keys and 2-key or 3-key Triple DES
- AES Encryption and Decryption (128-bit block size):
 Supports key sizes of 128, 192 or 256 bits
- Supports ECB, CBC, CFB, OFB and CTR Modes for Both DES and AES Standards
- Programmatically Secure Key Storage:
 - 512-byte OTP array for key storage, not readable from other memory spaces
 - 32-bit Configuration Page
 - Independent, 512-byte Key RAM for volatile key storage
 - Simple in-module programming interface
 - Supports Key Encryption Key (KEK)
- Support for True Random Number Generation (TRNG) and Pseudorandom Number Generation (PRNG), NIST SP800-90 Compliant
- Hardware Anti-Tamper Feature for Additional Data Security

A simplified block diagram of the Cryptographic Engine is shown in Figure 25-1.

25.1 Data Register Spaces

There are four register spaces used for cryptographic data and key storage:

- CRYTXTA
- CRYTXTB
- CRYTXTC
- CRYKEY

Although mapped into the SFR space, all of these Data Spaces are actually implemented as 128-bit or 256-bit wide arrays, rather than groups of 16-bit wide Data registers. Reads and writes to and from these arrays are automatically handled as if they were any other register in the SFR space.

CRYTXTA through CRYTXTC are 128-bit wide spaces; they are used for writing data to, and reading from, the Cryptographic Engine. Additionally, they are also used for storing intermediate results of the encryption/ decryption operation. None of these registers may be written to when the module is performing an operation (CRYGO = 1).

CRYTXTA and CRYTXTB normally serve as inputs to the encryption/decryption process.

CRYTXTA usually contains the initial plaintext or ciphertext to be encrypted or decrypted. Depending on the mode of operation, CRYTXTB may contain the ciphertext output or intermediate cipher data. It may also function as a programmable length counter in certain operations.

CRYTXTC is primarily used to store the final output of an encryption/decryption operation. It is also used as the input register for data to be programmed to the Secure OTP Array.

CRYKEY is a 256-bit wide space, used to store cryptographic keys for the selected operation; it is writable from both the SFR space and the Secure OTP Array. Although mapped into the SFR space, it is a write-only memory area; any data placed here, regardless of its source, cannot be read back by any run-time operations. This feature helps to ensure the security of any key data.

25.2 Modes of Operation

The Cryptographic Engine supports the following modes of operation, determined by the OPMOD<3:0> (CRYCONL<7:4>) bits:

- Block Encryption
- Block Decryption
- AES Decryption Key Expansion
- Random Number Generation
- Session Key Generation
- Session Key Encryption
- · Session Key Loading

The OPMOD<3:0> bits may be changed while CRYON is set. They should only be changed when a cryptographic operation is not being done (CRYGO = 0).

Once the encryption operation, and the appropriate and valid key configuration is selected, the operation is performed by setting the CRYGO bit. This bit is automatically cleared by hardware when the operation is complete. The CRYGO bit can also be manually cleared by software; this causes any operation in progress to terminate immediately. Clearing this bit in software also sets the CRYABRT bit (CRYSTAT<5>).

For most operations, CRYGO can only be set when an OTP operation is not being performed and there are no other error conditions. CRYREAD, CRYWR, CRYABRT, ROLLOVR, MODFAIL and KEYFAIL must all be '0'.

Setting CRYWR and CRYGO simultaneously will not initiate an OTP programming operation or any other operation. Setting CRYGO when the module is disabled (CRYON = 0) also has no effect.

25.3 Enabling the Engine

The Cryptographic Engine is enabled by setting the CRYON bit. Clearing this bit disables both the DES and AES engines, as well as causing the following register bits to be held in Reset:

- CRYGO (CRYCONL<8>)
- TXTABSY (CRYSTAT<6>)
- CRYWR (CRYOTP<0>)

All other register bits and registers may be read and written while CRYON = 0.

25.4 Encrypting Data

- 1. If not already set, set the CRYON bit.
- 2. Configure the CPHRSEL, CPHRMODx, KEYMODx and KEYSRCx bits as desired to select the proper mode and key length.
- 3. Set OPMOD<3:0> to '0000'.
- 4. If a software key is being used, write it to the CRYKEY register. It is only necessary to write the lowest *n* bits of CRYKEY for a key length of *n*, as all unused CRYKEY bits are ignored.
- 5. Read the KEYFAIL bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will NOT be performed.
- 6. Write the data to be encrypted to the appropriate CRYTXT register. For a single DES encrypt operation, it is only necessary to write the lowest 64 bits. However, for data less than the block size (64 bits for DES, 128 bits for AES), it is the responsibility of the software to properly pad the upper bits within the block.
- 7. Set the CRYGO bit.
- In ECB and CBC modes, set the FREEIE bit (CRYCONL<10>) to enable the optional CRYTXTA interrupt to indicate when the next plaintext block can be loaded.
- Poll the CRYGO bit until it is cleared or wait for the CRYDNIF module interrupt (DONEIE must be set). If other Cryptographic Engine interrupts are enabled, it will be necessary to poll the CRYGO bit to verify the interrupt source.
- 10. Read the encrypted block from the appropriate CRYTXT register.
- 11. Repeat Steps 5 through 8 to encrypt further blocks in the message with the same key.

25.5 Decrypting Data

- 1. If not already set, set the CRYON bit.
- Configure the CPHRSEL, CPHRMODx, KEYMODx and KEYSRCx bits as desired to select the proper mode and key length.
- 3. Set OPMOD<3:0> to '0001'.
- 4. If a software key is being used, write the CRYKEY register. It is only necessary to write the lowest *n* bits of CRYKEY for a key length of *n*, as all unused CRYKEY bits are ignored.
- 5. If an AES-ECB or AES-CBC mode decryption is being performed, you must first perform an AES decryption key expansion operation.
- Read the KEYFAIL status bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will not be performed.
- Write the data to be decrypted into the appropriate Text/Data register. For a DES decrypt operation, it is only necessary to write the lowest 64 bits of CRYTXTB.
- 8. Set the CRYGO bit.
- 9. If this is the first decrypt operation after a Reset, or if a key storage program operation was performed after the last decrypt operation, or if the KEYMODx or KEYSRCx fields are changed, the engine will perform a new key expansion operation. This will result in extra clock cycles for the decrypt operation, but will otherwise be transparent to the application (i.e., the CRYGO bit will be cleared only after the key expansion and the decrypt operation have completed).
- In ECB and CBC modes, set the FREEIE bit (CRYCONL<10>) to enable the optional CRYTXTA interrupt to indicate when the next plaintext block can be loaded.
- 11. Poll the CRYGO bit until it is cleared or wait for the CRYDNIF module interrupt (DONEIE must be set). If other Cryptographic Engine interrupts are enabled, it will be necessary to poll the CRYGO bit to verify the interrupt source.
- 12. Read the decrypted block out of the appropriate Text/Data register.
- 13. Repeat Steps 6 through 10 to encrypt further blocks in the message with the same key.

25.6 Encrypting a Session Key

Note:	ECB and CBC modes are restricted to
	128-bit session keys only.

- 1. If not already set, set the CRYON bit.
- 2. If not already programmed, program the SKEYEN bit to '1'.

Note:	Setting	SKEYEN	permanently	makes
	Key #1 a	available as	a Key Encrypt	ion Key
	only. It c	annot be us	ed for other en	cryption
	or decry	ption operat	tions after that.	

- 3. Set OPMOD<3:0> to '1110'.
- Configure the CPHRSEL, CPHRMOD<2:0> and KEYMOD<1:0> register bit fields as desired, set SKEYSEL to '0'.
- 5. Read the KEYFAIL status bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will not be performed.
- Write the software generated session key into the CRYKEY register or generate a random key into the CRYKEY register. It is only necessary to write the lowest *n* bits of CRYKEY for a key length of *n*, as all unused key bits are ignored.
- Set the CRYGO bit. Poll the bit until it is cleared by hardware; alternatively, set the DONEIE bit (CRYCONL<11>) to generate an interrupt when the encryption is done.
- 8. Read the encrypted session key out of the appropriate CRYTXT register.
- 9. For total key lengths of more than 128 bits, set SKEYSEL to '1' and repeat Steps 6 and 7.
- 10. Set KEYSRC<3:0> to '0000' to use the session key to encrypt data.

25.7 Receiving a Session Key

- Note: ECB and CBC modes are restricted to 128-bit session keys only.
- 1. If not already set, set the CRYON bit.
- 2. If not already programmed, program the SKEYEN bit to '1'.
- Note: Setting SKEYEN permanently makes Key #1 available as a Key Encryption Key only. It cannot be used for other encryption or decryption operations after that. It also permanently disables the ability of software to decrypt the session key into the CRYTXTA register, thereby breaking programmatic security (i.e., software can read the unencrypted key).
- 3. Set OPMOD<3:0> to '1111'.
- Configure the CPHRSEL, CPHRMOD<2:0> and KEYMOD<1:0> register bit fields as desired; set SKEYSEL to '0'.
- 5. Read the KEYFAIL status bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will NOT be performed.
- 6. Write the encrypted session key received into the appropriate CRYTXT register.
- Set the CRYGO bit. Poll the bit until it is cleared by hardware; alternatively, set the DONEIE bit (CRYCONL<11>) to generate an interrupt when the process is done.
- 8. For total key lengths of more than 128 bits, set SKEYSEL to '1' and repeat Steps 6 and 7.
- Set KEYSRC<3:0> to '0000' to use the newly generated session key to encrypt and decrypt data.

25.8 Generating a Pseudorandom Number (PRN)

For operations that require a Pseudorandom Number (PRN), the method outlined in NIST SP800-90 can be adapted for efficient use with the Cryptographic Engine. This method uses the AES algorithm in CTR mode to create PRNs with minimal CPU overhead. PRNs generated in this manner can be used for cryptographic purposes or any other purpose that the host application may require.

The random numbers used as initial seeds can be taken from any source convenient to the user's application. If possible, a non-deterministic random number source should be used.

Note:	PRN generation is not av	ailable when
	software keys are disabled (S)	NKYDIS = 1).

To perform the initial reseeding operation, and subsequent reseedings after the reseeding interval has expired:

- 1. Store a random number (128 bits) in CRYTXTA.
- 2. For the initial generation ONLY, use a key value of 0h (128 bits) and a counter value of 0h.
- Configure the engine for AES encryption, CTR mode (OPMOD<3:0> = 0000, CPHRSEL = 1, CPHRMOD<2:0> = 100).
- 4. Perform an encrypt operation by setting CRYGO.
- 5. Move the results in CRYTXTC to RAM. This is the New Key Value (NEW_KEY).
- 6. Store another random number (128 bits) in CRYTXTA.
- 7. Configure the module for encryption as in Step 3.
- 8. Perform an encrypt operation by setting CRYGO.
- 9. Store this value in RAM. This is the New Counter Value (NEW_CTR).
- 10. For subsequent reseeding operations, use NEW_KEY and NEW_CTR for the starting key and counter values.

To generate the Pseudorandom Number:

- 1. Load NEW_KEY value from RAM into CRYKEY.
- 2. Load NEW_CTR value from RAM into CRYTXTB.
- 3. Load CRYTXTA with 0h (128 bits).
- Configure the engine for AES encryption, CTR mode (OPMOD<3:0> = 0000, CPHRSEL = 1, CPHRMOD<2:0> = 100).
- 5. Perform an encrypt operation by setting CRYGO.
- 6. Copy the generated PRN in CRYTXTC (PRNG_VALUE) to RAM.
- 7. Repeat the encrypt operation.
- 8. Store the value of CRYTXTC from this round as the new value of NEW_KEY.
- 9. Repeat the encrypt operation.
- 10. Store the value of CRYTXTC from this round as the new value of NEW_CTR.

Subsequent PRNs can be generated by repeating this procedure until the reseeding interval has expired. At that point, the reseeding operation is performed using the stored values of NEW_KEY and NEW_CTR.

25.9 Generating a True Random Number

- Enable the Cryptographic mode (CRYON (CRYCONL<15>) = 1).
- 2. Set the OPMOD<3:0> bits to '1010'.
- Start the request by setting the CRYGO bit (CRYCONL<8>) to '1'.
- 4. Wait for the CRYGO bit to be cleared to '0' by the hardware.
- 5. Read the random number from the CRYTXTA register.

25.10 Testing the Key Source Configuration

The validity of the key source configuration can always be tested by writing the appropriate register bits and then reading the KEYFAIL register bit. No operation needs to be started to perform this check; the module does not even need to be enabled.

25.11 Programming CFGPAGE (Page 0) Configuration Bits

- 1. If not already set, set the CRYON bit. Set KEYPG<3:0> to '0000'.
- 2. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- 3. Write the data to be programmed into the Configuration Page into CRYTXTC<31:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- 4. Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 5. Once all programming has completed, set the CRYREAD bit to reload the values from the on-chip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- 6. Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status by performing a read operation on the array.
- **Note:** If the device enters Sleep mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

25.12 Programming Keys

- 1. If not already set, set the CRYON bit.
- 2. Configure KEYPG<3:0> to the page you want to program.
- 3. Select the key storage destination using the KEYPSEL bit (CRYOTP<8>).
- 4. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- 5. Write the data to be programmed into the Configuration Page into CRYTXTC<63:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 7. Repeat Steps 2 through 5 for each OTP array page to be programmed.
- 8. Once all programming has completed, set the CRYREAD bit to reload the values from the on-chip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- 9. Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status by performing a read operation on the array.
- **Note:** If the device enters Sleep mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

25.12.1 KEY RAM WRITE PROTECTION

To prevent accidental overwriting of Key RAM data, each 64-bit block of Key RAM has an internal write lock bit that is not accessible from software. When a block is programmed, its write lock is set; this prevents further writes to the block. All write locks are cleared when the Key RAM is erased (resulting from either a tamper event or a software-initiated wipe) or on a device POR.

25.13 Verifying Programmed Keys

To maintain key security, the Secure OTP Array has no provision to read back its data to any user-accessible memory space in any operating mode. Therefore, there is no way to directly verify programmed data. The only method for verifying that they have been programmed correctly is to perform an encryption operation with a known plaintext/ciphertext pair for each programmed key.

25.14 Key Erasure

Cryptographic keys written to the Secure OTP Array are considered to be programmatically secure. As they cannot be read by any program operation in any operating mode, no provision is made for their erasure.

To prevent an unauthorized third party from obtaining data in Key RAM, two methods are provided to erase key data in the event of application tampering: hardware anti-tampering and software-based erasure.

Hardware anti-tampering monitors the TMPR pin. If a low pulse or sustained low-voltage level is detected, the Key RAM will be automatically erased. Anti-tampering is enabled as a device configuration option by programming (= 0) the TMPRWIPE Configuration bit (FDEVOPT<3>).

Software-based erasure uses software monitoring in the application to detect an interruption of normal execution. Should this happen, the application can set the KEYWIPE bit (CRYCONH<4>) to immediately erase the Key RAM.

25.15 Operation During Sleep and Idle Modes

25.15.1 OPERATION DURING SLEEP MODES

Whenever the device enters any Sleep or Deep Sleep mode, all operation engine state machines are reset. This feature helps to preserve the integrity, or any data being encrypted or decrypted, by discarding any intermediate text that might be used to break the key.

Any OTP programming operations under way when a Sleep mode is entered are also halted. Depending on what is being programmed, this may result in permanent loss of a memory location or potentially the use of the entire Secure OTP Array. Users are advised to perform OTP programming only when entry into power-saving modes is disabled.

25.15.2 KEY STORAGE IN DEEP SLEEP AND VBAT MODES

Under normal circumstances, power is removed from the Key RAM along with the Cryptographic Engine during Deep Sleep and VBAT modes. This results in the loss of any key data that may be stored there. To maintain the Key RAM in these modes, set the KEYRAMEN bit (DSCON<11>). This will result in a fractional increase of current consumption.

25.15.3 OPERATION DURING IDLE MODE

When the CRYSIDL bit (CRYCONL<13>) is '0', the engine will continue any ongoing operations without interruption when the device enters Idle mode.

When CRYSIDL is '1', the module behaves as in Sleep modes.

Note: OTP programming errors, regardless of the source, are not recoverable errors. Users should ensure that all foreseeable interruptions to the programming operation, including device interrupts and entry into power-saving modes, are disabled.

REGISTER 25-1: CRYCONH: CRYPTOGRAPHIC CONTROL HIGH REGISTER

U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
—	CTRSIZE6 ^(2,3)	CTRSIZE5 ^(2,3)	CTRSIZE4 ^{(2,3}	CTRSIZE3 ^(2,3)	CTRSIZE2 ^(2,3)	CTRSIZE1 ^(2,3)	CTRSIZE0 ^(2,3)
bit 15							bit 8
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/S-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
SKEYSEL	KEYMOD1 ⁽²⁾	KEYMOD0 ⁽²⁾	KEYWIPE	KEYSRC3(2)	KEYSRC2 ⁽²⁾	KEYSRC1 ⁽²⁾	KEYSRC0 ⁽²⁾
bit 7							bit 0
Legend:		S = Settable O	nly bit				
R = Readal	ble bit	W = Writable b	it	U = Unimplem	ented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	-	ted: Read as '0'					
bit 14-8		>: Counter Size					
	Counter is de	efined as CRY	「XTB <n:0>, w</n:0>	here n = CTR	SIZEX. The co	ounter increme	ents after each
	operation and $1111111 = 12$	generates a rol 28 bits (CRYTX)	IOVER EVENT WI TR<127.0>1	ien the counter	rolls over from	$(2^{11} - 1)$ to 0.	
		27 bits (CRYTX)	,				
	•		,				
	•						
	•		< 2· 0>)				
		bits (CRYTXTB· bits (CRYTXTB·					
		bit (CRYTXTB<		vent occurs whe	en CRYTXTB<	0> toggles from	'1' to '0'
bit 7		ession Key Sele					
		ation/encryptior					
bit 6-5)>: AES/DES Er	•			bits ^(1,2)	
		ypt/Decrypt Ope			0		
	11 = 64-bit, 3-	key 3DES	•				
	10 = Reserve						
	01 = 64-bit, St 00 = 64-bit DE	andard 2-key 3[-S	JES				
		 ypt/Decrypt Ope	erations (CPH	RSFL = 1)			
	11 = Reserved						
	10 = 256-bit A	ES					
	01 = 192-bit A						
	00 = 128-bit A		(1)				
bit 4		ey RAM Erase E		leaned calls by b			
		RAM (set only erase has not b				e next clock cyc	se)
bit 3-0	•	>: Cipher Key S	•	•			
		25-1 and Table			es.		
						a) · · · ·	
		eset on system			-	-	1)
2:	writes to these	bit fields are loc	kea out whene	ever an operation	in is in progress	G (CRYGO bit is	s set).

3: Used only in CTR operations when CRYTXTB is being used as a counter; otherwise, these bits have no effect.

REGISTER 25-2: CRYCONL: CRYPTOGRAPHIC CONTROL LOW REGISTER

R/W-0	U-0	R/W-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	R/W-0, HC ⁽¹⁾
CRYON	_	CRYSIDL ⁽³⁾	ROLLIE	DONEIE	FREEIE	—	CRYGO
bit 15							bit 8

R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾				
OPMOD3 ⁽²⁾	OPMOD2 ⁽²⁾	OPMOD1 ⁽²⁾	OPMOD0 ⁽²⁾	CPHRSEL ⁽²⁾	CPHRMOD2 ⁽²⁾	CPHRMOD1(2)	CPHRMOD0 ⁽²⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15		CRYON: Cryptographic Enable bit
		1 = Module is enabled
		0 = Module is disabled
bit 14		Unimplemented: Read as '0'
bit 13		CRYSIDL: Cryptographic Stop in Idle Control bit ⁽³⁾
		1 = Stops module operation in Idle mode
		0 = Continues module operation in Idle mode
bit 12		ROLLIE: CRYTXTB Rollover Interrupt Enable bit ⁽¹⁾
		1 = Generates an interrupt event when the counter portion of CRYTXTB rolls over to '0'
		0 = Does not generate an interrupt event when the counter portion of CRYTXTB rolls over to '0'
bit 11		DONEIE: Operation Done Interrupt Enable bit ⁽¹⁾
		1 = Generates an interrupt event when the current cryptographic operation completes
		 Does not generate an interrupt event when the current cryptographic operation completes; software must poll the CRYGO or CRYBSY bit to determine when the current cryptographic operation is complete
bit 10		FREEIE: Input Text Interrupt Enable bit ⁽¹⁾
		 1 = Generates an interrupt event when the input text (plaintext or ciphertext) is consumed during the current cryptographic operation
		0 = Does not generate an interrupt event when the input text is consumed
bit 9		Unimplemented: Read as '0'
bit 8		CRYGO: Cryptographic Engine Start bit ⁽¹⁾
		1 = Starts the operation specified by OPMOD<3:0> (cleared automatically when operation is done)
		 Stops the current operation (when cleared by software); also indicates the current operation has completed (when cleared by hardware)
Note	1:	These bits are reset on system Resets or whenever the CRYMD bit (PMD8<0>) is set.
:	2:	Writes to these bit fields are locked out whenever an operation is in progress (CRYGO bit is set).

3: If the device enters Idle mode when CRYSIDL = 1, the module will stop its current operation. Entering into Idle mode while an OTP write operation is in process can result in irreversible corruption of the OTP.

REGISTER 25-2: CRYCONL: CRYPTOGRAPHIC CONTROL LOW REGISTER (CONTINUED)

bit 7-4	OPMOD<3:0>: Operating Mode Selection bits ^(1,2)
	1111 = Loads session key (decrypts session key in CRYTXTA/CRYTXTB using the Key Encryption Key and writes to CRYKEY)
	1110 = Encrypts session key (encrypts session key in CRYKEY using the Key Encryption Key and writes to CRYTXTA/CRYTXTB)
	1011 = Generates a session key (generates a True Random Number with the TRNG) and loads it into CRYKEY
	1010 = Generates a True Random Number (using the TRNG) and loads it into CRYTXTA
	1001
	• = Reserved
	•
	0011
	0010 = AES decryption key expansion
	0001 = Decryption 0000 = Encryption
bit 3	CPHRSEL: Cipher Engine Select bit ^(1,2)
	1 = AES engine
	0 = DES engine
bit 2-0	CPHRMOD<2:0>: Cipher Mode bits ^(1,2)
	11x = Reserved
	101 = Reserved 100 = Counter (CTR) mode
	011 = Output Feedback (OFB) mode
	010 = Cipher Feedback (CFB) mode
	001 = Cipher Block Chaining (CBC) mode
	000 = Electronic Codebook (ECB) mode
Note 1:	These bits are reset on system Resets or whenever the CRYMD bit (PMD8<0>) is set.

- 2: Writes to these bit fields are locked out whenever an operation is in progress (CRYGO bit is set).
- **3:** If the device enters Idle mode when CRYSIDL = 1, the module will stop its current operation. Entering into Idle mode while an OTP write operation is in process can result in irreversible corruption of the OTP.

REGISTER 25-3: CRYSTAT: CRYPTOGRAPHIC STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R-x, HSC ⁽¹⁾	R-0, HSC ⁽¹⁾	R/C-0, HS ⁽²⁾	R/C-0, HS ⁽²⁾	U-0	R-0, HSC ⁽¹⁾	R-x, HSC ⁽¹⁾	R-x, HSC ⁽¹⁾
CRYBSY ⁽⁴⁾	TXTABSY	CRYABRT ⁽⁵⁾	ROLLOVR	—	MODFAIL ⁽³⁾	KEYFAIL ^(3,4)	PGMFAIL ^(3,4)
bit 7							bit 0

Legend:	C = Clearable bit	HSC = Hardware Settable/Clearable bit		
R = Readable bit	HS = Hardware Settable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	8 Unimplemented: Read as '0'
bit 7	CRYBSY: Cryptographic Engine Busy Status bit ^(1,4)
	1 = A cryptographic operation is in progress
	0 = No cryptographic operation is in progress
bit 6	TXTABSY: CRYTXTA Busy Status bit ⁽¹⁾
	 1 = The CRYTXTA register is busy and may not be written to 0 = The CRYTXTA is free and may be written to
bit 5	CRYABRT: Cryptographic Operation Aborted Status bit ^(2,5)
bit 5	1 = Last operation was aborted by clearing the CRYGO bit in software
	0 = Last operation completed normally (CRYGO cleared in hardware)
bit 4	ROLLOVR: Counter Rollover Status bit ⁽²⁾
	 1 = The CRYTXTB counter rolled over on the last CTR mode operation; once set, this bit must be cleared by software before the CRYGO bit can be set again 0 = No rollover event has occurred
bit 3	Unimplemented: Read as '0'
bit 2	MODFAIL: Mode Configuration Fail Flag bit ^(1,3)
	1 = Currently selected operating and Cipher mode configuration is invalid; the CRYWR bit cannot be
	 set until a valid mode is selected (automatically cleared by hardware with any valid configuration) 0 = Currently selected operating and Cipher mode configurations are valid
bit 1	KEYFAIL: Key Configuration Fail Status bit ^(1,3,4)
	See Table 25-1 and Table 25-2 for invalid key configurations.
	 1 = Currently selected key and mode configurations are invalid; the CRYWR bit cannot be set until a valid mode is selected (automatically cleared by hardware with any valid configuration) 0 = Currently selected configurations are valid
bit 0	PGMFAIL: Key Storage/Configuration Program Fail Flag bit ^(1,3,4)
DILU	1 = The page indicated by KEYPG<3:0> is reserved or locked; the CRYWR bit cannot be set and no
	programming operation can be started
	0 = The page indicated by KEYPG<3:0> is available for programming
Note ²	1: These bits are reset on system Resets or whenever the CRYMD bit (PMD8<0>) is set.
-	2: These bits are reset on system Resets when the CRYMD bit is set or when CRYGO is cleared.
	3: These bits are functional even when the module is disabled (CRYON = 0); this allows mode configurations
	to be validated for compatibility before enabling the module.
4	4: These bits are automatically set during all OTP read operations, including the initial read at POR. Once the read is completed, the bit assumes the proper state that reflects the current configuration.

5: If this bit is set, a cryptographic operation cannot be performed.

PIC24FJ256GA412/GB412 FAMILY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
_	—	—	_	—	_	_	KEYPSEL			
bit 15							bita			
R-x, HSC ⁽¹⁾	R/W-0 ⁽¹⁾	R/S-1, HC	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/S-0, HC(2			
PGMTST	OTPIE	CRYREAD ^(3,4)	KEYPG3	KEYPG2	KEYPG1	KEYPG0	CRYWR ^(3,4)			
bit 7							bit (
Legend:		S = Settable Or	nly bit	HSC = Hardwa	are Settable/Cle	earable bit				
R = Readable	e bit	W = Writable bi	t	U = Unimplem	nented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown			
HC = Hardwa	are Clearable bi	t								
bit 15-9	Unimpleme	nted: Read as '0								
bit 8	-	Key Storage Prog		ect bit						
	1 = Programming operations write to Key RAM									
	0 = Programming operations write to the Secure OTP Array									
bit 7	PGMTST: Key Storage/Configuration Program Test bit ⁽¹⁾									
	This bit mirrors the state of the TSTPGM bit and is used to test the programming of the Secure OTF									
	Array after programming.									
	1 = TSTPGM (CFGPAGE<30>) is programmed ('1') 0 = TSTPGM is not programmed ('0')									
			. ,		(4)					
bit 6	•	TPIE: Key Storage/Configuration Program Interrupt Enable bit ⁽¹⁾								
	1 = Generates an interrupt when the current programming or read operation completes									
	 Does not generate an interrupt when the current programming or read operation completes; software must poll the CRYWR, CRYREAD or CRYBSY bit to determine when the current programming 									
	operation is complete									
bit 5	•	•	ev Storage/Co	nfiguration Rea	d bit <mark>(3,4)</mark>					
	CRYREAD: Cryptographic Key Storage/Configuration Read bit ^(3,4) 1 = This bit is set to start a read operation; read operation is in progress while this bit is set and CRYGO = 1									
	1 = This bit is set to start a read operation, read operation is in progress while this bit is set and CRTGO = $10 = Read operation has completed$									
bit 4-1	KEYPG<3:0>: Key Storage/Configuration Program Page Select bits ⁽¹⁾									
	1111									
	••• = Reserved									
	1001	Develo								
	1000 = OTP 0111 = OTP	•								
	0111 = OTP 0110 = OTP									
	0101 = OTP	•								
	0100 = OTP Page 4									

- 0100 = OIP Page 4 0011 = OTP Page 3
- 0010 = OTP Page 2
- 0001 = OTP Page 1
- 0000 = Configuration Page (CFGPAGE, OTP Page 0)
- CRYWR: Cryptographic Key Storage/Configuration Program bit^(2,3,4)
 - 1 = Programs the Key Storage/Configuration bits with the value found in CRYTXTC<63:0>
 - 0 = Program operation has completed
- Note 1: These bits are reset on system Resets or whenever the CRYMD bit (PMD8<0>) is set.
 - 2: These bits are reset on system Resets when the CRYMD bit is set or when CRYGO is cleared.
 - 3: Set this bit only when CRYON = 1 and CRYGO = 0. Do not set CRYREAD or CRYWR both, at any given time.
 - 4: Do not clear CRYON or these bits while they are set; always allow the hardware operation to complete and clear the bits automatically.

bit 0

REGISTER 25-5: CFGPAGE: SECURE ARRAY CONFIGURATION BITS (OTP PAGE 0) REGISTER

r-x	R/PO-x	R/P-x	R/P-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x
—	TSTPGM ⁽¹⁾	KEYSZRAM1	KEYSZRAM0	KEY4TYPE1	KEY4TYPE0	KEY3TYPE1	KEY3TYPE0
bit 31							bit 24

R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x
KEY2TYPE1	KEY2TYPE0	KEY1TYPE1	KEY1TYPE0	SKEYEN	LKYSRC7	LKYSRC6	LKYSRC5
bit 23 bit 1						bit 16	

R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x
LKYSRC4	LKYSRC3	LKYSRC2	LKYSRC1	LKYSRC0	SRCLCK	WRLOCK8	WRLOCK7
bit 15							bit 8

R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x	R/PO-x
WRLOCK6	WRLOCK5	WRLOCK74	WRLOCK3	WRLOCK2	WRLOCK1	WRLOCK0	SWKYDIS
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	Reserved: Do not modify
bit 30	TSTPGM: Customer Program Test bit ⁽¹⁾
	1 = CFGPAGE has been programmed
	0 = CFGPAGE has not been programmed
bit 29-28	KEYSZRAM<1:0>: Key Type Selection bits (Key RAM Pages)
	 11 = Keys in these pages are 192/256-bit AES operations only 10 = Keys in these pages are 128-bit AES operations only 01 = Keys in these pages are DES3 operations only 00 = Keys in these pages are DES/DES2 operations only
bit 27-26	KEY4TYPE<1:0>: Key Type for OTP Pages 7 and 8 bits
	 11 = Keys in these pages are for 192-bit/256-bit AES operations only 10 = Keys in these pages are for 128-bit AES operations only 01 = Keys in these pages are for 3DES operations only 00 = Keys in these pages are for DES/2DES operations only
bit 25-24	KEY3TYPE<1:0>: Key Type for OTP Pages 5 and 6 bits
	 11 = Keys in these pages are for 192-bit/256-bit AES operations only 10 = Keys in these pages are for 128-bit AES operations only 01 = Keys in these pages are for 3DES operations only 00 = Keys in these pages are for DES/2DES operations only
bit 23-22	KEY2TYPE<1:0>: Key Type for OTP Pages 3 and 4 bits
	 11 = Keys in these pages are for 192-bit/256-bit AES operations only 10 = Keys in these pages are for 128-bit AES operations only 01 = Keys in these pages are for 3DES operations only 00 = Keys in these pages are for DES/2DES operations only

Note 1: This bit's state is mirrored by the PGMTST bit (CRYOTP<7>).

REGISTER 25-5: CFGPAGE: SECURE ARRAY CONFIGURATION BITS (OTP PAGE 0) REGISTER (CONTINUED)

bit 21-20	KEY1TYPE<1:0>: Key Type for OTP Pages 1 and 2 bits
	11 = Keys in these pages are for 192-bit/256-bit AES operations only
	10 = Keys in these pages are for 128-bit AES operations only
	01 = Keys in these pages are for 3DES operations only
	00 = Keys in these pages are for DES/2DES operations only
bit 19	SKEYEN: Session Key Enable bit
	1 = Stored Key #1 may be used only as a Key Encryption Key
	0 = Stored Key #1 may be used for any operation
bit 18-11	LKYSRC<7:0>: Locked Key Source Configuration bits
	If SRCLCK = 1:
	1xxxxxxx = Key source is as if KEYSRC<3:0> = 1111
	01xxxxxx = Key source is as if KEYSRC<3:0> = 0111
	001xxxxx = Key source is as if KEYSRC<3:0> = 0110
	0001xxxx = Key source is as if KEYSRC<3:0> = 0101
	00001xxx = Key source is as if KEYSRC<3:0> = 0100
	000001xx = Key source is as if KEYSRC<3:0> = 0011
	0000001x = Key source is as if KEYSRC<3:0> = 0010
	00000001 = Key source is as if KEYSRC<3:0> = 0001
	00000000 = Key source is as if KEYSRC<3:0> = 0000
	If SRCLCK = 0:
	These bits are ignored.
bit 10	SRCLCK: Key Source Lock bit
	1 = The key source is determined by the LKYSRC<7:0> bits (software key selection is disabled)
	0 = The key source is determined by the KEYSRC<3:0> (CRYCONH<3:0>) bits (locked key selection
	is disabled)
bit 9-1	WRLOCK<8:0>: Write Lock Page Enable bits
	For OTP Pages 0 (CFGPAGE) through 8:
	1 = OTP Page is permanently locked and may not be programmed
	0 = OTP Page is unlocked and may be programmed
bit 0	SWKYDIS: Software Key Disable bit
	1 = Software key (CRYKEY register) is disabled; when KEYSRC<3:0> = 0000, the KEYFAIL status bit
	will be set and no encryption/decryption/session key operations can be started until KEYSRC<3:0>
	bits are changed to a value other than '0000'
	0 = Software key (CRYKEY register) can be used as a key source when KEYSRC<3:0> = 0000

Note 1: This bit's state is mirrored by the PGMTST bit (CRYOTP<7>).

Mode of	KEYMOD<1:0>	KEVEDC 200	Session Key So	urce (SESSKEY)	OTP OR RAM
Operation	KETWOD-1:0>	KEYSRC<3:0>	0	1	Array Address
		0000 (1)	CRYKE	Y<63:0>	_
		0001	DES Key #1	Key Config Error ⁽²⁾	<63:0>
		0010	DES Key #2		<127:64>
		0011	DES Key #3		<191:128>
		0100	DES Key #4		<255:192>
		0101	DES F	Key #5	<319:256>
		0110	DES F	Key #6	<383:320>
64-Bit DES	00	0111	DES F	Key #7	<447:384>
	00	1001	DES Key	#1 (RAM)	<63:0>
		1010	DES Key	#2 (RAM)	<127:64>
		1011	DES Key	#3 (RAM)	<191:128>
		1100	DES Key	#4 (RAM)	<255:192>
		1101	DES Key	#5 (RAM)	<319:256>
		1110	DES Key #6 (RAM)		<383:320>
		1111	DES Key	#7 (RAM)	<447:384>
		All Others	Key Conf	ig Error ⁽²⁾	—
		0000 (1)	CRYKEY<63:0> (1st/3rd) CRYKEY<127:64> (2nd)		—
		0001	DES Key #1 (1st/3rd) Key Config Error ⁽²⁾ DES Key #2 (2nd)		<63:0> <127:64>
		0010	DES Key #3 (1st/3rd) DES Key #4 (2nd)		<191:128> <255:192>
		0011	DES Key #5 (1st/3rd) DES Key #6 (2nd)		<319:256> <383:320>
64-Bit, 2-Key 3DES		0100		‡7 (1st/3rd) #8 (2nd)	<447:384> <511:448>
(Standard 2-Key E-D-E/D-E-D)	01	1001		1st/3rd) (RAM)) (2nd) (RAM)	<63:0> <127:64>
		1010	DES Key #11 (1st/3rd) (RAM) 2 (2nd) (RAM)	<191:128> <255:192>
		1011	DES Key #13 ((1st/3rd) (RAM) I (2nd) (RAM)	<319:256> <383:320>
		1100	DES Key #15 (1st/3rd) (RAM) DES Key #16 (2nd) (RAM)		<447:384> <511:448>
		1111		-ved ⁽²⁾	_
		All Others	Key Conf	ig Error ⁽²⁾	_
(Reserved)	10	xxxx	Key Conf	ig Error ⁽²⁾	_

TABLE 25-1: DES/3DES KEY SOURCE SELECTION

Note 1: This configuration is considered a key configuration error (KEYFAIL bit is set) if SWKYDIS is also set.

2: The KEYFAIL bit (CRYSTAT<1>) is set when these configurations are selected and remains set until a valid configuration is selected.

Mode of			Session Key So	urce (SESSKEY)	OTP OR RAM
Operation	KEYMOD<1:0>	KEYSRC<3:0>	0	1	Array Address
		0000(1)	CRYKEY<127:64	> (1st Iteration) 4> (2nd Iteration) 28> (3rd Iteration)	_
	0001	DES Key #1 (1st) DES Key #2 (2nd) DES Key #3 (3rd)	Key Config Error ⁽²⁾	<63:0> <127:64> <191:128>	
64-Bit, 3-Key	11	0010	DES Key	/ #4 (1st) / #5 (2nd) / #6 (3rd)	<255:192> <319:256> <383:320>
3DES		1001	DES Key #5	(1st) (RAM) (2nd) (RAM) (3rd) (RAM)	<63:0> <127:64> <191:128>
		1010	DES Key #8	(1st) (RAM) (2nd) (RAM) (3rd) (RAM)	<255:192> <319:256> <383:320>
		1111	Reser	ved ⁽²⁾	—
		All Others	Key Conf	ig Error ⁽²⁾	—

TABLE 25-1: DES/3DES KEY SOURCE SELECTION (CONTINUED)

Note 1: This configuration is considered a key configuration error (KEYFAIL bit is set) if SWKYDIS is also set.

2: The KEYFAIL bit (CRYSTAT<1>) is set when these configurations are selected and remains set until a valid configuration is selected.

Mode of			Key S	Source	
Operation	KEYMOD<1:0>	KEYSRC<3:0>	SKEYEN = 0	SKEYEN = 1	OTP Address
		0000(1)	CRYKE	Y<127:0>	_
		0001	AES Key #1	Key Config Error ⁽²⁾	<127:0>
		0010	AES I	Key #2	<255:128>
		0011	AES I	Key #3	<383:256>
		0100	AES I	Key #4	<511:384>
128-Bit AES	0 0	1001	AES Key	#5 (RAM)	<127:0>
		1010	AES Key	#6 (RAM)	<255:128>
		1011	AES Key	#7 (RAM)	<383:256>
		1100	AES Key	#8 (RAM)	<511:384>
		1111	Reserved ⁽²⁾		—
		All Others	Key Config Error ⁽²⁾		—
		0000 (1)	CRYKE	Y<191:0>	—
		0001	AES Key #1	Key Config Error ⁽²⁾	<191:0>
		0010	AES Key #2		<383:192>
192-Bit AES	01	1001	AES Key	#3 (RAM)	<191:0>
		1010		#4 (RAM)	<383:192>
		1111		rved ⁽²⁾	—
		All Others	Key Con	fig Error ⁽²⁾	—
		0000 (1)	CRYKE	Y<255:0>	—
		0001	AES Key #1	Key Config Error ⁽²⁾	<255:0>
		0010	AESI	Key #2	<511:256>
256-Bit AES	10	1001	AES Key	#3 (RAM)	<255:0>
		1010		#4 (RAM)	<511:256>
		1111		rved ⁽²⁾	_
		All Others		fig Error ⁽²⁾	_
(Reserved)	11	xxxx	Key Con	fig Error ⁽²⁾	

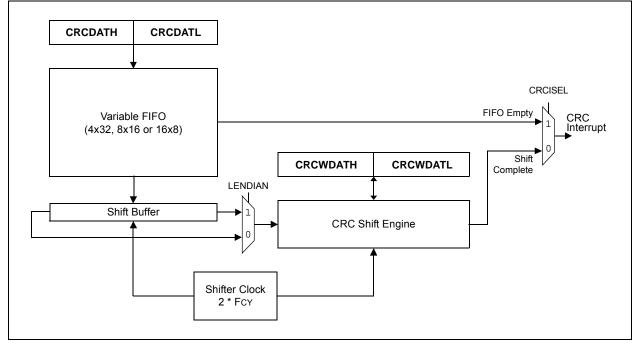
TABLE 25-2: AES KEY MODE/SOURCE SELECTION

Note 1: This configuration is considered a key configuration error (KEYFAIL bit is set) if SWKYDIS is also set.

2: The KEYFAIL bit (CRYSTAT<1>) is set when these configurations are selected and remains set until a valid configuration is selected.

PIC24FJ256GA412/GB412 FAMILY

NOTES:


26.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729). The information in this data sheet supersedes the information in the FRM. The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

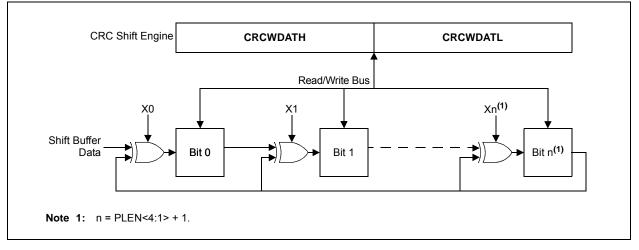

- User-Programmable CRC Polynomial Equation, up to 32 bits
- Programmable Shift Direction (little or big-endian)
- · Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

Figure 26-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 26-2.

FIGURE 26-1: CRC MODULE BLOCK DIAGRAM

FIGURE 26-2: CRC SHIFT ENGINE DETAIL

26.1 User Interface

26.1.1 POLYNOMIAL INTERFACE

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits.

Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation. Functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one is a 16-bit and the other is a 32-bit equation.

EQUATION 26-1: 16-BIT, 32-BIT CRC POLYNOMIALS

X16 + X12 + X5 + 1

and

 $\begin{array}{c} X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + \\ X8 + X7 + X5 + X4 + X2 + X + 1 \end{array}$

To program these polynomials into the CRC generator, set the register bits, as shown in Table 26-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The '0' bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length 32, it is assumed that the 32^{nd} bit will be used. Therefore, the X<31:1> bits do not have the 32^{nd} bit.

26.1.2 DATA INTERFACE

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value, between 1 and 32 bits, using the DWIDTH<4:0> bits (CRCCON2<12:8>). When the data width is greater than 15, the FIFO is 4 words deep. When the DWIDTHx bits are between 15 and 8, the FIFO is 8 words deep. When the DWIDTHx bits are less than 8, the FIFO is 16 words deep.

The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than 8, the smallest data element that can be written into the FIFO is 1 byte. For example, if the DWIDTHx bits are 5, then the size of the data is DWIDTH<4:0> + 1 or 6. The data is written as a whole byte; the two unused upper bits are ignored by the module.

Once data is written into the MSb of the CRCDAT registers (that is, the MSb as defined by the data width), the value of the VWORD<4:0> bits (CRCCON1<12:8>) increments by one. For example, if the DWIDTHx bits are 24, the VWORDx bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written to before CRCDATH.

The CRC engine starts shifting data when the CRCGO bit is set and the value of the VWORDx bits is greater than zero.

Each word is copied out of the FIFO into a buffer register, which decrements the VWORDx bits. The data is then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle, until the VWORDx bits reach zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

When the VWORDx bits reach the maximum value for the configured value of the DWIDTHx bits (4, 8 or 16), the CRCFUL bit becomes set. When the VWORDx bits reach zero, the CRCMPT bit becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to '00000' whenever CRCEN is '0'.

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORDx bits is done.

TABLE 26-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIALS

CRC Control Bits	Bit Values				
	16-Bit Polynomial	32-Bit Polynomial			
PLEN<4:0>	01111	11111			
X<31:16>	0000 0000 0000 0001	0000 0100 1100 0001			
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x			

26.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction the data is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

26.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt. Note that when an interrupt occurs, the CRC calculation would not yet be complete. The module will still need (PLEN + 1)/2 clock cycles, after the interrupt is generated, until the CRC calculation is finished.

26.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- Configure the module for desired operation:

 a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.

b) Configure the data width and shift direction using the DWIDTH<4:0> and LENDIAN bits.c) Select the desired Interrupt mode using the CRCISEL bit.

3. Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.

- 4. Clear old results by writing 00h to CRCWDATL and CRCWDATH. The CRCWDAT registers can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write the remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

There are eight registers used to control programmable CRC operation:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 26-1 and Register 26-2) control the operation of the module and configure the various settings.

The CRCXOR registers (Register 26-3 and Register 26-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word input data, and CRC processed output, respectively.

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8
R-0, HSC	R-1, HSC	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN			_
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit	HSC = Hardw	are Settable/C	learable bit	
R = Readab	le bit	W = Writable b			nented bit, read		
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
pit 15	CRCEN: CF	RC Enable bit					
	1 = Enables	s module					
	0 = Disable are NO	es module; all sta T reset	te machines, po	inters and CRC	WDAT/CRCDA	AT registers res	et; other SFRs
bit 14	Unimpleme	ented: Read as '	0'				
bit 13	CSIDL: CR	C Stop in Idle Mo	ode bit				
		inues module op es module opera			mode		
bit 12-8	VWORD<4:	: 0>: Pointer Valu	e bits				
	Indicates the when PLEN	e number of valic <4:0> ≤ 7.	I words in the FI	FO. Has a max	imum value of	8 when PLEN<	:4:0> ≥ 7 or 16
bit 7	CRCFUL: F	IFO Full bit					
	1 = FIFO is						
	0 = FIFO is						
bit 6		CRC FIFO Empty	bit				
	1 = FIFO is 0 = FIFO is						
bit 5		CRC Interrupt Se	election bit				
		t on FIFO is emp		d of data is still	shifting throug	h the CRC	
	0 = Interrup	t on shift is comp	lete and results	are ready			
bit 4	CRCGO: St						
		RC serial shifter	od off				
bit 3		Data Shift Directi					
		ord is shifted into		ng with the I Sh	(little-endian)		
		ord is shifted into					
bit 2-0	Unimpleme	ented: Read as '	0'				

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0
bit 15		•		•	•		bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-13 Unimplemented: Read as '0'

- bit 12-8 **DWIDTH<4:0>:** Data Word Width Configuration bits
- Configures the width of the data word (Data Word Width 1).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **PLEN<4:0>:** Polynomial Length Configuration bits Configures the length of the polynomial (Polynomial Length – 1).

REGISTER 26-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-		Х<	15:8>		-	
bit 15							bit 8
							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-1 X<15:1>: XOR of Polynomial Term xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

REGISTER 26-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Χ<	31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Χ<	23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow		nown		

bit 15-0 X<31:16>: XOR of Polynomial Term xⁿ Enable bits

27.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

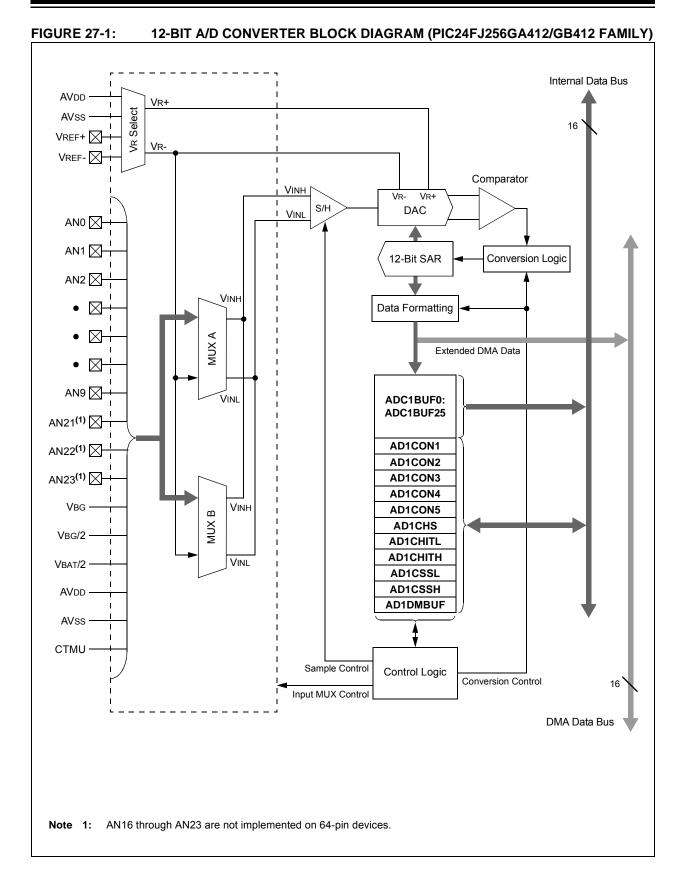
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter, refer to the "dsPIC33/PIC24 Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739).

The 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 200 ksps
- Up to 20 Analog Input Channels (internal and external)
- Selectable 10-Bit or 12-Bit (default) Conversion Resolution
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H) Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Enhanced DMA Operations with Indirect Address Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in earlier PIC24 devices. It is a Successive Approximation Register (SAR) Converter, enhanced with 12-bit resolution, a wide range of automatic sampling options, tighter integration with other analog modules and a configurable results buffer.

It also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results, and enhanced operation with the DMA Controller through Peripheral Indirect Addressing (PIA).


A simplified block diagram for the module is shown in Figure 27-1.

27.1 Basic Operation

To perform a standard A/D conversion:

- 1. Configure the module:
 - a) Configure port pins as analog inputs by setting the appropriate bits in the ANSx registers (see Section 11.2 "Configuring Analog Port Pins (ANSx)" for more information).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the positive and negative multiplexer inputs for each channel (AD1CHS<15:0>).
 - Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - For Channel A scanning operations, select the positive channels to be included (AD1CSSH and AD1CSSL registers).
 - g) Select how conversion results are presented in the buffer (AD1CON1<9:8> and AD1CON5 register).
 - h) Select the interrupt rate (AD1CON2<6:2>).
 - i) Turn on A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit (IFS0<13>).
 - b) Enable the AD1IE interrupt (IEC0<13>).
 - c) Select the A/D interrupt priority (IPC3<6:4>).
- If the module is configured for manual sampling, set the SAMP bit (AD1CON1<1>) to begin sampling.

PIC24FJ256GA412/GB412 FAMILY

27.2 Extended DMA Operations

In addition to the standard features available on all 12-bit A/D Converters, PIC24FJ256GA412/GB412 family devices implement a limited extension of DMA functionality. This extension adds features that work with the device's DMA Controller to expand the A/D module's data storage abilities beyond the module's built-in buffer.

The Extended DMA functionality is controlled by the DMAEN bit (AD1CON1<11>); setting this bit enables the functionality. The DMABM bit (AD1CON1<12>) configures how the DMA feature operates.

27.2.1 EXTENDED BUFFER MODE

Extended Buffer mode (DMABM = 1) is useful for storing the results of channels. It can also be used to store the conversion results on any A/D channel in any implemented address in data RAM.

In Extended Buffer mode, all data from the A/D Buffer register, and channels above 26, is mapped into data RAM. Conversion data is written to a destination specified by the DMA Controller, specifically by the DMADSTn register. This allows users to read the conversion results of channels above 26, which do not have their own memory-mapped A/D buffer locations, from data memory.

When using Extended Buffer mode, always set the BUFREGEN bit to disable FIFO operation. In addition, disable the Split Buffer mode by clearing the BUFM bit.

27.2.2 PIA MODE

When DMABM = 0, the A/D module is configured to function with the DMA Controller for Peripheral Indirect Addressing (PIA) mode operations. In this mode, the A/D module generates an 11-bit Indirect Address (IA). This is ORed with the destination address in the DMA Controller to define where the A/D conversion data will be stored.

In PIA mode, the buffer space is created as a series of contiguous smaller buffers, one per analog channel. The size of the channel buffer determines how many analog channels can be accommodated. The size of the buffer is selected by the DMABL<2:0> bits (AD1CON4<2:0>). The size options range from a single word per buffer to 128 words. Each channel is allocated a buffer of this size, regardless of whether or not the channel will actually have conversion data.

The IA is created by combining the base address within a channel buffer with three to five bits (depending on the buffer size) to identify the channel. The base address ranges from zero to seven bits wide, depending on the buffer size. The address is right-padded with a '0' in order to maintain address alignment in the Data Space. The concatenated channel and base address bits are then left-padded with zeros, as necessary, to complete the 11-bit IA.

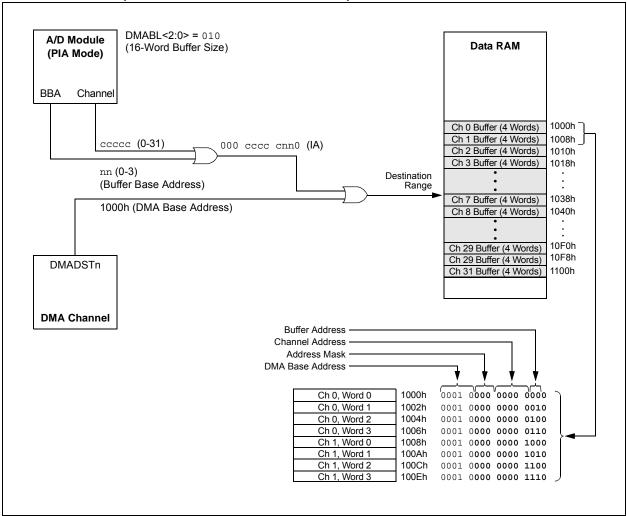
The IA is configured to auto-increment during write operations by using the SMPIx bits (AD1CON2<6:2>).

As with PIA operations for any DMA-enabled module, the base destination address in the DMADSTn register must be masked properly to accommodate the IA. Table 27-1 shows how complete addresses are formed. Note that the address masking varies for each buffer size option. Because of masking requirements, some address ranges may not be available for certain buffer sizes. Users should verify that the DMA base address is compatible with the buffer size selected.

Figure 27-2 shows how the parts of the address define the buffer locations in data memory. In this case, the module "allocates" 256 bytes of data RAM (1000h to 1100h) for 32 buffers of four words each. However, this is not a hard allocation and nothing prevents these locations from being used for other purposes. For example, in the current case, if Analog Channels 1, 3 and 8 are being sampled and converted, conversion data will only be written to the channel buffers, starting at 1008h, 1018h and 1040h. The holes in the PIA buffer space can be used for any other purpose. It is the user's responsibility to keep track of buffer locations and prevent data overwrites.

27.3 A/D Operation with VBAT

One of the A/D channels is connected to the VBAT pin to monitor the VBAT voltage. This allows monitoring the VBAT pin voltage (battery voltage) with no external connection. The voltage measured, using the A/D VBAT monitor, is VBAT/2. The voltage can be calculated by reading A/D = ((VBAT/2)/VDD) * 1024 for 10-bit A/D and ((VBAT/2)/VDD) * 4096 for 12 bit A/D.


When using the VBAT A/D monitor:

- Connect the A/D channel to ground to discharge the sample capacitor.
- Because of the high-impedance of VBAT, select higher sampling time to get an accurate reading.

Since the VBAT pin is connected to the A/D during sampling, to prolong the VBAT battery life, the recommendation is to only select the VBAT channel when needed.

PIC24FJ256GA412/GB412 FAMILY

FIGURE 27-2: EXAMPLE OF BUFFER ADDRESS GENERATION IN PIA MODE (4-WORD BUFFERS PER CHANNEL)

TABLE 27-1: INDIRECT ADDRESS GENERATION IN PIA MODE

DMABL<2:0>	Buffer Size per Channel (words)	Generated Offset Address (lower 11 bits)	Available Input Channels	Allowable DMADSTn Addresses
000	1	000 00cc ccc0	32	xxxx xxxx xx00 0000
001	2	000 0ccc ccn0	32	xxxx xxxx x000 0000
010	4	000 cccc cnn0	32	xxxx xxxx 0000 0000
011	8	00c cccc nnn0	32	xxxx xxx0 0000 0000
100	16	0cc cccn nnn0	32	xxxx xx00 0000 0000
101	32	ccc ccnn nnn0	32	xxxx x000 0000 0000
110	64	ccc cnnn nnn0	16	xxxx x000 0000 0000
111	128	ccc nnnn nnn0	8	xxxx x000 0000 0000

Legend: ccc = Channel number (three to five bits), n = Base buffer address (zero to seven bits),

x = User-definable range of DMADSTn for base address, 0 = Masked bits of DMADSTn for IA.

27.4 Registers

The 12-bit A/D Converter is controlled through a total of 13 registers:

- AD1CON1 through AD1CON5 (Register 27-1 through Register 27-5)
- AD1CHS (Register 27-6)
- AD1CHITH and AD1CHITL (Register 27-8 and Register 27-9)
- AD1CSSH and AD1CSSL (Register 27-10 and Register 27-11)
- AD1CTMENH and AD1CTMENL (Register 27-12 and Register 27-13)
- AD1DMBUF (not shown) The 16-bit conversion buffer for Extended Buffer mode

In addition, the ANCFG register (Register 27-7) controls the band gap voltage resources for the A/D Converter, as well as other modules.

REGISTER 27-1: AD1CON1: A/D CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	DMABM ⁽¹⁾	DMAEN	MODE12	FORM1	FORM0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
SSRC3	SSRC2	SSRC1	SSRC0	—	ASAM	SAMP	DONE
bit 7							bit 0

Legend:	C = Clearable bit	U = Unimplemented bit, read as '0'		
R = Readable bit	W = Writable bit	HSC = Hardware Settable/C	learable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	ADON: A/D Operating Mode bit
	 1 = A/D Converter module is operating 0 = A/D Converter is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: A/D Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	DMABM: Extended DMA Buffer Mode Select bit ⁽¹⁾
	 1 = Extended Buffer mode: Buffer address is defined by the DMADSTn register 0 = PIA mode: Buffer addresses are defined by the DMA Controller and AD1CON4<2:0>
bit 11	DMAEN: Extended DMA/Buffer Enable bit
	 1 = Extended DMA and buffer features are enabled 0 = Extended features are disabled
bit 10	MODE12: 12-Bit Operation Mode bit
	 1 = 12-bit A/D operation 0 = 10-bit A/D operation
bit 9-8	FORM<1:0>: Data Output Format bits
	 11 = Fractional result, signed, left justified 10 = Absolute fractional result, unsigned, left justified 01 = Decimal result, signed, right justified 00 = Absolute decimal result, unsigned, right justified
Note 1:	This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).

REGISTER 27-1: AD1CON1: A/D CONTROL REGISTER 1 (CONTINUED)

bit 7-4	SSRC<3:0>: Sample Clock Source Select bits
	1xxx = Unimplemented, do not use
	0111 = Internal counter ends sampling and starts conversion (auto-convert); do not use in Auto-Scan mode
	0110 = Timer1 (also triggers in Sleep mode)
	0101 = Timer1 (does not trigger in Sleep mode)
	0100 = CTMU
	0011 = Timer5
	0010 = Timer3
	0001 = INTO
	0000 = The SAMP bit must be cleared by software to start conversion
bit 3	Unimplemented: Read as '0'
bit 2	ASAM: A/D Sample Auto-Start bit
	1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set
	0 = Sampling begins when SAMP bit is manually set
bit 1	SAMP: A/D Sample Enable bit
	1 = A/D Sample-and-Hold amplifiers are sampling
	0 = A/D Sample-and-Hold amplifiers are holding
bit 0	DONE: A/D Conversion Status bit
	1 = A/D conversion cycle has completed
	0 = A/D conversion cycle has not started or is in progress

Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).

PIC24FJ256GA412/GB412 FAMILY

R/W-0	R/W-0	R/W-0	r-0	R/W-0	R/W-0	U-0	U-0
PVCFG1	PVCFG0	NVCFG0	_	BUFREGEN	CSCNA	—	_
bit 15						•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS ⁽¹⁾	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM ⁽¹⁾	ALTS
bit 7							bit 0
Legend:		r = Reserved b					
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own
bit 15-14				tage Reference (configuration t	DITS	
	01 = External	emented, do not VREF+	use				
	00 = AVDD						
bit 13	NVCFG0: A/D	D Converter Neg	gative Voltage	e Reference Con	figuration bit		
	1 = External \	/REF-					
	0 = AVss						
bit 12	Reserved: M						
bit 11		A/D Buffer Reg			wasia a di bu tha		nnal
		t buffer is treate		uffer location dete	ermined by the	converted cha	nnei
bit 10				During Sample A	bit		
	1 = Scans inp	-		5 - 1			
	0 = Does not						
bit 9-8		ted: Read as '0					
bit 7		Fill Status bit ⁽¹⁾					
				1BUF25, user sho			
bit 6-2				BUF12, user shou			S-ADC IBUF25
DIL 0-2	When DMAE			nent Rate Select	DIIS		
			A address aft	er completion of	the 32nd sam	ole/conversion	operation
	11110 = Incre	ements the DM	A address aft	er completion of	the 31st samp	le/conversion c	peration
		omonto the DM	A addroop off	or completion of	the and compl		noration
				er completion of er completion of			
	When DMAE			· · · ·	F		
		•	•	e conversion for		•	
	11110 = Inter	rrupts at the cor	npletion of th	e conversion for	each 31st san	nple	
						manla	
	00001 - inter	rrupts at the cor	npletion of th	e conversion for	every other sa	Imple	
		rrupts at the cor rrupts at the cor		e conversion for e conversion for		imple	

REGISTER 27-2: AD1CON2: A/D CONTROL REGISTER 2

Note 1: These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.

REGISTER 27-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)

bit 1	BUFM: Buffer Fill Mode Select bit ⁽¹⁾
	 1 = Starts buffer filling at ADC1BUF0 on first interrupt and ADC1BUF13 on next interrupt 0 = Always starts filling buffer at ADC1BUF0
bit 0	ALTS: Alternate Input Sample Mode Select bit
	1 = Uses channel input selects for Sample A on first sample and Sample B on next sample

- 0 = Always uses channel input selects for Sample A
- **Note 1:** These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.

REGISTER 27-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADRC: A/D Conversion Clock Source bit 1 = RC clock
	0 = Clock derived from system clock
bit 14	EXTSAM: Extended Sampling Time bit
	1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling
bit 13	PUMPEN: Charge Pump Enable bit
	1 = Charge pump for switches is enabled0 = Charge pump for switches is disabled
bit 12-8	SAMC<4:0>: Auto-Sample Time Select bits
bit 12-8	SAMC<4:0>: Auto-Sample Time Select bits 11111 = 31 TAD
bit 12-8	•
bit 12-8	•
bit 12-8	11111 = 31 TAD
bit 12-8 bit 7-0	11111 = 31 TAD ••• 00001 = 1 TAD
	11111 = 31 TAD ••• 00001 = 1 TAD 00000 = 0 TAD
	11111 = 31 TAD ••• 00001 = 1 TAD 00000 = 0 TAD ADCS<7:0>: A/D Conversion Clock Select bits
	11111 = 31 TAD ••• 00001 = 1 TAD 00000 = 0 TAD ADCS<7:0>: A/D Conversion Clock Select bits

REGISTER 27-4: AD1CON4: A/D CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	-	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	DMABL2 ⁽¹⁾	DMABL1 ⁽¹⁾	DMABL0 ⁽¹⁾
bit 7							bit 0

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0	DMABL<2:0>: DMA Buffer Size Select bits ⁽¹⁾
	111 = Allocates 128 words of buffer to each analog input
	110 = Allocates 64 words of buffer to each analog input
	101 = Allocates 32 words of buffer to each analog input
	100 = Allocates 16 words of buffer to each analog input
	011 = Allocates 8 words of buffer to each analog input
	010 = Allocates 4 words of buffer to each analog input
	001 = Allocates 2 words of buffer to each analog input
	000 = Allocates 1 word of buffer to each analog input

Note 1: The DMABL<2:0> bits are only used when AD1CON1<11> = 1 and AD1CON1<12> = 0; otherwise, their value is ignored.

PIC24FJ256GA412/GB412 FAMILY

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
ASEN	LPEN	CTMREQ	BGREQ	_	_	ASINT1	ASINTO			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
				WM1	WM0	CM1	CM0			
bit 7				VVIVII	WW	OWIT	bit C			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 15	ASEN: Auto-	Scan Enable bi	t							
	1 = Auto-scar 0 = Auto-scar									
bit 14		ower Enable b	it							
		er is enabled af er is enabled aft								
bit 13	•	TMU Request b								
		enabled when t not enabled by		oled and active						
bit 12		d Gap Reques								
	• •	is enabled whe		nabled and act	ive					
bit 11-10	Unimplemen	ted: Read as ')'							
bit 9-8	ASINT<1:0>:	Auto-Scan (Th	reshold Detect	t) Interrupt Mod	e bits					
	10 = Interrup	t after valid con t after Threshol	npare has occu	ence has compl irred ence has compl		compare has o	occurred			
bit 7-4	Unimplemen	ted: Read as 'o)'							
bit 3-2	WM<1:0>: W	rite Mode bits								
		mpare only (co		s are not saved	•	s are generate	d when a valid			
	01 = Convert		version results	and ASINTx bi are saved to l he CMx bits)		etermined by th	ne register bits			
			•	saved to a loca	tion determine	d by the buffer	register bits)			
bit 1-0		CM<1:0>: Compare Mode bits								
	defined	by the correspo	onding buffer p							
	the corre	esponding buffe	er pair)	curs if the conve			-			
	buffer re	egister)		rs if the result is	-					
	00 = Less Th register)	-	match occurs i	f the result is le	ss than the valu	ie in the corres	ponding buffei			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-13	CHONB<2:0> 1xx = Unimpl 011 = Unimpl 010 = AN1 001 = Unimpl 000 = VREF-//	lemented lemented	annel 0 Negat	ive Input Select	bits		
bit 12-8	CH0SB<4:0>: Sample B Channel 0 Positive Input Select bits See Table 27-2 for available options.						
bit 7-5	CH0NA<2:0>: Sample A Channel 0 Negative Input Select bits Same definitions as for CHONB<2:0>.						
bit 4-0	CH0SA<4:0>	: Sample A Ch	annel 0 Positiv	e Input Select I	oits		

REGISTER 27-6: AD1CHS: A/D SAMPLE SELECT REGISTER

bit 4-0 CH0SA<4:0>: Sample A Channel 0 Positive Input Select Same definitions as for CHOSB<4:0>.

TABLE 27-2 :	POSITIVE CHANNEL	SELECT OPTIONS	(CHOSA<4:0> OR CHOSB<4:0>)	
---------------------	-------------------------	----------------	----------------------------	--

CH0SA<4:0> or CH0SB<4:0>	Analog Channel	CH0SA<4:0> or CH0SB<4:0>	Analog Channel
11111	VBAT/2 ⁽¹⁾	01111	AN15
11110	AVDD ⁽¹⁾	01110	AN14
11101	AVss ⁽¹⁾	01101	AN13
11100	V _{BG} ⁽¹⁾	01100	AN12
11011	Reserved	01011	AN11
11010	Reserved	01010	AN10
11001	CTMU	01001	AN9
11000	CTMU Temperature Sensor ⁽²⁾	01000	AN8
10111	AN23 ⁽³⁾	00111	AN7
10110	AN22 ⁽³⁾	00110	AN6
10101	AN21 ⁽³⁾	00101	AN5
10100	AN20 ⁽³⁾	00100	AN4
10011	AN19 ⁽³⁾	00011	AN3
10010	AN18 ⁽³⁾	00010	AN2
10001	AN17 ⁽³⁾	00001	AN1
10000	AN16 ⁽³⁾	00000	AN0

Note 1: These input channels do not have corresponding memory-mapped result buffers.

2: Temperature sensor does not require AD1CTMENL<13> to be set.

3: These channels are not implemented in 64-pin devices.

ANCFG: A/D BAND GAP REFERENCE CONFIGURATION⁽¹⁾ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 bit 15 bit 8 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 VBG2CMP VBGEN ____ VBG6USB VBGDAC VBGAN VBGADC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-6 Unimplemented: Read as '0' bit 5 VBG6USB: USB OTG VBG/6 Input Enable bit 1 = Band gap voltage, divided by six reference (VBG/6), is enabled 0 = Band gap voltage, divided by six reference (VBG/6), is disabled VBG2CMP: Comparator VBG/2 Input Enable bit bit 4 1 = Band gap voltage, divided by two reference (VBG/2), is enabled 0 = Band gap voltage, divided by two reference (VBG/2), is disabled bit 3 VBGDAC: DAC Input Band Gap Reference Enable bit 1 = Band gap voltage reference (VBG) is enabled 0 = Band gap voltage reference (VBG) is disabled bit 2 VBGAN: Analog Module VBG Input Enable bit 1 = Band gap voltage reference (VBG) is enabled 0 = Band gap voltage reference (VBG) is disabled bit 1 VBGADC: A/D Input VBG Enable bit 1 = Band gap voltage reference (VBG) is enabled 0 = Band gap voltage reference (VBG) is disabled bit 0 VBGEN: General Resource VBG Enable bit 1 = Band gap voltage reference (VBG) is enabled 0 = Band gap voltage reference (VBG) is disabled Note 1: Band gap references are automatically enabled when their consumer modules request these resources,

and disabled when the modules are disabled or do not require them. The individual control bits permit manual control of the band gap references. The state of the bits does not necessarily reflect the status of the associated reference and should not be used as a status flag.

DS30010089B-page 434

REGISTER 27-7:

REGISTER 27-8: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)

	2/W-0	R/W-0 R/W-	U-0	U-0	U-0	U-0	U-0	U-0
bit 15	(<mark>1</mark>)	CHH<25:24> ⁽¹⁾	—	—	—	—	—	—
	bit 8							bit 15

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CHH<2	3:16> ⁽¹⁾			
bit 7							bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-10
 Unimplemented: Read as '0'

 bit 9-0
 CHH<25:16>: A/D Compare Hit bits⁽¹⁾

 If CM<1:0> = 11:
 1 = A/D Result Buffer n has been written with data or a match has occurred 0 = A/D Result Buffer n has not been written with data

 For All Other Values of CM<1:0>:
 1 = A match has occurred on A/D Result Channel n

 0 = No match has occurred on A/D Result Channel n
 0

REGISTER 27-9: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CHH	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CHH	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimplen	nented bit, read	l as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CHH<15:0>: A/D Compare Hit bits

If CM<1:0> = 11:

1 = A/D Result Buffer n has been written with data or a match has occurred

0 = A/D Result Buffer n has not been written with data

For All Other Values of CM<1:0>:

1 = A match has occurred on A/D Result Channel n

0 = No match has occurred on A/D Result Channel n

Note 1: These bits are unimplemented in 64-pin devices, read as '0'.

R/W-0	R/W-0 CSS<30:28>	R/W-0	U-0	U-0	R/W-0	R/W-0
	CSS<30.28>				10110	10/00-0
	000 00.20		—	—	CSS<	25:24>
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CSS<2	23:16> (1)			
						bit 0
bit	W = Writable b	it	U = Unimplen	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared					x = Bit is unkn	iown
Unimpleme	nted: Read as '0	,				
CSS<30:28>	. A/D Input Scar	Selection bit	ts			
			el for input scar	1		
Unimpleme	nted: Read as '0	,				
CSS<25:24>	.: A/D Input Scar	Selection bit	ts			
			el for input scar	1		
CSS<23:16>	. A/D Input Scar	Selection bit	ts ⁽¹⁾			
	1 0		or input scan			
Unimpleme	nted: Read as '0	,				
	bit POR Unimpleme CSS<30:28> 1 = Includes 0 = Skips ch Unimpleme CSS<25:24> 1 = Includes 0 = Skips ch CSS<23:16> 1 = Includes 0 = Skips ch	bit W = Writable b POR '1' = Bit is set Unimplemented: Read as '0 CSS<30:28>: A/D Input Scan 1 = Includes corresponding in 0 = Skips channel for input scan 1 = Includes corresponding in 0 = Skips channel for input Scan 1 = Includes corresponding in 0 = Skips channel for input scan 1 = Includes corresponding A 0 = Skips channel for input scan 1 = Includes corresponding A 0 = Skips channel for input scan	CSS<2 bit W = Writable bit POR '1' = Bit is set Unimplemented: Read as '0' CSS<30:28>: A/D Input Scan Selection bit 1 = Includes corresponding internal chann 0 = Skips channel for input scan Unimplemented: Read as '0' CSS<25:24>: A/D Input Scan Selection bit 1 = Includes corresponding internal chann 0 = Skips channel for input scan CSS<23:16>: A/D Input Scan Selection bit	$CSS<23:16>^{(1)}$ bit W = Writable bit U = Unimplem POR '1' = Bit is set '0' = Bit is clear Unimplemented: Read as '0' CSS<30:28>: A/D Input Scan Selection bits 1 = Includes corresponding internal channel for input scan 0 = Skips channel for input scan Unimplemented: Read as '0' CSS<25:24>: A/D Input Scan Selection bits 1 = Includes corresponding internal channel for input scar 0 = Skips channel for input Scan Selection bits 1 = Includes corresponding internal channel for input scar 0 = Skips channel for input scan CSS<23:16>: A/D Input Scan Selection bits (1) 1 = Includes corresponding A/D channel for input scan 0 = Skips channel for input scan	CSS<23:16> ⁽¹⁾ bit W = Writable bit U = Unimplemented bit, read POR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' CSS<30:28>: A/D Input Scan Selection bits 1 = Includes corresponding internal channel for input scan 0 = Skips channel for input scan Unimplemented: Read as '0' CSS<25:24>: A/D Input Scan Selection bits 1 = Includes corresponding internal channel for input scan 0 = Skips channel for input scan CSS<23:16>: A/D Input Scan Selection bits 1 = Includes corresponding internal channel for input scan 0 = Skips channel for input scan CSS<23:16>: A/D Input Scan Selection bits ⁽¹⁾ 1 = Includes corresponding A/D channel for input scan 0 = Skips channel for input scan 0 = Skips channel for input scan	CSS<23:16> ⁽¹⁾ bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn Unimplemented: Read as '0' CSS<30:28>: A/D Input Scan Selection bits 1 = Includes corresponding internal channel for input scan 0 = Skips channel for input scan Unimplemented: Read as '0' CSS<25:24>: A/D Input Scan Selection bits 1 = Includes corresponding internal channel for input scan 0 = Skips channel for input scan 0 = Skips channel for input scan CSS<23:16>: A/D Input Scan Selection bits ⁽¹⁾ 1 = Includes corresponding A/D channel for input scan 0 = Skips channel for input scan

REGISTER 27-10: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH WORD)

Note 1: These bits are unimplemented in 64-pin devices, read as '0'.

REGISTER 27-11: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	<15:8>			
bit 15	bit 15						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	6<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at F	Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unk			x = Bit is unkr	nown		

bit 15-0 CSS<15:0>: A/D Input Scan Selection bits

1 = Includes corresponding A/D channel for input scan

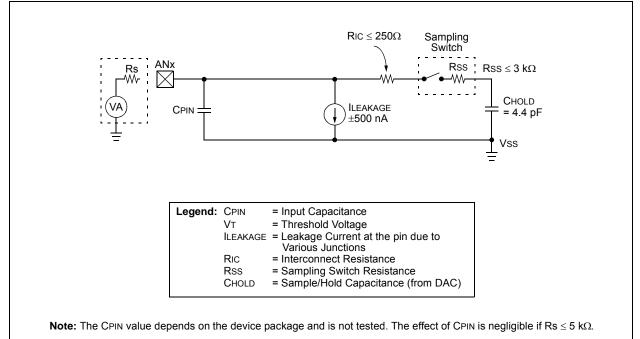
0 = Skips channel for input scan

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
		CTMEN<30:28	>	_		CTMEN	<25:24>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10110	10110	10110		<pre> <23:16>(1)</pre>	10110	10110	
bit 7							bit 0
Logondy							
Legend: R = Readable	hit	W = Writable	hit	l I = Unimplem	ented bit, read	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	,	x = Bit is unkn	iown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-12	CTMEN<30:	28>: CTMU En	abled During (Conversion bits			
		enabled and co not connected		e selected interr	al channel duri	ng conversion	
bit 11-10	Unimpleme	nted: Read as '	0'				
bit 9-8	CTMEN<25:	24>: CTMU En	abled During (Conversion bits			
	 1 = CTMU is enabled and connected to the selected internal channel during conversion 0 = CTMU is not connected to this channel 						
bit 7-0	CTMEN<23:	16>: CTMU En	abled During C	Conversion bits ⁽¹)		
	1 = CTMU is		onnected to the	e selected A/D c		conversion	

REGISTER 27-12: AD1CTMENH: A/D CTMU ENABLE REGISTER (HIGH WORD)

Note 1: These bits are unimplemented in 64-pin devices, read as '0'.

REGISTER 27-13: AD1CTMENL: A/D CTMU ENABLE REGISTER (LOW WORD)

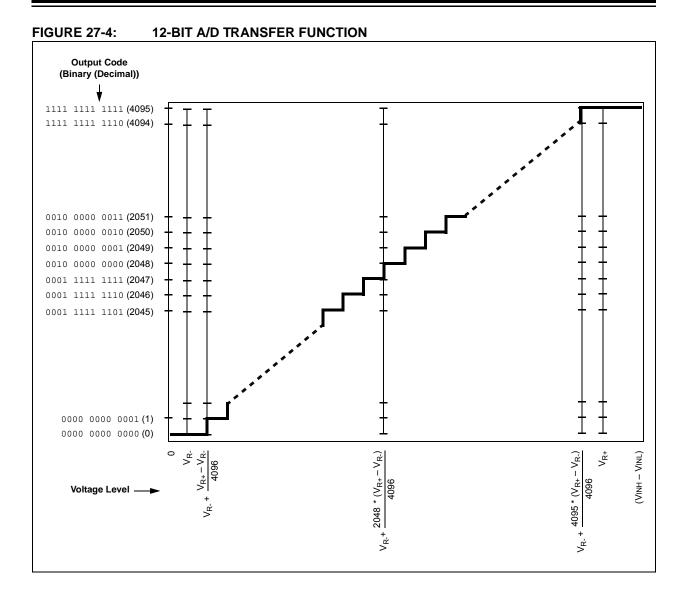

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CTM	EN<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CTM	IEN<7:0>			
bit 7	bit 7						bit 0
Legend:							
R = Readable	e bit	W = Writable bi	it U = Unimplemented bit, read as '0'		d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 CTMEN<15:0>: CTMU Enabled During Conversion bits

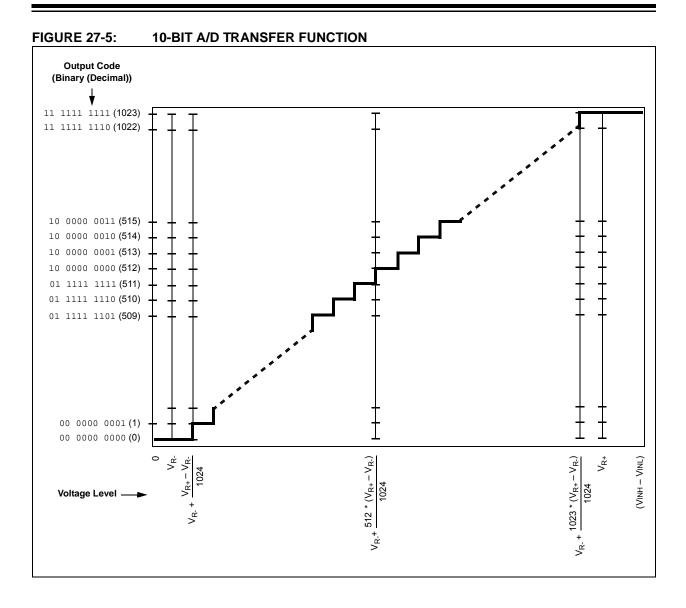
 $\ensuremath{\mathtt{1}}$ = CTMU is enabled and connected to the selected A/D channel during conversion

0 = CTMU is not connected to this channel

FIGURE 27-3: 10-BIT A/D CONVERTER ANALOG INPUT MODEL



EQUATION 27-1: A/D CONVERSION CLOCK PERIOD


$$TAD = TCY (ADCS + 1)$$

$$ADCS = \frac{TAD}{TCY} - 1$$

Note: Based on TCY = 2/FOSC; Doze mode and PLL are disabled.

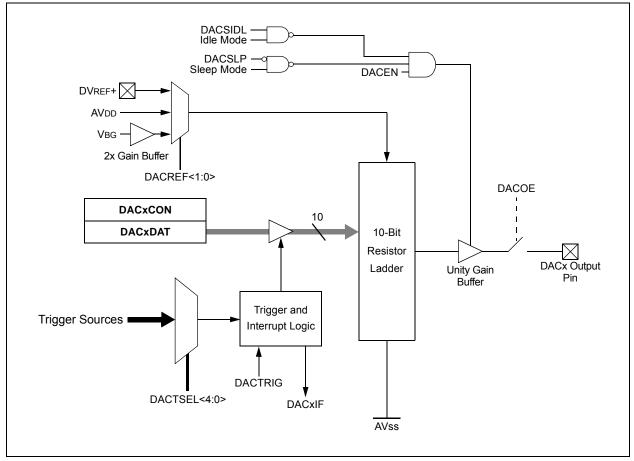
© 2015 Microchip Technology Inc.

28.0 10-BIT DIGITAL-TO-ANALOG CONVERTER (DAC)

```
Note: This data sheet summarizes the features of
this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
"dsPIC33/PIC24 Family Reference Man-
ual", "10-Bit Digital-to-Analog Converter
(DAC)" (DS39615). The information in this
data sheet supersedes the information in
the FRM.
```

PIC24FJ256GA412/GB412 family devices include 10-bit Digital-to-Analog Converters (DACs) for generating analog outputs from digital data. A simplified block diagram for a the DAC is shown in Figure 28-1. The DAC generates an analog output voltage based on the digital input code, according to the formula:

 $VDAC = \frac{VDACREF \times DACxDAT}{1024}$


where VDAC is the analog output voltage and VDACREF is the reference voltage selected by DACREF<1:0>.

The DAC includes these features:

- Precision 10-Bit Resistor Ladder for High Accuracy
- Fast Settling Time, Supporting 1 Msps Effective Sampling Rates
- Buffered Output Voltage
- Three User-Selectable Voltage Reference Options
- Multiple Conversion Trigger Options, Plus a Manual Convert-on-Write Option
- Left and Right Justified Input Data Options
- · User-Selectable Sleep and Idle mode Operation

When using the DAC, it is required to set the ANSx and TRISx bits for the DACx output pin to configure it as an analog output. See Section 11.2 "Configuring Analog Port Pins (ANSx)" for more information.

FIGURE 28-1: DAC SIMPLIFIED BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
DACEN	—	DACSIDL	DACSLP	DACFM	—	—	DACTRIG
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DACOE	DACTSEL4	DACTSEL3	DACTSEL2	DACTSEL1	DACTSEL0	DACREF1	DACREF0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 14 bit 13 bit 12	DACSIDL: D/ 1 = Discontin 0 = Continue DACSLP: DA	ted: Read as f AC Peripheral S nues module op s module opera AC Enable Perip	Stop in Idle Mo peration when c ation in Idle mo pheral During S	levice enters Id de Gleep bit			
	0 = DAC is p	owered down i	n Sleep mode;	ent value of DA DACx output p	•	•	and LATx bits
bit 11	1 = Data is le	C Data Format eft justified (data ght justified (da	a stored in DAC				
bit 10-9	Unimplemen	ted: Read as '	0'				
bit 8	1 = Analog o	•	dates when the	event selected as DACxDAT is	•		ed)
bit 7	1 = Analog o	C Output Enabl utput voltage is utput voltage is	driven to the I	DAC pin at pin (voltage a	at pin floats)		
Note 1. T	he internal band	ann roforanaa	ia automatical	ly anablad wha	nover the DAC	is enabled	

REGISTER 28-1: DAC1CON: DAC CONTROL REGISTER

Note 1: The internal band gap reference is automatically enabled whenever the DAC is enabled.

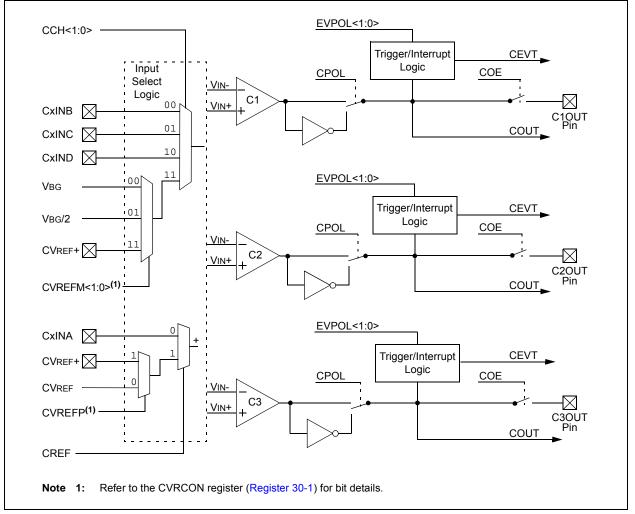
REGISTER 28-1: DAC1CON: DAC CONTROL REGISTER (CONTINUED)

- bit 6-2 DACTSEL<4:0>: DAC Trigger Source Select bits
 - 11111
 - ... = Unimplemented
 - 10010
 - 10001 = External Interrupt 1 (INT1)
 - 10000 = SCCP7
 - 01111 = SCCP6
 - 01110 = SCCP5
 - 01101 = SCCP4
 - 01100 = MCCP3
 - 01011 = MCCP2
 - 01010 = MCCP1
 - 01001 = Unimplemented
 - 01000 = Timer5 match 00111 = Timer4 match
 - 00111 = Timer4 match
 - 00110 = Timers match
 - 00101 Timer2 match
 - 00100 = Timer1 match 00011 = A/D conversion done
 - 00011 = A/D conversion done 00010 = Comparator 3 trigger
 - 00001 = Comparator 2 trigger
 - 00001 = Comparator 2 trigger00000 = Comparator 1 trigger
- bit 1-0 DACREF<1:0>: DAC Reference Source Select bits
 - 11 = 2.4V internal band gap $(2 * VBG)^{(1)}$
 - 10 = AVDD
 - 01 = DVREF+
 - 00 = Reference is not connected (lowest power but no DAC functionality)
- **Note 1:** The internal band gap reference is automatically enabled whenever the DAC is enabled.

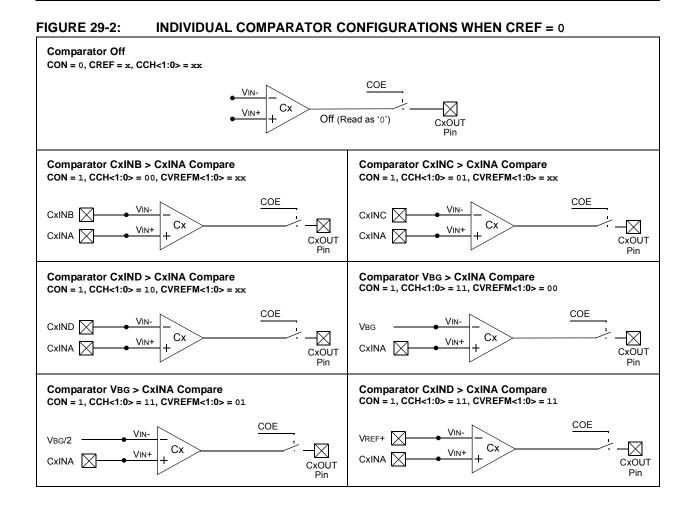
NOTES:

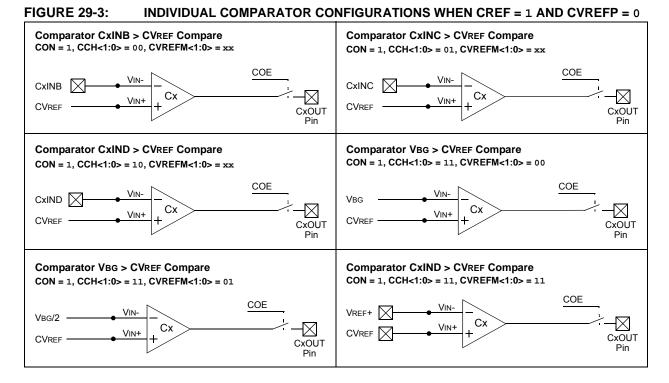
29.0 TRIPLE COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Scalable Comparator Module" (DS39734). The information in this data sheet supersedes the information in the FRM.


The triple comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and VREF+) and a

voltage reference input from one of the internal band gap references or the comparator voltage reference generator (VBG, VBG/2 and CVREF).


The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.


A simplified block diagram of the module in shown in Figure 29-1. Diagrams of the possible individual comparator configurations are shown in Figure 29-2.

Each comparator has its own control register, CMxCON (Register 29-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 29-2).

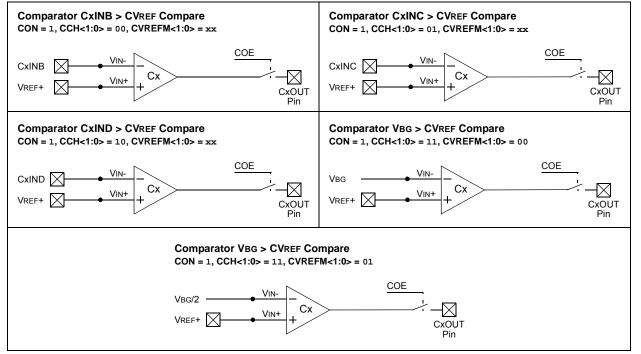


FIGURE 29-1: TRIPLE COMPARATOR MODULE BLOCK DIAGRAM

FIGURE 29-4: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 1

REGISTER 29-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

				<u>.</u>			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0, HS	R-0, HSC
CON	COE	CPOL	—	—	—	CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0	_	CREF	—	—	CCH1	CCH0
bit 7							bit 0
Legend:		HS = Hardware	Settable bit	HSC = Hardw	vare Settable/0	Clearable bit	
R = Readable	e bit	W = Writable b	it	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
bit 15	CON: Compa	arator Enable bit					
		ator is enabled					
	0 = Compara	ator is disabled					
bit 14	•	arator Output Ena					
		ator output is pres ator output is inte		OUT pin			
bit 13	CPOL: Com	parator Output Po	plarity Select b	it			
		ator output is inve ator output is not					
bit 12-10	•	nted: Read as '0'					
bit 9	-	parator Event bit					
	1 = Compara are disa	ator event that is bled until the bit i ator event has no	s cleared	POL<1:0> has c	occurred; subs	sequent triggers	and interrupts
bit 8	-	parator Output bi					
	When CPOL	-	•				
	1 = VIN + > V						
	0 = VIN+ < V	IN-					
	When CPOL						
	1 = VIN+ < V 0 = VIN+ > V						
bit 7-6	• • • • • •	Trigger/Event/l	nterrunt Polar	ty Select hite			
bit 7-0		/event/interrupt is		•	the comparat	tor output (while	CEVT = 0
		/event/interrupt is					0201 0)
		_ = 0 (non-inverte			·	•	
	-	-low transition or	•				
		= 1 (inverted po					
		high transition or	-				
		/event/interrupt is		transition of th	e comparator	output:	
		<u>= 0 (non-inverte</u> high transition or					
		$_{-} = 1$ (inverted po	-				
		-low transition on					
	00 = Trigger	/event/interrupt g	eneration is di	sabled			
bit 5	Unimplemer	nted: Read as '0	1				

REGISTER 29-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)

- bit 4 **CREF:** Comparator Reference Select bit (non-inverting input)
 - 1 = Non-inverting input connects to the internal CVREF voltage
 - 0 = Non-inverting input connects to the CxINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of the comparator connects to the internal selectable reference voltage specified by the CVREFM<1:0> bits in the CVRCON register
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CxINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin

REGISTER 29-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
CMIDL		—	—		C3EVT	C2EVT	C1EVT
bit 15							bit 8

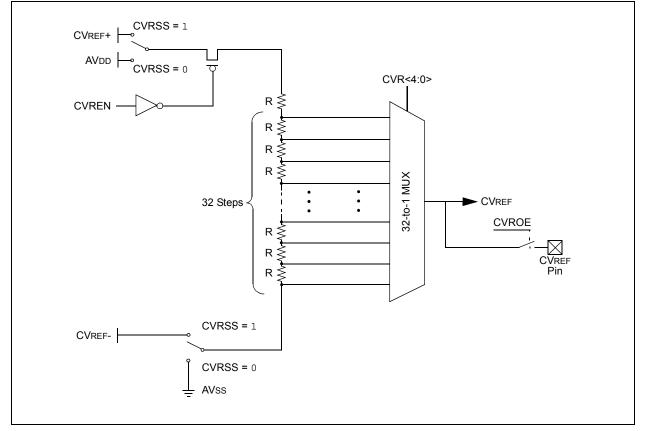
U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	_	—	—	—	C3OUT	C2OUT	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Settable/Cle	earable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

CMIDL: Comparator Stop in Idle Mode bit
1 = Discontinues operation of all comparators when device enters Idle mode0 = Continues operation of all enabled comparators in Idle mode
Unimplemented: Read as '0'
C3EVT: Comparator 3 Event Status bit (read-only)
Shows the current event status of Comparator 3 (CM3CON<9>).
C2EVT: Comparator 2 Event Status bit (read-only)
Shows the current event status of Comparator 2 (CM2CON<9>).
C1EVT: Comparator 1 Event Status bit (read-only)
Shows the current event status of Comparator 1 (CM1CON<9>).
Unimplemented: Read as '0'
C3OUT: Comparator 3 Output Status bit (read-only)
Shows the current output of Comparator 3 (CM3CON<8>).
C2OUT: Comparator 2 Output Status bit (read-only)
Shows the current output of Comparator 2 (CM2CON<8>).
C1OUT: Comparator 1 Output Status bit (read-only)
Shows the current output of Comparator 1 (CM1CON<8>).

NOTES:

30.0 COMPARATOR VOLTAGE REFERENCE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Dual Comparator Module" (DS39710). The information in this data sheet supersedes the information in the FRM.

30.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 30-1). The comparator voltage reference provides a range of output voltages with 32 distinct levels. The comparator reference supply voltage can come from either VDD and VSs or the external CVREF+ and CVREF- pins. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 30-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_	—		—	CVREFP	CVREFM1	CVREFM0
bit 15							bita
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-11	•	ted: Read as '0					
bit 10		omparator Voltag		•	•	EF is '1')	
		used as a refere				aa valtaga ta th	o comporator
h # 0 0		<4:0> bits (5-bit	,	•		•	e comparator
bit 9-8		0>: Comparator nen CCH<1:0> =		Gap Reference	e Source Selec	CT DITS	
		ap voltage is pro					
	01 = Band ga 10 = Reserve	ap voltage, divid	ed by two, is p	provided as an	input to the coi	mparators	
		oin is provided a	s an input to t	he comparators	6		
	CVPEN. Cor	nparator Voltage	Reference F	nahla hit			
bit 7							
bit 7	1 = CVREF ci	rcuit is powered	on				
bit 7	1 = CVREF ci	•	on				
bit 7 bit 6	1 = CVREF ci 0 = CVREF ci CVROE: Cor	rcuit is powered rcuit is powered nparator VREF C	on down Dutput Enable	bit			
	1 = CVREF ci 0 = CVREF ci CVROE: Cor 1 = CVREF vc	rcuit is powered rcuit is powered nparator VREF C oltage level is ou	on down Dutput Enable Itput on the CN	bit /REF pin			
bit 6	1 = CVREF ci 0 = CVREF ci CVROE : Cor 1 = CVREF vc 0 = CVREF vc	rcuit is powered rcuit is powered nparator VREF C oltage level is ou oltage level is dis	on down Dutput Enable Itput on the CN sconnected fro	bit /REF pin om the CVREF p	bin		
	1 = CVREF ci 0 = CVREF ci CVROE : Cor 1 = CVREF vc 0 = CVREF vc CVRSS : Con	rcuit is powered rcuit is powered nparator VREF C oltage level is ou oltage level is dis nparator VREF S	on down Dutput Enable Itput on the CN sconnected fro ource Selectio	bit /REF pin om the CVREF p on bit			
bit 6	1 = CVREF ci 0 = CVREF ci CVROE: Cor 1 = CVREF vc 0 = CVREF vc CVRSS: Con 1 = Compara	rcuit is powered rcuit is powered nparator VREF C oltage level is ou oltage level is dis nparator VREF S tor reference so	on down Dutput Enable atput on the CV sconnected fro ource Selectio ource, CVRSRC	bit /REF pin om the CVREF p on bit = VREF+ – VRE	EF-		
bit 6	1 = CVREF ci 0 = CVREF ci CVROE: Cor 1 = CVREF vc 0 = CVREF vc CVRSS: Con 1 = Compara 0 = Compara	rcuit is powered rcuit is powered nparator VREF C oltage level is ou oltage level is dis nparator VREF S	on down Dutput Enable htput on the CV sconnected fro ource Selectio ource, CVRSRC ource, CVRSRC	bit /REF pin om the CVREF p on bit = VREF+ – VRE = AVDD – AVS	EF-		

REGISTER 30-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

31.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Time Measurement Unit, refer to the "dsPIC33/PIC24 Family Reference Manual", "Charge Time Measurement Unit (CTMU) with Threshold Detect" (DS39743).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

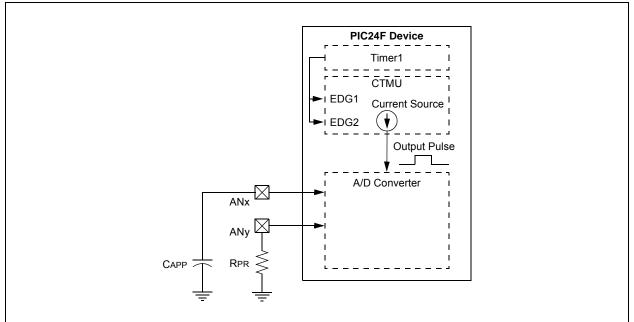
- Thirteen External Edge Input Trigger Sources
- · Polarity Control for Each Edge Source
- · Control of Edge Sequence
- Control of Response to Edge Levels or Edge
 Transitions
- Time Measurement Resolution of One Nanosecond
- Accurate Current Source Suitable for Capacitive Measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through three registers: CTMUCON1L, CTMUCON1H and CTMUCON2L. CTMUCON1L enables the module and controls the mode of operation of the CTMU, edge sequencing and current source control. CTMUCON1H controls edge source selection and edge source polarity selection. The CTMUCON2L register controls the reset and discharge of the current source.

31.1 Measuring Capacitance

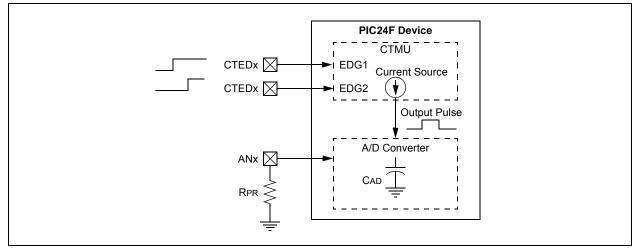
The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and up to 13 external pins (CTED1 through CTED13). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:


EQUATION 31-1:

$$I = C \bullet \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an External Capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

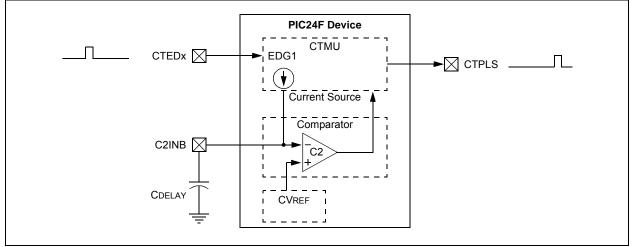
Figure 31-1 illustrates the external connections used for capacitance measurements and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the *"dsPIC33/PIC24 Family Reference Manual"*, **"Charge Time Measurement Unit (CTMU) with Threshold Detect"** (DS39743).


FIGURE 31-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

31.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 31-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.

FIGURE 31-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT


31.3 Pulse Generation and Delay

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module.

When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON1L<12>), the internal current source is connected to the B input of Comparator 2. A Capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the Comparator Voltage Reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 31-3 illustrates the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTED1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "dsPIC33/ PIC24 Family Reference Manual".

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15							bit 8
5444.0	DAMA	D 444.0	D 444 0	Dates	DAVA	D M M A	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15		TMU Enable bit					
	1 = Module is 0 = Module is						
bit 14	Unimplemer	ted: Read as '0	,				
bit 13	CTMUSIDL:	CTMU Stop in Id	lle Mode bit				
		ues module ope			dle mode		
		s module operat		de			
bit 12		Generation Ena					
		edge delay gene edge delay gene					
bit 11	EDGEN: Edg						
	1 = Edges ar	e not blocked					
	0 = Edges ar						
bit 10		: Edge Sequenc					
		vent must occur sequence is nee		z event can oc	CUI		
bit 9	•	alog Current So		bit			
	0	urrent source ou					
bit 8	-	urrent source ou		unded			
DILO		MU Trigger Con utput is enabled					
		utput is disabled					
bit 7-2	ITRIM<5:0>:	Current Source	Trim bits				
	011111 = Ma 011110	aximum positive	change from	nominal currer	nt		
	000000 = No	nimum positive ominal current or nimum negative	utput specified	by IRNG<1:0	>		
	 100010 100001 = Ma	aximum negative	e change from	nominal curre	ent		
bit 1-0		Current Source	•				
	11 = 100 × B		J				
	10 = 10 × Ba						
	01 = Base cu	Irrent level (0.55	(IIA nominal)				

REGISTER 31-1: CTMUCON1L: CTMU CONTROL 1 LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	—
bit 7							bit 0

Legend:				
R = Readat	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	1 = Input	DD: Edge 1 Edge-Sensitive S is edge-sensitive is level-sensitive	Select bit	
bit 14	1 = Edge	DL: Edge 1 Polarity Select bit e 1 is programmed for a posit e 1 is programmed for a nega	ive edge response	
bit 13-10	1111 = C 1110 = C 1101 = C 1100 = H 1011 = H 1011 = H 1001 = C 1000 = C 0111 = C 0101 = C 0101 = C 0011 = C 0010 = C 0001 = C	C2 C1 CTED8 CTED7 CTED6 CTED5 CTED5 CTED4 CTED3 CTED1 CTED2	ect bits	
bit 9	Indicates 1 = Edge	AT: Edge 2 Status bit the status of Edge 2 and car 2 has occurred 2 has not occurred	n be written to control current	source.
bit 8	Indicates 1 = Edge	AT: Edge 1 Status bit the status of Edge 1 and car a 1 has occurred a 1 has not occurred	n be written to control current	source.
bit 7	1 = Input	DD: Edge 2 Edge-Sensitive S is edge-sensitive is level-sensitive	Select bit	
bit 6	1 = Edge	DL: Edge 2 Polarity Select bit 2 is programmed for a posit 2 is programmed for a nega	ive edge response	

REGISTER 31-2: CTMUCON1H: CTMU CONTROL 1 HIGH REGISTER (CONTINUED)

- bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Comparator 3 output 1110 = Comparator 2 output 1101 = Comparator 1 output 1100 = System clock 1011 **= IC3** 1010 **= IC2** 1001 = IC1 1000 = CTED13 0111 = CTED12 0110 = CTED11 0101 = CTED10 0100 = CTED9 0011 = CTED1 0010 = CTED2 0001 = OC1 0000 = Timer1 match
- bit 1-0 Unimplemented: Read as '0'

REGISTER 31-3: CTMUCON2L: CTMU CONTROL 2 LOW REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—		—	—	—	—	—	—	
bit 15 bit 8								

U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	IRSTEN	_	DSCH2	DSCH1	DSCH0
bit 7 bit 0							

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

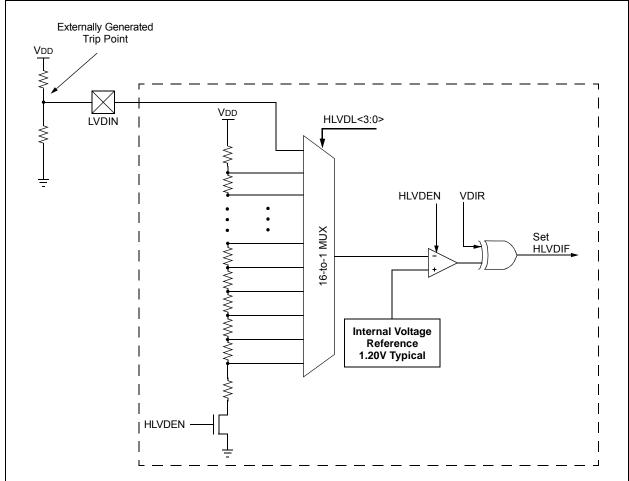
bit 4 IRSTEN: Current Source Reset Enable bit 1 = Current source is reset by the IDISSEN bit or by a source selected by DSCH<2:0> 0 = Edge detect logic does not occur

bit 3 Unimplemented: Read as '0'

bit 2-0 **DSCH<2:0>:** Discharge Trigger Source Select bits

- 111 = CLC2 output
- 110 = CLC1 output
- 101 = Unimplemented
- 100 = A/D end of conversion event
- 011 = SCCP5 auxiliary output
- 010 = MCCP2 auxiliary output
- 001 = MCCP1 auxiliary output
- 000 = Unimplemented

NOTES:


32.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725).

The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The HLVD Control register (see Register 32-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

FIGURE 32-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
HLVDEN		LSIDL							
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
VDIR	BGVST	IRVST	—	HLVDL3	HLVDL2	HLVDL1	HLVDL0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown		
bit 15	HLVDEN: Hig	gh/Low-Voltage	Detect Power	Enable bit					
	1 = HLVD is e								
	0 = HLVD is o								
bit 14	-	ted: Read as '							
bit 13) Stop in Idle M		levice enterne Idl					
		s module opera		device enters Idl ode	e mode				
bit 12-8	Unimplemented: Read as '0'								
bit 7	-	e Change Direc		I					
	1 = Event occ	curs when volta	ge equals or e	exceeds trip poir alls below trip p					
bit 6	BGVST: Band Gap Voltage Stable Flag bit								
		that the band g that the band g							
bit 5	IRVST: Intern	al Reference V	oltage Stable	Flag bit					
		eference voltag voltage range	je is stable; the	e High-Voltage D	etect logic gen	erates the inter	rupt flag at the		
				the High-Voltag the HLVD inter			te the interrupt		
bit 4	Unimplemen	ted: Read as '	0'						
bit 3-0	HLVDL<3:0>	: High/Low-Vol	tage Detection	I Limit bits					
	1111 = Exter 1110 = Trip F 1101 = Trip F 1100 = Trip F	Point 1 ⁽¹⁾ Point 2 ⁽¹⁾	ıt is used (inpu	ut comes from th	ie LVDIN pin)				
	•								
	• 0100 = Trip F	Point 11(1)							
	0100 = Trip Point 11 ⁽¹⁾ 00xx = Unused								

REGISTER 32-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

33.0 SPECIAL FEATURES

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the						
Note:							
	intended to be a comprehensive reference						
	source. For more information, refer to the						
	following sections in the "dsPIC33/PIC24						
	Reference Manual". The information in this						
	data sheet supersedes the information in						
	the FRMs.						
	• "Watchdog Timer (WDT)"						

- "Watchdog Timer (WDT) (DS39697)
- "High-Level Device Integration" (DS39719)
- "Programming and Diagnostics" (DS39716)
- "CodeGuard™ Intermediate Security" (DS70005182)

PIC24FJ256GA412/GB412 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming™
- In-Circuit Emulation

33.1 Configuration Bits

The Flash Configuration Words are stored in the last page location of implemented program memory. Their bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. There are two types of Configuration bits: system operation bits and code-protect bits. The system operation bits determine the power-on settings for system-level components, such as the oscillator and the Watchdog Timer. The code-protect bits prevent program memory from being read and written.

Table 33-1lists the Configuration register addressranges for each device in Single and Dual PartitionFlash modes. A detailed explanation of the various bitfunctions is provided in Register 33-1Register 33-12.

33.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ256GA412/GB412 FAMILY DEVICES

In PIC24FJ256GA412/GB412 family devices, most of the Configuration Words are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Configuration Words in program memory should always be '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '0's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

33.1.2 FBOOT

Unlike the Configuration Words, the FBOOT register is not implemented as volatile Flash memory. It is located away from the other Flash Configuration Words, at a constant address for all devices outside of the program memory space. Device Resets do not affect its contents.

Note that the address for FBOOT, 801800h, belongs to the configuration memory space (800000h-FFFFFh), which can only be accessed using Table Reads and Table Writes.

Configuration		Single Partition Flash Mode	
Register	PIC24FJ256GX4XX	PIC24FJ128GX4XX	PIC24FJ64GX4XX
FSEC	02AF80h	015780h	00AF80h
FBSLIM	02AF90h	015790h	00AF90h
FSIGN	02AF94h	015794h	00AF94h
FOSCSEL	02AF98h	015798h	00AF98h
FOSC	02AF9Ch	01579Ch	00AF9Ch
FWDT	02AFA0h	0157A0h	00AFA0h
FPOR	02AFA4h	0157A4h	00AFA4h
FICD	02AFA8h	0157A8h	00AFA8h
FDS	02AFACh	0157ACh	00AFACh
FDEVOPT1	02AFB0h	0157B0h	00AFB0h
FBOOT		801800h	
		Dual Partition Flash Modes ⁽¹⁾	
FSEC ⁽²⁾	015780h/415780h	00AB80h/40AB80h	005580h/405580h
FBSLIM ⁽²⁾	015790h/415790h	00AB90h/40AB90h	005590h/405590h
FSIGN ⁽²⁾	015794h/415794h	00AB94h/40AB94h	005594h/405594h
FOSCSEL	015798h/415798h	00AB98h/40AB98h	005598h/405598h
FOSC	01579Ch/41579Ch	00AB9Ch/40AB9Ch	00559Ch/40559Ch
FWDT	0157A0h/4157A0h	00ABA0h/40ABA0h	0055A0h/4055A0h
FPOR	0157A4h/4157A4h	00ABA4h/40ABA4h	0055A4h/4055A4h
FICD	0157A8h/4157A8h	00ABA8h/40ABA8h	0055A8h/4055A8h
FDS	0157ACh/4157ACh	00ABACh/40ABACh	0055ACh/4055ACh
FDEVOPT1	0157B0h/4157B0h	00ABB0h/40ABB0h	0055B0h/4055B0h
FBTSEQ	0157FCh/4157FCh	00ABFCh/40ABFCh	0055FCh/4055FCh
FBOOT		801800h	

TABLE 33-1: CONFIGURATION WORD ADDRESSES

Note 1: Addresses shown for Dual Partition modes are for the Active/Inactive Partitions, respectively.

2: Changes to these Inactive Partition Configuration Words affect how the Active Partition accesses the Inactive Partition.

REGISTER 33-1: FSEC: SECURITY CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	_	—	—	—
bit 23 bit 16							

	r			D/D0 4	D/D0.4	D/D0 4	
bit 15							bit 8
AIVTDIS	—	—	—	CSS2	CSS1	CSS0	CWRP
R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1

R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
GSS1	GSS0	GWRP	—	BSEN	BSS1	BSS0	BWRP
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	AIVTDIS: Alternate Interrupt Vector Table (AIVT) Enable bit
	 1 = AIVT is disabled; the ALTIVT bit (INTCON2<8>) is also unavailable 0 = AIVT is enabled and may be selectively enabled in software by the ALTIVT bit
bit 14-12	Unimplemented: Read as '1'
bit 11-9	CSS<2:0>: Configuration Segment Memory Code Protection bits 111 = No security other than write protection (configured by the CWRP Configuration bit) 110 = Standard security 10x = Enhanced security 0xx = High security
bit 8	 CWRP: Configuration Segment (CS) Flash Write Protection bit 1 = Writes to CS (last page of Flash program memory) memory are allowed 0 = Writes to CS are not allowed
bit 7-6	GSS<1:0>: General Segment (GS) Program Memory Code Protection bits
	 11 = No security other than write protection (configured by the GWRP Configuration bit) 10 = Standard security 0x = High security
bit 5	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed0 = Writes to program memory are not allowed
bit 4	Unimplemented: Read as '1'
bit 3	BSEN: Boot Segment (BS) Enable bit
	 1 = Boot Segment is not instantiated 0 = Boot Segment is instantiated with a size determined by FBSLIM<12:0>
bit 2-1	BSS<1:0>: Boot Segment Program Memory Code Protection bits
	 11 = No security other than write protection (configured by the BWRP Configuration bit) 10 = Standard security 0x = High security
bit 0	BWRP: Boot Segment Code Flash Write Protection bit
	1 = Writes to BS are allowed
	0 = Writes to BS are not allowed

REGISTER 33-2: FBSLIM: BOOT SEGMENT LIMIT CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	_		_	_	_	—	_
bit 23			-		-		bit 16
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
—	—	—			BSLIM<12:8>		
bit 15	·						bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			BSLI	M<7:0>			
bit 7							bit 0
l egend.		PO = Program	n Once hit				

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-13 Unimplemented: Read as '1'

bit 12-0 BSLIM<12:0>: Boot Segment Upper Address Limit bits

Defines the address of the last page of the Boot Segment plus 1, when the Boot Segment is instantiated (BSEN = 0). The stored value is the inverse of the actual address value.

REGISTER 33-3: FSIGN: SIGNATURE CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
_	—	—	_	—	—	—	—		
bit 23	·					-	bit 16		
r-x	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
—	-	—	_	—	—	—	-		
bit 15	·					- -	bit 8		
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
	—	—	—	—	—	—	_		
bit 7							bit 0		
Legend:		r = Reserved b	oit						
R = Readabl	le bit	W = Writable b	oit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown				
bit 23-16	Unimpleme	nted: Read as '1	,						
bit 15	Reserved: 7	Reserved: The value is unknown; program as '0'							

bit 14-0 **Unimplemented:** Read as '1'

REGISTER 33-4: FOSCSEL: OSCILLATOR SELECT CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IESO	PLLMODE3	PLLMODE2	PLLMODE1	PLLMODE0	FNOSC2	FNOSC1	FNOSC0
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-8	Unimplemented: Read as '1'
bit 7	IESO: Internal External Switchover bit
	1 = IESO mode (Two-Speed Start-up) is enabled
	0 = IESO mode (Two-Speed Start-up) is disabled
bit 6-3	PLLMODE<3:0:> PLL Block Mode Select bits
	1111 = PLL is disabled
	1110 = Fixed PLL is selected, 8x operation
	1101 = Fixed PLL is selected, 6x operation
	1100 = Fixed PLL is selected, 4x operation
	10xx = Reserved, do not use
	0111 = 96 MHz PLL is selected; oscillator input multiplied by 2 (48 MHz input)
	0110 = 96 MHz PLL is selected; oscillator input multiplied by 3 (32 MHz input) 0101 = 96 MHz PLL is selected; oscillator input multiplied by 4 (24 MHz input)
	0100 = 96 MHz PLL is selected; oscillator input multiplied by 4 (24 MHz liput) 0100 = 96 MHz PLL is selected; oscillator input multiplied by 4.8 (20 MHz input)
	0011 = 96 MHz PLL is selected; oscillator input multiplied by 4.6 (26 MHz input)
	0010 = 96 MHz PLL is selected; oscillator input multiplied by 8 (12 MHz input)
	0001 = 96 MHz PLL is selected; oscillator input multiplied by 12 (8 MHz input)
	0000 = 96 MHz PLL is selected; oscillator input multiplied by 24 (4 MHz input)
bit 2-0	FNOSC<2:0>: Initial Oscillator Select bits
	111 = Fast RC Oscillator with Postscaler (FRCDIV)
	110 = Reserved
	101 = Low-Power RC Oscillator (LPRC)
	100 = Secondary Oscillator (SOSC)
	011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
	010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)

REGISTER 33-5: FOSC: OSCILLATOR CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	_	_		—	_	_	_	
bit 23							bit 16	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	—	_	_	—	_	—	_	
bit 15							bit 8	
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
FCKSM1	FCKSM0	IOL1WAY	PLLSS ⁽¹⁾	SOSCSEL	OSCIOFCN	POSCMOD1	POSCMODO	
bit 7							bit (
Legend:		PO = Progran	n Once bit					
R = Readab	le bit	W = Writable		U = Unimplen	nented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown	
bit 5	IOL1WAY: IO 1 = The IOL complete 0 = The IOL	LOCK One-Wa OCK bit (OSC d; once set, the OCK bit can be	iy Set Enable I CON<6>) car e Peripheral Pi	Clock Monitor i bit be set once, in Select registe ared as needed	provided the ers cannot be w	vritten to a seco	ond time	
bit 4	1 = PLL is driv	Block Seconda ven by the Prin	nary Oscillator	onfiguration bit	(1)			
bit 3	SOSCSEL: S 1 = SOSC cir	 0 = PLL is driven by the FRC Oscillator SOSCSEL: SOSC Selection bit 1 = SOSC circuit is selected 0 = Digital (SCLKI) mode⁽²⁾ 						
bit 2	OSCIOFCN: OSCO Pin Configuration bit If POSCMOD<1:0> = 11 or 00: 1 = OSCO/CLKO/RC15 functions as CLKO (Fosc/2) 0 = OSCO/CLKO/RC15 functions as port I/O (RC15) If POSCMOD<1:0> = 10 or 01: OSCIOFCN has no effect on OSCO/CLKO/RC15.							
bit 1-0	POSCMOD<1 11 = Primary 10 = HS Osci	1:0>: Primary (Oscillator mod illator mode is s	Dscillator Confi e is disabled selected (HS m					

- 01 = XT Oscillator mode is selected (XT mode is used if crystal < 10 MHz)
- 00 = EC Oscillator mode is selected
- **Note 1:** Used only when the PLL block is not being used as the system clock source.
 - 2: Ensure that the SCLKI pin is made a digital input while using this configuration (see Table 11-1).

REGISTER 33-6: FWDT: WATCHDOG TIMER CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

U-1	R/PO-1	R/PO-1	U-1	R/PO-1	U-1	R/PO-1	R/PO-1
—	WDTCLK1	WDTCLK0	-	WDTCMX	—	WDTWIN1	WDTWIN0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WINDIS	FWDTEN1	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7	•	•					bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-15	Unimplemented: Read as '1'
bit 14-13	WDTCLK<1:0>: WDT Clock Source Select bits
	When WDTCMX = 1:
	11 = Either the 31 kHz FRC source or LPRC
	10 = Either the 31 kHz FRC source or LPRC, depending on device configuration ⁽¹⁾
	01 = System (peripheral) clock when active and not LPRC, LPRC while in Sleep mode
	00 = SOSC input
	When WDTCMX = 0:
	LPRC is always the WDT clock source.
bit 12	Unimplemented: Read as '1'
bit 11	WDTCMX: WDT Clock Multiplexer Control bit
	1 = Enables WDT clock multiplexing
	0 = WDT clock multiplexing is disabled
bit 10	Unimplemented: Read as '1'
bit 9-8	WDTWIN<1:0>: Watchdog Timer Window Width Select bits
	11 = 25%
	10 = 37.5%
	01 = 50%
	00 = 75%
bit 7	WINDIS: Windowed Watchdog Timer Disable bit
	1 = Standard Watchdog Timer is enabled
	0 = Windowed Watchdog Timer is enabled (FWDTEN<1:0> must not be '00')
bit 6-5	FWDTEN<1:0>: Watchdog Timer Configuration bits
	11 = WDT is always enabled; SWDTEN bit has no effect
	10 = WDT is enabled and controlled in firmware by the SWDTEN bit
	01 = WDT is enabled only in Run mode and disabled in Sleep modes; SWDTEN bit is disabled
1.11.4	00 = WDT is disabled; SWDTEN bit is disabled
bit 4	FWPSA: WDT Prescaler Ratio Select bit
	1 = Prescaler ratio of 1:128
	0 = Prescaler ratio of 1:32
Note 1:	The 31 kHz FRC source is used when a Windowed WDT mode is selected and the LPRC is not being
	used as the system clock. The LPRC is used when the device is in Sleep mode and in all other cases.

REGISTER 33-6: FWDT: WATCHDOG TIMER CONFIGURATION WORD (CONTINUED)

- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscaler Select bits 1111 = 1:32,7681110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 **= 1:8** 0010 = 1:4 0001 = 1:2 0000 = 1:1
 - 1. The 21 KHZ EDC source is used when a Windowed WDT
- **Note 1:** The 31 kHz FRC source is used when a Windowed WDT mode is selected and the LPRC is not being used as the system clock. The LPRC is used when the device is in Sleep mode and in all other cases.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—			—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	_	—	—	—
bit 15							bit 8
r-0	U-1	U-1	U-1	U-1	R/PO-1	U-1	R/PO-1
_	_	_	_	_	LPCFG	_	BOREN
bit 7							bit 0

Legend:	r = Reserved bit	PO = Program Once bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-8	Unimplemented: Read as '1'
bit 7	Reserved: Maintain this bit as '0'
bit 6-3	Unimplemented: Read as '1'
bit 2	LPCFG: Low-Voltage/Retention Regulator Configuration bit
	1 - Low velters (retention regulater is always dischool

1 = Low-voltage/retention regulator is always disabled

0 = Low-power, low-voltage/retention regulator is enabled and controlled in firmware by the RETEN bit

bit 1 Unimplemented: Read as '1'

bit 0 BOREN: Brown-out Reset Enable bit

1 = BOR is enabled (all modes except Deep Sleep)

0 = BOR is disabled

REGISTER 33-8: FICD: ICD CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	_	—	—	_		—	—
bit 23							bit 16
R/PO-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
BTSWP			_		_		_
bit 15							bit 8
R/PO-1	U-1	R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1
DEBUG	—	JTAGEN	—	_	—	ICS1	ICS0
bit 7							bit 0
.							
Legend:		PO = Program					
R = Readable		W = Writable					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 23-16	-	ted: Read as '1					
bit 15		TSWP Instruction					
		 instruction is c instruction is a 					
bit 14-8		ted: Read as '1					
bit 7		kground Debug					
		esets into Opera	•				
	0 = Device re	esets into Debu	g mode				
bit 6	Unimplemen	ted: Read as '1					
bit 5		G Port Enable	bit				
	1 = JTAG por						
bit 4-2	0 = JTAG por		,				
bit 1-0	-	ted: Read as '1 nulator Pin Plac		hita			
DIL I-U		r functions are					
		r functions are					
	01 = Emulato	r functions are					
	00 = Reserve	d; do not use					

REGISTER 33-9: FDS: DEEP SLEEP CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	U-1	U-1	U-1	U-1	U-1	U-1	
DSSWEN	RTCBAT	—	—	—	—	—	—	
bit 15 bit 8								

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
DSWDTEN	DSBOREN	DSWDTOSC	DSWDTPS4	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	DSSWEN: Deep Sleep Software Control Select bit
	 1 = Deep Sleep operation is enabled and controlled by the DSEN bit 0 = Deep Sleep operation is disabled
bit 14	RTCBAT: VBAT RTCC Operation Select bit
	 1 = RTCC operation continues when the device is in VBAT mode 0 = RTCC operation stops when the device is in VBAT mode
bit 13-8	Unimplemented: Read as '1'
bit 7	DSWDTEN: Deep Sleep Watchdog Timer Enable bit
	1 = Deep Sleep WDT is enabled0 = Deep Sleep WDT is disabled
bit 6	DSBOREN: Deep Sleep Brown-out Reset Enable bit
	 1 = BOR is enabled in Deep Sleep mode 0 = BOR is disabled in Deep Sleep mode (remains active in other Sleep modes)
bit 5	DSWDTOSC: Deep Sleep Watchdog Timer Clock Select bit
	1 = Clock source is LPRC
	0 = Clock source is SOSC

REGISTER 33-9: FDS: DEEP SLEEP CONFIGURATION WORD (CONTINUED)

bit 4-0	DSWDTPS<4:0>: Deep Sleep Watchdog Timer Postscaler Select bits
	11111 = 1:68,719,476,736 (25.7 days)
	11110 = 1:34,359,738,368(12.8 days)
	11101 = 1:17,179,869,184 (6.4 days)
	11100 = 1:8,589,934592 (77.0 hours)
	11011 = 1:4,294,967,296 (38.5 hours)
	11010 = 1:2,147,483,648 (19.2 hours)
	11001 = 1:1,073,741,824 (9.6 hours)
	11000 = 1:536,870,912 (4.8 hours)
	10111 = 1:268,435,456 (2.4 hours)
	10110 = 1:134,217,728 (72.2 minutes)
	10101 = 1:67,108,864 (36.1 minutes)
	10100 = 1:33,554,432 (18.0 minutes)
	10011 = 1:16,777,216 (9.0 minutes)
	10010 = 1:8,388,608 (4.5 minutes)
	10001 = 1:4,194,304 (135.3s)
	10000 = 1:2,097,152 (67.7s)
	01111 = 1:1,048,576 (33.825s)
	01110 = 1:524,288 (16.912s)
	01101 = 1:262,114 (8.456s)
	01100 = 1:131,072 (4.228s)
	01011 = 1:65,536 (2.114s)
	01010 = 1:32,768 (1.057s)
	01001 = 1:16,384 (528.5 ms)
	01000 = 1:8,192 (264.3 ms)
	00111 = 1:4,096 (132.1 ms)
	00110 = 1:2,048 (66.1 ms)
	00101 = 1:1,024 (33 ms)
	00100 = 1:512 (16.5 ms)
	00011 = 1:256 (8.3 ms)
	00010 = 1:128 (4.1 ms)
	00001 = 1:64 (2.1 ms)
	00000 = 1:32 (1 ms)

REGISTER 33-10: FDEVOPT1: DEVICE OPTIONS CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—		—	_		—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—		—	_	—	—	—
bit 15							bit 8
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	U-1
—	—	—	ALTVREF ⁽¹⁾	TMPRWIPE	TMPRPIN	ALTCMPI ⁽²⁾	—
bit 7							bit 0

Legend:	PO = Program Once bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-5	Unimplemented: Read as '1'
bit 4	ALTVREF: Alternate External Voltage Reference Location Select bit ⁽¹⁾
	1 = VREF+/CVREF+/DVREF+ and VREF-/CVREF- are mapped to RA10 and RA9, respectively 0 = VREF+/CVREF+/DVREF+ and VREF-/CVREF- are mapped to RB0 and RB1, respectively
bit 3	TMPRWIPE: Erase Key RAM on Tamper Event Enable Pin bit
	 1 = Cryptographic Engine Key RAM is not erased on TMPR pin events 0 = Cryptographic Engine Key RAM is erased when a TMPR pin event is detected
bit 2	TMPRPIN: Tamper Pin Disable bit
	$1 = \overline{\text{TMPR}}$ pin is disabled
	0 = TMPR pin is enabled
bit 1	ALTCMPI: Alternate Comparator Input Location Select bit ⁽²⁾
	1 = C1INC, C2INC and C3INC are mapped to their default pin locations
	0 = C1INC, C2INC and C3INC are all mapped to RG9
bit 0	Unimplemented: Read as '1'
Note 1.	Unimplemented on 64-nin devices: maintain this bit as ' 0 ' in those devices

- **Note 1:** Unimplemented on 64-pin devices; maintain this bit as '0' in those devices.
 - 2: Unimplemented in PIC24FJXXXGAXXX devices.

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IBSEQ11	IBSEQ10	IBSEQ9	IBSEQ8	IBSEQ7	IBSEQ6	IBSEQ5	IBSEQ4
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IBSEQ3	IBSEQ2	IBSEQ1	IBSEQ0	BSEQ11	BSEQ10	BSEQ9	BSEQ8
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
BSEQ7	BSEQ6	BSEQ5	BSEQ4	BSEQ3	BSEQ2	BSEQ1	BSEQ0
bit 7			•				bit 0
Legend:		PO = Program	n Once bit				

REGISTER 33-11: FBTSEQ: BOOT SEQUENCE CONFIGURATION WORD⁽¹⁾

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-12 **IBSEQ<11:0>:** Inverse Boot Sequence Number bits The inverse of the boot sequence number (FBTSEQ<11:0>). The user is responsible for correctly calculating and programming this value.

bit 11-0 **BSEQ<11:0>:** Inverse Boot Sequence Number bits An arbitrary value assigned by the user at device programming. On device initialization, the code segment with the lower value of the boot sequence number becomes the Active (executable) Partition.

Note 1: Implemented only when a Dual Partition mode is selected (FBOOT<1:0> is any value except '11').

REGISTER 33-12: FBOOT: BOOT MODE CONFIGURATION WORD

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—		—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 15							bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1
—	—	—	—	—	—	BTMO	D<1:0>
bit 7							bit 0
Legend: PO = Program Once bit		n Once bit					
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 23-2 Unimplemented: Read as '1'

- bit 1-0 BTMOD<1:0>: Boot Mode Select bits
 - 11 = Standard (Single Partition Flash) mode
 - 10 = Dual Partition Flash mode
 - 01 = Protected Dual Partition Flash mode
 - 00 = Reserved, do not use

REGISTER 33-13: DEVID: DEVICE ID REGISTER

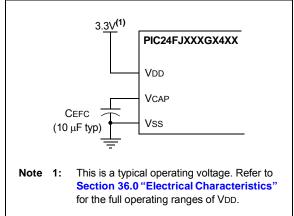
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	_	—	_
bit 23							bit 16
R	R	R	R	R	R	R	R
FAMID7	7 FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
oit 15							bit 8
R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
oit 7		I	•			•	bit 0
Legend:	R = Readable bit			U = Unimpleme	ented bit		
	R = Readable bit		- 1	U = Unimpleme	ented bit		
oit 23-16	Unimplement	ted: Read as '		U = Unimpleme	ented bit		
oit 23-16	Unimplement FAMID<7:0>:	Device Family	Identifier bits	· · ·	ented bit		
bit 23-16 bit 15-8	Unimplement FAMID<7:0>: 0110 0001 =	Device Family PIC24FJ2560	ldentifier bits GA412/GB412 I	· · ·	ented bit		
bit 23-16 bit 15-8	Unimplement FAMID<7:0>: 0110 0001 = DEV<7:0>: In	Device Family PIC24FJ2560 dividual Device	/ Identifier bits GA412/GB412 I e Identifier bits	Family			
bit 23-16 bit 15-8	Unimplement FAMID<7:0>: 0110 0001 = DEV<7:0>: In 0000 0000 =	Device Family PIC24FJ2560 dividual Device PIC24FJ64G/	dentifier bits GA412/GB412 I Identifier bits A406	-amily	0 0100 = PIC	:24FJ64GB406	
bit 23-16 bit 15-8	Unimplement FAMID<7:0>: 0110 0001 = DEV<7:0>: In 0000 0000 = 0000 0001 =	Device Family PIC24FJ2560 dividual Device PIC24FJ64G/ PIC24FJ64G/	dentifier bits GA412/GB412 I Identifier bits A406 A410	- amily 0000	0 0100 = PIC 0 0101 = PIC	24FJ64GB410	
bit 23-16 bit 15-8	Unimplement FAMID<7:0>: 0110 0001 = DEV<7:0>: In 0000 0000 = 0000 0001 = 0000 0010 =	Device Family PIC24FJ2560 dividual Device PIC24FJ64G/ PIC24FJ64G/ PIC24FJ64G/	dentifier bits GA412/GB412 I e Identifier bits A406 A410 A412	- amily 0000 0000	0 0100 = PIC 0 0101 = PIC 0 0110 = PIC	24FJ64GB410 24FJ64GB412	6
bit 23-16 bit 15-8	Unimplement FAMID<7:0>: 0110 0001 = DEV<7:0>: In 0000 0000 = 0000 0001 = 0000 0010 = 0000 1000 =	Device Family PIC24FJ2560 dividual Device PIC24FJ64G/ PIC24FJ64G/ PIC24FJ64G/ PIC24FJ64G/ PIC24FJ1280	dentifier bits GA412/GB412 I e Identifier bits A406 A410 A412 GA406	Family	0 0100 = PIC 0 0101 = PIC 0 0110 = PIC 0 1100 = PIC	24FJ64GB410 24FJ64GB412 24FJ128GB40	-
bit 23-16 bit 15-8	Unimplement FAMID<7:0>: 0110 0001 = DEV<7:0>: In 0000 0000 = 0000 0001 = 0000 0010 = 0000 1000 = 0000 1001 =	Device Family PIC24FJ2560 dividual Device PIC24FJ64G/ PIC24FJ64G/ PIC24FJ64G/	dentifier bits GA412/GB412 I e Identifier bits A406 A410 A412 GA406 GA410	Family	0 0100 = PIC 0 0101 = PIC 0 0110 = PIC 0 1100 = PIC 0 1101 = PIC	24FJ64GB410 24FJ64GB412	0
bit 23-16 bit 15-8	Unimplement FAMID<7:0>: 0110 0001 = DEV<7:0>: In 0000 0000 = 0000 0001 = 0000 0010 = 0000 1000 = 0000 1001 = 0000 1010 =	Device Family PIC24FJ2560 dividual Device PIC24FJ64G/ PIC24FJ64G/ PIC24FJ64G/ PIC24FJ64G/ PIC24FJ1280 PIC24FJ1280	dentifier bits GA412/GB412 I e Identifier bits A406 A410 A412 GA406 GA410 GA412	Family	 0100 = PIC 0101 = PIC 0110 = PIC 1100 = PIC 1101 = PIC 1110 = PIC 1110 = PIC 	24FJ64GB410 24FJ64GB412 24FJ128GB40 24FJ128GB41	0 2
Legend: bit 23-16 bit 15-8 bit 7-0	Unimplement FAMID<7:0>: 0110 0001 = DEV<7:0>: In 0000 0000 = 0000 0001 = 0000 0010 = 0000 1000 = 0000 1001 = 0000 1010 = 0001 0000 =	Device Family PIC24FJ2560 dividual Device PIC24FJ64G/ PIC24FJ64G/ PIC24FJ64G/ PIC24FJ1280 PIC24FJ1280 PIC24FJ1280	dentifier bits GA412/GB412 I e Identifier bits A406 A410 A412 GA406 GA410 GA412 GA406 GA412 GA406	Family	 0 0100 = PIC 0 0101 = PIC 0 0110 = PIC 0 1100 = PIC 0 1101 = PIC 0 1110 = PIC 0 100 = PIC 	24FJ64GB410 24FJ64GB412 24FJ128GB40 24FJ128GB41 24FJ128GB41 24FJ128GB41	0 2 6

REGISTER 33-14: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	_	—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	_		—
bit 15							bit 8
U-0	U-0	U-0	U-0	R	R	R	R
—	—	—	—		REV	<3:0>	
bit 7							bit 0
Legend: R =	= Readable bit			U = Unimplem	nented bit		

bit 23-4 Unimplemented: Read as '0'

bit 3-0 REV<3:0>: Device Revision Identifier bits


33.2 On-Chip Voltage Regulator

All PIC24FJ256GA412/GB412 family devices power their core digital logic at a nominal 1.8V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ256GA412/GB412 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

This regulator is always enabled. It provides a constant voltage (1.8V nominal) to the digital core logic, from a VDD of 2.0V all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brown-out Reset occurs. Then, the regulator output follows VDD with a typical voltage drop of 300 mV.

A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 33-1). This helps to maintain the stability of the regulator. The recommended value for the Filter Capacitor (CEFC) is provided in Section 36.1 "DC Characteristics".

FIGURE 33-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

33.2.1 ON-CHIP REGULATOR AND POR

The voltage regulator requires a small amount of time to transition from a disabled or standby state into normal operating mode. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. TVREG is determined by the status of the PMSLP bit (RCON<8>). Refer to Section 36.0 "Electrical Characteristics" for more information on TVREG.

Note:	For more information, see Section 36.0
	"Electrical Characteristics". The infor-
	mation in this data sheet supersedes the
	information in the "dsPIC33/PIC24 Family
	Reference Manual".

33.2.2 VOLTAGE REGULATOR STANDBY MODE

The on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be made to enter Standby mode on its own whenever the device goes into Sleep mode. This feature is controlled by the PMSLP bit (RCON<8>). Clearing the PMSLP bit enables the Standby mode. When waking up from Standby mode, the regulator needs to wait for TVREG to expire before wake-up.

33.2.3 LOW-VOLTAGE/RETENTION REGULATOR

When power-saving modes, such as Sleep is used, PIC24FJ256GA412/GB412 family devices may use a separate low-power, low-voltage/retention regulator to power critical circuits. This regulator, which operates at 1.2V nominal, maintains power to data RAM and the RTCC while all other core digital logic is powered down. It operates only in Sleep and VBAT modes.

The low-voltage/retention regulator is described in more detail in Section 10.1.3 "Low-Voltage/Retention Regulator".

33.3 Watchdog Timer (WDT)

For PIC24FJ256GA412/GB412 family devices, the WDT is driven by the LPRC Oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT Time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS<3:0> Configuration bits (FWDT<3:0>), which allows the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranges from 1 ms to 131 seconds can be achieved.

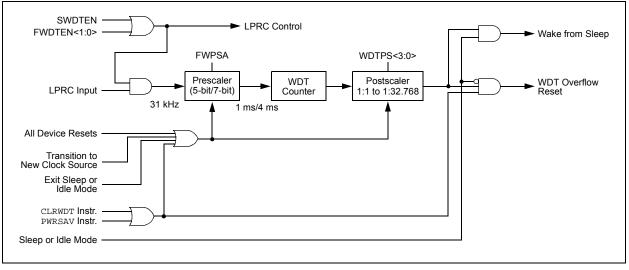
The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE (RCON<3:2>) bit will need to be cleared in software after the device wakes up. The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

33.3.1 WINDOWED OPERATION


The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the WINDIS Configuration bit (FWDT<7>) to '0'.

33.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits. When the Configuration bits, FWDTEN<1:0> = 11, the WDT is always enabled.

The WDT can be optionally controlled in software when the Configuration bits, FWDTEN<1:0> = 10. When FWDTEN<1:0> = 00, the Watchdog Timer is always disabled. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

FIGURE 33-2: WDT BLOCK DIAGRAM

33.4 Code Protection and CodeGuard™ Security

To help protect individual intellectual property in software applications, PIC24FJ256GA412/GB412 family devices offer an intermediate implementation of CodeGuard Security. This version implements the following features:

- General Segment (GS) security
- Boot Segment (BS) security, including boot block resizing protection
- · Configuration Segment (CS) security
- Separately configurable write protection for all segments
- Enhanced features for Dual Partition applications

Security features are controlled by the FSEC and FBSLIM registers. The Boot Segment (BS) is the higher privileged segment and the General Segment (GS) is the lower privileged segment. The total user code memory can be split into BS or GS. The size of the segments is determined by BSLIM<12:0>. The relative location of the segments within user space does not change, such that BS (if present) occupies the memory area just after the Interrupt Vector Table (IVT), and the GS occupies the space just after the BS (or if the Alternate IVT is enabled, just after it).

The Configuration Segment (or CS) is a small segment (less than a page, typically just one row) within user Flash address space. It contains all user configuration data that is loaded by the NVM Controller during the Reset sequence.

Refer to **"CodeGuard™ Intermediate Security"** (DS70005182) in the "*dsPIC33/PIC24 Family Reference Manual*" for further information on usage, configuration and operation of CodeGuard Security.

33.4.1 CONFIGURATION REGISTER PROTECTION

The Configuration registers are protected against inadvertent or unwanted changes, or reads in two ways. The primary protection method is the same as that of the RP registers – shadow registers contain a complimentary value which is constantly compared with the actual value.

To safeguard against unpredictable events, Configuration bit changes resulting from individual cell-level disruptions (such as ESD events) will cause a parity error and trigger a device Reset.

The data for the Configuration registers is derived from the Flash Configuration Words in program memory. When the configuration security is enabled, the source data for device configuration is protected.

33.5 JTAG Interface

PIC24FJ256GA412/GB412 family devices implement a JTAG interface, which supports boundary scan device testing.

33.6 In-Circuit Serial Programming

PIC24FJ256GA412/GB412 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power (VDD), ground (Vss) and MCLR. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

33.7 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement $ICSP^{TM}$ connections to MCLR, VDD, Vss and the PGECx/PGEDx pin pair, designated by the ICSx Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

NOTES:

34.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

34.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

34.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

34.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

34.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

34.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

34.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

34.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

34.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

34.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

34.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

34.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta , flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

34.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

35.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 35-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 35-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register, 'Wb', without any address modifier
- The second source operand, which is typically a register, 'Ws', with or without an address modifier
- The destination of the result, which is typically a register, 'Wd', with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register, 'Wb', without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register, 'Wd', with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

TABLE 35-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
bit4	4-bit Bit Selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016383}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388607}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	Words Cycle 1 1 1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + Iit5 + (C)	1	1	C, DC, N, OV, 2
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
DICA	BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT, Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE, Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT, Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero		1 (2)	None
	BRA	OV,Expr	Branch if Overflow		1 (2)	None
	BRA	Expr	Branch Unconditionally	1		None
	BRA	Z,Expr	Branch if Zero		1 (2)	None
	BRA	Wn	Computed Branch			None
BSET	BSET	f,#bit4	Bit Set f			None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 35-2: INSTRUCTION SET OVERVIEW

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected	
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None	
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None	
BTST	BTST	f,#bit4	Bit Test f	1	1	Z	
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С	
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z	
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С	
	BTST.Z Ws,Wb Bit Test Ws <wb> to Z</wb>				1	Z	
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z	
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С	
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z	
BTSWP	BTSWP		Swap Active and Inactive Flash Address Spaces	1	1	None	
CALL	CALL	lit23	Call Subroutine	2	2	None	
	CALL	Wn	Call Indirect Subroutine	1	2	None	
CLR	CLR	f	f = 0x0000	1	1	None	
	CLR	WREG	WREG = 0x0000	1	1	None	
	CLR	Ws	Ws = 0x0000	1	1	None	
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, SLEEF	
СОМ	СОМ	f	f = f	1	1	N, Z	
	СОМ	f,WREG	WREG = Ī	1	1	N, Z	
		-	$Wd = \overline{Ws}$	1	1	N, Z	
25	COM	Ws,Wd				,	
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV,	
	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV,	
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV,	
CP0	CP0	f	Compare f with 0x0000	1	1	C, DC, N, OV,	
	CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV,	
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV,	
	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV,	
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C, DC, N, OV,	
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None	
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None	
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None	
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None	
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С	
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV,	
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV,	
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV,	
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV,	
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV,	
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV,	
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None	
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV	
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV	
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV	
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV	
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None	
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	C	
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	C	

TABLE 35-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	$W3:W2 = f^* WREG$	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
NEG			$WREG = \overline{f} + 1$			
	NEG	f,WREG		1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S	_	Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 35-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 33-2. INSTRUCTION SET OVERVIEW (CONTINUED)	TABLE 35-2:	INSTRUCTION SET OVERVIEW (CONTINUED)
--	-------------	---

Assembly Mnemonic			# of Words	# of Cycles	Status Flags Affected	
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, SLEEP
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	Device Reset 1 1		None
RETFIE	RETFIE		Return from Interrupt	upt 1 3 (;		None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f,WREG	$WREG = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,Ws,Wd	Wd = Wb – Ws – (C)	1	1	C, DC, N, OV, Z
	SUBB	Wb,#lit5,Wd	Wd = Wb - lit5 - (C)	1	1	C, DC, N, OV, Z
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	f = WREG - f - (C)	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	xor f f=f.XOR.WREG		1	1	N, Z	
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 35-2: INSTRUCTION SET OVERVIEW (CONTINUED)

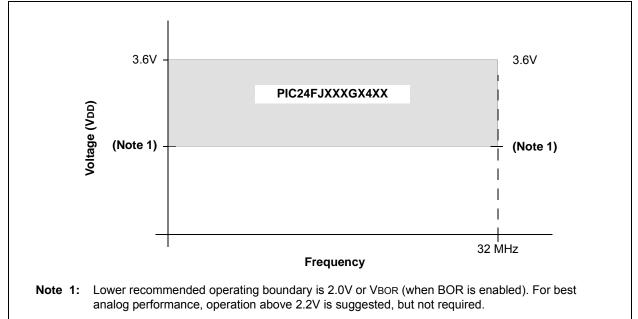
NOTES:

36.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FJ256GA412/GB412 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24FJ256GA412/GB412 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)


Ambient temperature under bias	-40°C to +100°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any general purpose digital or analog pin (not 5.5V toler	
Voltage on any general purpose digital or analog pin (5.5V tolerant,	
When VDD = 0V:	
When $VDD \ge 2.0V$:	
Voltage on AVDD with respect to Vss	
Voltage on AVss with respect to Vss	
Voltage on VBAT with respect to Vss	
Voltage on VUSB3V3 with respect to Vss	
Voltage on VBUS with respect to VSS	-0.3V to +6.0V
Voltage on D+ or D- with respect to Vss:	
(0Ω source impedance) (Note 1)	0.5V to (VUSB3V3 + 0.5V)
(Source Impedance \geq 28 Ω , VUSB3V3 \geq 3.0V)	
Maximum current out of Vss pin	
Maximum current into VDD pin (Note 2)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by all ports	
Maximum current sourced by all ports (Note 2)	
Note 1: The original "USB 2.0 Specification" indicated that USB of	levices should withstand 24-hour short circuits of

Note 1: The original "USB 2.0 Specification" indicated that USB devices should withstand 24-hour short circuits of D+ or D- to VBUS voltages. This requirement was later removed in an Engineering Change Notice (ECN) supplement to the USB specifications, which supersedes the original specifications. PIC24FJ256GA412/GB412 family devices will typically be able to survive this short-circuit test, but it is recommended to adhere to the absolute maximum specified here to avoid damaging the device.
 2: Maximum allowable current is a function of device maximum power dissipation (see Table 36-1).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

36.1 DC Characteristics

TABLE 36-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
PIC24FJ256GA412/GB412 Family:					
Operating Junction Temperature Range	TJ	-40		+100	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD \ x \ (IDD - \Sigma \ IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma \ (\{VDD - VOH\} \ x \ IOH) + \Sigma \ (VOL \ x \ IOL)$	PD	PINT + PI/O		W	
Maximum Allowed Power Dissipation	PDMAX	(TJ	max – Ta)/	θJA	W

TABLE 36-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Note
Package Thermal Resistance, 12x12x1 mm 100-pin TQFP	θJA	45.0		°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm 64-pin TQFP	θJA	48.3	—	°C/W	(Note 1)
Package Thermal Resistance, 9x9x0.9 mm 64-pin QFN	θJA	28.0	—	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1.1 mm 121-pin BGA	θJA	40.2	—	°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CH	ARACTER	RISTICS	Standard Opera Operating temp				(unless otherwise stated) +85°C for Industrial		
Param No.	Symbol	Characteristic	Min	Тур	Max Units		Conditions		
Operating Voltage									
DC10	Vdd	Supply Voltage	2.0	_	3.6	V	BOR disabled		
			VBOR	_	3.6		BOR enabled		
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	Greater of: VPORREL or VBOR	_	_	V	VBOR used only if BOR is enabled (BOREN = 1)		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	_	_	V	(Note 2)		
DC16A	VPORREL	VDD Power-on Reset Release Voltage	—	1.95	—	V	(Note 3)		
DC17A	SRvdd	Recommended VDD Rise Skew Rate to Ensure Internal Power-on Reset Signal	0.05	_		V/ms	0-3.3V in 66 ms, 0-2.5V in 50 ms (Note 2)		
DC17B	VBOR	Brown-out Reset Voltage on VDD Transition, High-to-Low	_	2.2	_	V	(Note 3)		

TABLE 36-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: This is the limit to which VDD may be lowered and the RAM contents will always be retained.

2: If the VPOR or SRVDD parameters are not met, or the application experiences slow power-down VDD ramp rates, it is recommended to enable and use the BOR.

3: On a rising VDD power-up sequence, application firmware execution begins at the higher of the VPORREL or VBOR level (when BOREN = 1).

DC CHARACT	ERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Parameter No.	Typical ¹ Max		Units	Operating Temperature	Vdd	Conditions				
Operating Cur	rent (IDD) ⁽²⁾									
DC19	0.17	0.4	mA	-40°C to +85°C	2.0V	0.5 MIPS,				
	0.19	0.4	mA	-40°C to +85°C	3.3V	Fosc = 1 MHz				
DC20	0.28	0.7	mA	-40°C to +85°C	2.0V	1 MIPS,				
	0.31	0.7	mA	-40°C to +85°C	3.3V	Fosc = 2 MHz				
DC23	0.90	2.5	mA	-40°C to +85°C	2.0V	4 MIPS,				
	1.00	2.5	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz				
DC24	5.13	9	mA	-40°C to +85°C	2.0V	16 MIPS,				
	5.28	9	mA	-40°C to +85°C	3.3V	Fosc = 32 MHz				
DC31	24.4	100	μA	-40°C to +85°C	2.0V	LPRC (15.5 KIPS),				
	24.5	24.5 110 μA -40°C to +85°C		3.3V	Fosc = 31 kHz					

TABLE 36-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Typical parameters are for design guidance only and are not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. No peripheral modules are operating and all of the Peripheral Module Disable x (PMDx) bits are set.

TABLE 36-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARAC	TERISTICS		Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Parameter No.				Operating Temperature	Vdd	Conditions				
Idle Current (lidle)									
DC40	130	180	μA	-40°C to +85°C	2.0V	1 MIPS,				
	180	200	μA	-40°C to +85°C	3.3V	Fosc = 2 MHz				
DC43	0.33	0.7	mA	-40°C to +85°C	2.0V	4 MIPS,				
	0.44	0.8	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz				
DC47	1.54	2.2	mA	-40°C to +85°C	2.0V	16 MIPS,				
	1.67	2.3	mA	-40°C to +85°C	3.3V	Fosc = 32 MHz				
DC50	0.56	0.8	mA	-40°C to +85°C	2.0V	4 MIPS (FRC),				
	0.56	0.9	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz				
DC51	18.76	90	μA	-40°C to +85°C	2.0V	LPRC (15.5 KIPS),				
	19.30	100	μA	-40°C to +85°C	3.3V	Fosc = 31 kHz				

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CHARA	CTERISTIC	S		Operating Condit temperature		V to 3.6V (unless otherwise stated) $^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽¹⁾	Max	Units Operating VDD			Conditions				
Power-Dov	vn Current (IPD)								
DC60	3.24	_	μΑ	-40°C						
	4.08	22	μΑ	+25°C	2.01/					
	7.81		μΑ	+60°C	2.0V					
	23.25	40	μΑ	+85°C		– Sleep ⁽²⁾				
	3.20		μΑ	-40°C		Sleep				
	4.07	25	μΑ	+25°C	3.3V					
	7.94		μA	+60°C	3.3V					
	19.85	42	μΑ							
DC61	0.07	_	μA	-40°C						
	0.07	_	μΑ	+25°C	2.0V					
	3.54	—	μA	+60°C	2.00					
	15.30	—	μA	+85°C		- Low-Voltage Sleep ⁽³⁾				
	0.10		μΑ	-40°C						
	0.06	—	μA	+25°C	3.3V					
	3.68	—	μA	+60°C	5.5 V					
	15.65		μΑ	+85°C						
DC70	120	—	nA	-40°C						
	80	800	nA	+25°C	2.0V					
	620	—	nA	+60°C	2.00					
	1.13	5	μA	+85°C		Deep Sleep, capacitor on VCAP is				
	110	—	nA	-40°C	3.3V	fully discharged				
	110	1500	nA	+25°C						
	830		nA	+60°C						
	3.67	10	μA	+85°C						
DC74	0.6	3	μA	-40°C to +85°C	0V	RTCC with VBAT mode (LPRC/SOSC) ⁽⁴				

TABLE 36-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The low-voltage/retention regulator is disabled; RETEN (RCON<12>) = 0, LPCFG (FPOR<2>) = 1.

3: The low-voltage/retention regulator is enabled; RETEN (RCON<12>) = 1, LPCFG (FPOR<2>) = 0.

4: The VBAT pin is connected to the battery and RTCC is running with VDD = 0.

DC CHARAC	TERISTICS			Dperating Condition Condit		to 3.6V (unless otherwise states $C \le TA \le +85^{\circ}C$ for Industrial	
Parameter No.	Typical ⁽¹⁾	Мах	Units Operating Temperature		Vdd	Conditions	
Incremental	Current Brow	/n-out Rese	t (∆BOR) ⁽²⁾				
DC25	4	8	μΑ	-40°C to +85°C	VBOR	480R ⁽²⁾	
	4	8	μΑ	-40°C to +85°C	3.3V		
Incremental	Current Wato	hdog Timer	. (AWDT) ⁽²⁾	•		-	
DC71	0.15	2	μΑ	-40°C to +85°C	2.0V	AVAIDT (with LDDC colocted)(2)	
	0.24	2	μA	-40°C to +85°C	3.3V	$-\Delta$ WDT (with LPRC selected) ⁽²⁾	
Incremental	Current HLVI) (AHLVD) ⁽²)	•		-	
DC75	3.8	25	μA	-40°C to +85°C	2.0V	AHLVD ⁽²⁾	
	3.8	25	μΑ	-40°C to +85°C	3.3V		
Incremental	Current Real	Time Clock	and Calenc	lar (∆RTCC) ⁽²⁾		-	
DC77	0.17	2.5	μA	-40°C to +85°C	2.0V	△RTCC (with SOSC) ⁽²⁾	
	0.17	2.5	μA	-40°C to +85°C	3.3V		
DC77A	0.55	2.5	μA	-40°C to +85°C	2.0V	△RTCC (with LPRC) ⁽²⁾	
	0.55	2.5	μA	-40°C to +85°C	3.3V		
Incremental	Current Deep	Sleep BOF	R (ADSBOR)	(2)			
DC81	0.1	0.9	μA	-40°C to +85°C	2.0V	△Deep Sleep BOR ⁽²⁾	
	0.1	0.9	μA	-40°C to +85°C	3.3V		
Incremental	Current Deep	Sleep Wate	chdog Time	r (∆ DSWDT)⁽²⁾			
DC80	0.1	0.9	μA	-40°C to +85°C	2.0V	∆Deep Sleep WDT ⁽²⁾	
	0.1	0.9	μA	-40°C to +85°C	3.3V		
Vват А/D Мо	onitor ⁽⁵⁾						
DC91	2	—	μA	-40°C to +85°C	3.3V	VBAT = 2V	
	5		μA	-40°C to +85°C	3.3V	VBAT = 3.3V	
Incremental	Current LCD	(ALCD)					
DC82	5	_	μΑ	+25°C	2.0V	(ALCD)/LCD internal (2)(4)	
	5		μA	+25°C	3.3V	1/8 MUX, 1/3 bias	
DC90	6	_	μA	+25°C	2.0V	(ΔLCD)/LCD charge pump ⁽²⁾⁽³⁾	
	6	_	μA	+25°C	3.3V	1/8 MUX, 1/3 bias	

TABLE 36-7: DC CHARACTERISTICS: △ CURRENT (BOR, WDT, DSBOR, DSWDT, LCD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Incremental current while the module is enabled and running.

3: LCD is enabled and running, no glass is connected; the resistor ladder current is not included.

4: LCD is enabled and running, no glass is connected; the low power resistor ladder current is included.

5: The A/D channel is connected to the VBAT pin internally; this is the current during A/D VBAT operation.

DC CH	ARACT	ERISTICS	Standard Operati Operating temper				unless otherwise stated) +85°C for Industrial
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽³⁾					
DI10		I/O Pins with ST Buffer	Vss		0.2 VDD	V	
DI11		I/O Pins with TTL Buffer	Vss		0.15 VDD	V	
DI15		MCLR	Vss		0.2 VDD	V	
DI16		OSCI (XT mode)	Vss		0.2 VDD	V	
DI17		OSCI (HS mode)	Vss		0.2 VDD	V	
DI18		I/O Pins with I ² C™ Buffer	Vss		0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer	Vss		0.8	V	SMBus enabled
	VIH	Input High Voltage ⁽³⁾					
DI20		I/O Pins with ST Buffer: without 5V Tolerance with 5V Tolerance	0.65 Vdd 0.65 Vdd	_	VDD 5.5	V V	
DI21		I/O Pins with TTL Buffer: without 5V Tolerance with 5V Tolerance	0.25 Vdd + 0.8 0.25 Vdd + 0.8		VDD 5.5	V V	
DI25		MCLR	0.8 VDD		Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd		Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd		Vdd	V	
DI28		I/O Pins with I ² C Buffer	0.7 Vdd		5.5	V	
DI29		I/O Pins with SMBus Buffer	2.1		5.5	V	SMBus enabled
DI30	ICNPU	CNx Pull-up Current	150	550	550	μA	VDD = 3.3V, VPIN = VSS
DI30A	ICNPD	CNx Pull-Down Current	15	150	150	μA	VDD = 3.3V, VPIN = VDD
	lı∟	Input Leakage Current ⁽²⁾					
DI50		I/O Ports	—	-	±1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI51		Analog Input Pins	_	_	±1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ & {\sf pin} \mbox{ at high-impedance } \end{split}$
DI55		MCLR	_	_	±1	μA	$Vss \leq V PIN \leq V DD$
DI56		OSCI/CLKI	_	-	±1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ & {\sf EC}, \ XT \ and \ HS \ modes \end{split}$

TABLE 36-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-4 or Table 1-5 for I/O pin buffer types.

DC CHARACTERISTICS				Standard Operating Condition			to 3.6V (unless otherwise stated) $C \le TA \le +85^{\circ}C$ for Industrial
Param No.	Symbol Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
	Vol	Output Low Voltage					
DO10		I/O Ports	—		0.4	V	IOL = 6.6 mA, VDD = 3.6V
			_	_	0.4	V	IOL = 5.0 mA, VDD = 2V
DO16		OSCO/CLKO	—		0.4	V	IOL = 6.6 mA, VDD = 3.6V
			—	—	0.4	V	IOL = 5.0 mA, VDD = 2V
	Vон	Output High Voltage					
DO20		I/O Ports	3.0		—	V	юн = -3.0 mA, Vdd = 3.6V
			2.4		—	V	ЮН = -6.0 mA, VDD = 3.6V
			1.65	—	—	V	IOH = -1.0 mA, VDD = 2V
			1.4	—	—	V	IOH = -3.0 mA, VDD = 2V
DO26		OSCO/CLKO	2.4	_	—	V	IOH = -6.0 mA, VDD = 3.6V
			1.4		_	V	Iон = -1.0 mA, VDD = 2V

TABLE 36-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 36-10: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHA	DC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Conditions				
		Program Flash Memory								
D130	Eр	Cell Endurance	20000	—	_	E/W	-40°C to +85°C			
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage			
D132B		VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage			
D133A	Tiw	Self-Timed Word Write Cycle Time	—	20	—	μS				
		Self-Timed Row Write Cycle Time	—	1.5	—	ms				
D133B	TIE	Self-Timed Page Erase Time	20	-	40	ms				
D134	TRETD	Characteristic Retention	20	—	—	Year	If no other specifications are violated			
D135	IDDP	Supply Current During Programming	—	5		mA				

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 36-11: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operati	Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)										
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments				
DVR10	Vbg	Internal Band Gap Reference	_	1.2	—	V					
DVR11	Твс	Band Gap Reference Start-up Time	—	1	-	ms					
DVR20	Vrgout	Regulator Output Voltage		1.8	—	V	VDD > 2.0V				
DVR21	CEFC	External Filter Capacitor Value	4.7	10	-	μF	Series Resistance < 3Ω recommended; < 5Ω required.				
DVR	TVREG	Start-up Time	_	10	—	μS	PMSLP = 1 with any POR or BOR				
DVR30	Vlvr	Low-Voltage Regulator Output Voltage	_	1.2	—	V	$RETEN = 1, \overline{LPCFG} = 0$				

TABLE 36-12: VBAT OPERATING VOLTAGE SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments	
DVB01	Vbt	Operating Voltage	1.6	_	3.6	V	Battery connected to the VBAT pin, VBTBOR = 0	
DVB02			VBATBOR	_	3.6	V	Battery connected to the VBAT pin, VBTBOR = 1	
DVB10	VBTADC	VBAT A/D Monitoring Voltage Specification ⁽¹⁾	1.6	_	3.6	V	A/D is monitoring the VBAT pin using the internal A/D channel	

Note 1: Measuring the A/D value using the A/D is represented by the equation: Measured Voltage = ((VBAT/2)/VDD) * 4096) for 12-bit A/D.

TABLE 36-13: CTMU CURRENT SOURCE SPECIFICATIONS

DC CH	ARACT	ERISTICS	Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Comments	Conditions		
DCT10	IOUT1	CTMU Current Source, Base Range		550		nA	CTMUCON1L<1:0> = 00			
DCT11	IOUT2	CTMU Current Source, 10x Range		5.5	_	μA	CTMUCON1L<1:0> = 01	2.5V < VDD < VDDMAX		
DCT12	IOUT3	CTMU Current Source, 100x Range		55	_	μA	CTMUCON1L<1:0> = 10	2.5V < VDD < VDDMAX		
DCT13	Iout4	CTMU Current Source, 1000x Range		550	_	μA	CTMUCON1L<1:0> = 11 ⁽²⁾			
DCT21	VΔ	Temperature Diode Voltage Change per Degree Celsius	_	-3	_	mV/°C				

Note 1: Nominal value at center point of current trim range (CTMUCON1L<7:2> = 000000).

2: Do not use this current range with temperature sensing diode.

TABLE 36-14: USB ON-THE-GO MODULE SPECIFICATIONS

DC CH	ARACTER	ISTICS		Standard Operating Conditions:2.0V to 3.6V (unless otherwise stateOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol Characteristic		Min Typ M		Max	Units	Conditions		
Operati	ng Voltag	e					-		
DUS01	VUSB3V3	USB Supply Voltage	Greater of: 3.0 or (VDD – 0.3V)	3.3	3.6	V	USB module enabled		
			(VDD – 0.3V) ⁽¹⁾	_	3.6	V	USB disabled, RG2/RG3 are unused and externally pulled low or left in a high-impedance state		
			(VDD – 0.3V)	Vdd	3.6	V	USB disabled, RG2/RG3 are used as general purpose I/Os		

Note 1: The VUSB3V3 pin may also be left in a high-impedance state under these conditions. However, if the voltage floats below (VDD – 0.3V), this may result in higher IPD currents than specified. The preferred method is to tie the VUSB pin to VDD, even if the USB module is not used.

TABLE 36-15: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Operati	ng Condi	tions: -40°C < TA < +85°	C (unless otherwise state	d)				
Param No.	Symbol	Charao	cteristic	Min	Тур	Max	Units	Conditions
DC18	Vhlvd	HLVD Voltage on VDD	HLVDL<3:0> = 0100 ⁽¹⁾	3.45	_	3.73	V	
		Transition	HLVDL<3:0> = 0101	3.30	_	3.57	V	
			HLVDL<3:0> = 0110	3.00	_	3.25	V	
			HLVDL<3:0> = 0111	2.80	_	3.03	V	
			HLVDL<3:0> = 1000	2.67	—	2.92	V	
			HLVDL<3:0> = 1001	2.45	—	2.70	V	
			HLVDL<3:0> = 1010	2.33	_	2.60	V	
			HLVDL<3:0> = 1011	2.21	—	2.49	V	
			HLVDL<3:0> = 1100	2.11	—	2.38	V	
			HLVDL<3:0> = 1101	2.10	_	2.25	V	
			HLVDL<3:0> = 1110	2.00	—	2.15	V	
DC101	Vthl	HLVD Voltage on LVDIN Pin Transition	HLVDL<3:0> = 1111		1.20	_	V	

Note 1: Trip points for values of HLVD<3:0>, from '0000' to '0011', are not implemented.

TABLE 36-16: COMPARATOR DC SPECIFICATIONS

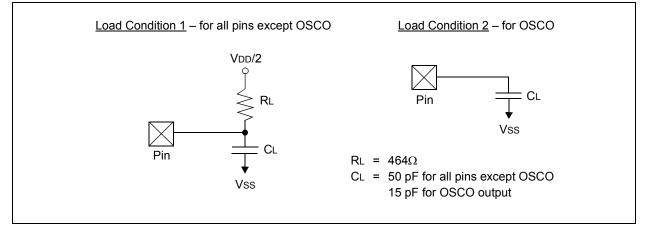
Operati	Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)										
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments				
D300	VIOFF	Input Offset Voltage	—	12	±30	mV					
D301	VICM	Input Common-Mode Voltage	0		Vdd	V					
D302	CMRR	Common-Mode Rejection Ratio	55	—	—	dB					
D306	IQCMP	AVDD Quiescent Current per Comparator	—	27	—	μA	Comparator enabled				
D307	TRESP	Response Time	_	300	_	ns	(Note 1)				
D308	TMC2OV	Comparator Mode Change to Valid Output	—	10	_	μs					

Note 1: Measured with one input at VDD/2 and the other transitioning from Vss to VDD, 40 mV step, 15 mV overdrive.

TABLE 36-17: COMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS

Operatin	Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)								
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments		
VR310	TSET	Settling Time		_	10	μs	(Note 1)		
VRD311	CVRAA	Absolute Accuracy	-100	-	100	mV			
VRD312	CVRur	Unit Resistor Value (R)	_	4.5	_	kΩ			

Note 1: Measures the interval while CVR<4:0> transitions from '11111' to '00000'.


36.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ256GA412/GB412 family AC characteristics and timing parameters.

TABLE 36-18: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions:	2.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature	-40°C \leq TA \leq +85°C for Industrial				
	Operating voltage VDD range as described in Section 36.1 "DC Characteristics ".					

FIGURE 36-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 36-19: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSCO/CLKO Pin	_	—	15		In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In l ² C™ mode

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

AC CHARACTERISTICS			-	Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
		External CLKI Frequency (External clocks allowed only in EC mode)	DC 1.97		32 48	MHz MHz	EC ECPLL (Note 2)		
		Oscillator Frequency	3.5 4 10 12 31		10 8 32 32 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC		
OS20	Tosc	Tosc = 1/Fosc	—	_	_	—	See Parameter OS10 for Fosc value		
OS25	Тсү	Instruction Cycle Time ⁽³⁾	62.5		DC	ns			
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	_	_	ns	EC		
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽⁴⁾	_	6	10	ns			
OS41	TckF	CLKO Fall Time ⁽⁴⁾	_	6	10	ns			

TABLE 36-20: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

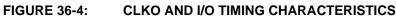
- 2: Represents input to the system clock prescaler. PLL dividers and postscalers must still be configured so that the system clock frequency does not exceed the maximum frequency shown in Figure 36-1.
- 3: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- 4: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

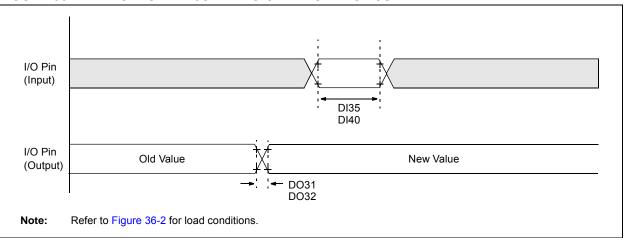
TABLE 36-21: PLL CLOCK TIMING SPECIFICATIONS

				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min Typ Max U		Units	Conditions			
OS50		PLL Input Frequency Range ⁽¹⁾	1.97	4	4.04	MHz	ECPLL, XTPLL, HSPLL or FRCPLL modes		
OS52	TLOCK	PLL Start-up Time (Lock Time)	—	—	128	μS			
OS53	DCLK	CLKO Stability (Jitter)	-0.25	_	0.25	%			

Note 1: The PLL accepts a 1.97 MHz to 4.04 MHz input frequency. Higher input frequencies, up to 48 MHz, may be supplied to the PLL if they are prescaled down by the PLLMODE<3:0> Configuration bits into the 1.97 MHz to 4.04 MHz range.

TABLE 36-22: INTERNAL RC ACCURACY


AC CHA	RACTERISTICS		r d Operat ng tempe	-		2.0V to 3.6V (unless otherwise stated) $40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
F20	FRC Accuracy @ 8 MHz ⁽⁴⁾	-1	±0.15	1	%	$2.0V \le VDD \le 3.6V, 0^{\circ}C \le TA \le +85^{\circ}C$ (Note 1)		
		-1.5	_	1.5	%	$2.0V \leq V \text{DD} \leq 3.6V \text{, } -40^\circ \text{C} \leq \text{Ta} < 0^\circ \text{C}$		
		-0.20	±0.05	0.20	%	$2.0V \le V_{DD} \le 3.6V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$, self-tune is enabled and locked (Note 2)		
F21	LPRC @ 31 kHz	-20	_	20	%			
F22	OSCTUN Step-Size	—	0.05	—	%/bit			
F23	FRC Self-Tune Lock Time	—	<5	8	ms	(Note 3)		

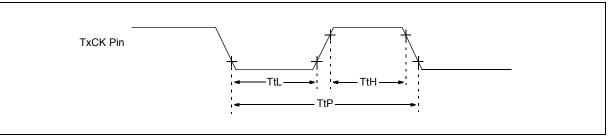

Note 1: To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB) must be kept to a minimum.

- 2: Accuracy measured with respect to reference source accuracy.
- **3:** Time from when the reference clock is stable and in range until the FRC is tuned within the range specified by F20 (with self-tune).
- 4: Other frequencies that are derived from the FRC (either through digital division by prescalers or multiplication through a PLL) will also have the same accuracy tolerance specifications as provided here.

				Standard Operating Conditions:2.0V to 3.6V (unless otherwise statedOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
FR0	TFRC	FRC Oscillator Start-up Time	—	15		μS			
FR1	Tlprc	Low-Power RC Oscillator Start-up Time	—	50		μS			

TABLE 36-23: RC OSCILLATOR START-UP TIME

TABLE 36-24: CLKO AND I/O TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DO31	TIOR	Port Output Rise Time	—	5	25	ns		
DO32	TIOF	Port Output Fall Time	—	5	25	ns		
DI35	TINP	INTx Pin High or Low Time (input)	20	—	—	ns		
DI40	Trbp	CNx High or Low Time (input)	2	—	_	Тсү		

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

AC CH	ARACTE	RISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions			
SY10	TMCL	MCLR Pulse Width (Low)	2		—	μS				
SY12	TPOR	Power-on Reset Delay	_	2	_	μS				
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	Lesser of: (3 Tcy + 2) or 700	_	(3 Tcy + 2)	μS				
SY25	TBOR	Brown-out Reset Pulse Width	1	_	—	μS	$VDD \leq VBOR$			
SY45	TRST	Internal State Reset Time	—	50	—	μS				
SY70	Toswu	Deep Sleep Wake-up Time	—	200	-	μS	VCAP fully discharged before wake-up			
SY71	Трм	Program Memory Wake-up Time	—	20	—	μS	Sleep wake-up with PMSLP = 0			
			_	1	—	μS	Sleep wake-up with PMSLP = 1			
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	90	—	μS	Sleep wake-up with PMSLP = 0			
			—	70	—	μS	Sleep wake-up with PMSLP = 1			

TABLE 36-25: RESET AND BROWN-OUT RESET REQUIREMENTS

FIGURE 36-5: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT TIMING

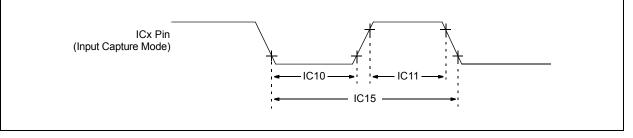


TABLE 36-26: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT REQUIREMENTS⁽¹⁾

Param. No.	Symbol	Chara	Min	Max	Units	Conditions	
	TtH	TxCK High Pulse Time	Synchronous w/Prescaler	Tcy + 20	_	ns	Must also meet
			Asynchronous w/Prescaler	10	_	ns	Parameter TtP
			Asynchronous Counter	20	_	ns	
	TtL TxCK Low Pulse Time		Synchronous w/Prescaler	Tcy + 20	_	ns	Must also meet
			Asynchronous w/Prescaler	10	_	ns	Parameter TtP
			Asynchronous Counter	20	_	ns	
	TtP	TxCK External Input	Synchronous w/Prescaler	2 * Tcy + 40	_	ns	N = Prescale Value
		Period	Asynchronous w/Prescaler	Greater of: 20 or <u>2 * Tcy + 40</u> N	_	ns	(1, 4, 8, 16)
			Asynchronous Counter	40	_	ns	
		Delay for Input Edge	Synchronous	1	2	Тсү	
		to Timer Increment	Asynchronous	_	20	ns	

Note 1: Asynchronous mode is available only on Timer1.

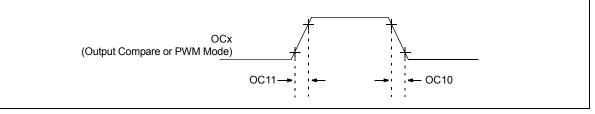

FIGURE 36-6: INPUT CAPTURE x TIMINGS

TABLE 36-27: INPUT CAPTURE x TIMINGS REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20		ns	Must also meet
Sync	Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15	
IC11	1 TccH ICx Input Low Time – No P		No Prescaler	Tcy + 20	_	ns	Must also meet
		Synchronous Timer With Prescale		20	—	ns	Parameter IC15
IC15	TccP	ICx Input Period – Synchronous Timer		<u>2 * Tcy + 40</u> N	—	ns	N = Prescale Value (1, 4, 16)

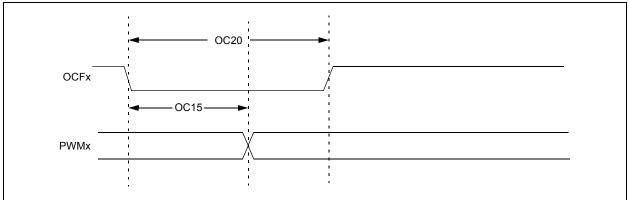

FIGURE 36-7: OUTPUT COMPARE x TIMINGS

TABLE 36-28: OUTPUT COMPARE 1 TIMINGS

Param. No.	Symbol	Characteristic	Min	Мах	Unit	Condition
OC11	TCCR	OC1 Output Rise Time		10	ns	
			—	—	ns	
OC10	TCCF	OC1 Output Fall Time	—	10	ns	
					ns	

FIGURE 36-8: PWMx MODULE TIMING REQUIREMENTS

TABLE 36-29: PWMx TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Unit	Condition
OC15	Tfd	Fault Input to PWM I/O Change		—	25	ns	VDD = 3.0V, -40°C to +85°C
OC20	Tfh	Fault Input Pulse Width	50	_	_	ns	VDD = 3.0V, -40°C to +85°C

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

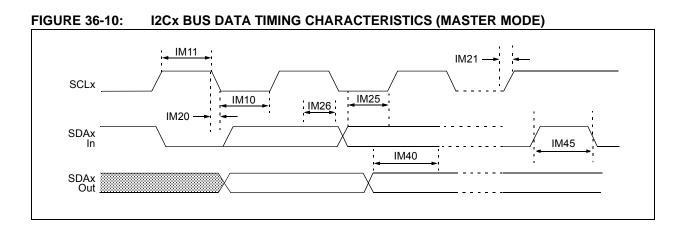
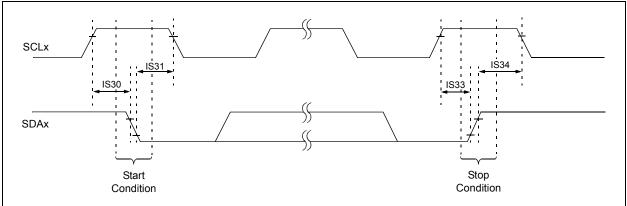

FIGURE 36-9: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

TABLE 36-30: I2Cx BUS START/STOP BITS TIMING REQUIREMENTS (MASTER MODE)

AC CHA	RACTER	ISTICS	(unless otherwise	e stated)	g Conditions: 2.0V to 3.6V stated) stated $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Max	Units	Conditions		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	Only relevant for		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	-	μS	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	condition		
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	-	μS	After this period, the		
			400 kHz mode	Tcy/2 (BRG + 1)	-	μS	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS			
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	-	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns			
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns			

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 18.2 "Setting Baud Rate When Operating as a Bus Master" for details.

2: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).


TABLE 36-31: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHA		STICS		Standard Operatin (unless otherwise Operating tempera	stated)		DV to 3.6V +85°C for Industrial
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Max	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	
			400 kHz mode	Tcy/2 (BRG + 1)		μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	100	ns	
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	_	1000	ns	CB is specified to be
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	300	ns	
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	_	ns	
			400 kHz mode	100	_	ns	
			1 MHz mode ⁽²⁾	—	_	ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	_	ns	
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽²⁾	—	_	ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	
			1 MHz mode ⁽²⁾	—	_	ns	1
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be
			400 kHz mode	1.3	—	μs	free before a new
			1 MHz mode ⁽²⁾	_	—	μS	transmission can start
IM50	Св	Bus Capacitive Lo	bading	_	400	pF	

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 18.2 "Setting Baud Rate When Operating as a Bus Master" for details.

2: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

FIGURE 36-11: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

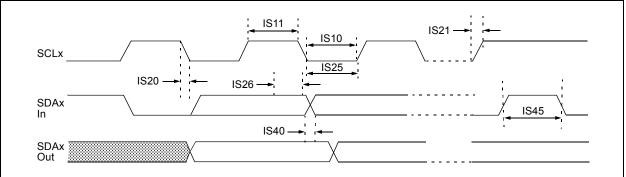
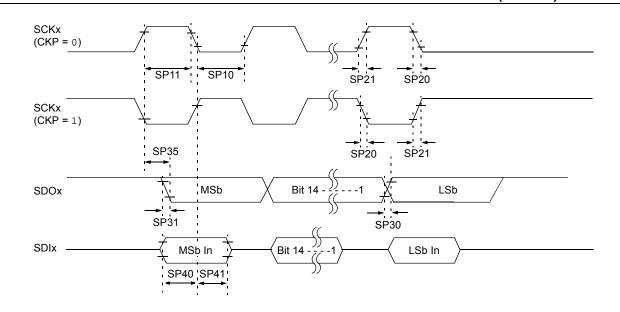


TABLE 36-32: I2Cx BUS START/STOP BITS TIMING REQUIREMENTS (SLAVE MODE)

АС СНА	AC CHARACTERISTICS				erwise s	rating Conditions: 2.0V to 3.6V vise stated) vise stater $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Param No.SymbolCharacteristicMinMaxUnits						Conditions			
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated		
	Setup Time	Setup Time	400 kHz mode	0.6		μs	Start condition		
		1 MHz mode ⁽¹⁾	0.25		μs				
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4.0		μs	After this period, the first		
			400 kHz mode	0.6	—	μs	clock pulse is generated		
			1 MHz mode ⁽¹⁾	0.25		μs			
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μS			
		Setup Time	400 kHz mode	0.6	—	μs			
			1 MHz mode ⁽¹⁾	0.6	—	μs			
IS34	THD:STO	Stop Condition Hold Time	100 kHz mode	4000	_	ns			
			400 kHz mode	600	_	ns			
			1 MHz mode ⁽¹⁾	250		ns			


Note 1: Maximum Pin Capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only).

AC CHA	RACTERIS	TICS		(unless othe	rwise st	tated)	ons: 2.0V to 3.6V C \leq TA \leq +85°C for Industrial
Param No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode		1000	ns	CB is specified to be from
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	100	—	ns	
IS26	THD:DAT	Data Input	100 kHz mode	0		ns	
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS40	TAA:SCL	Output Valid From	100 kHz mode	0	3500	ns	
		Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS50	Св	Bus Capacitive Loa	•	—	400	pF	

Note 1: Maximum Pin Capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only).

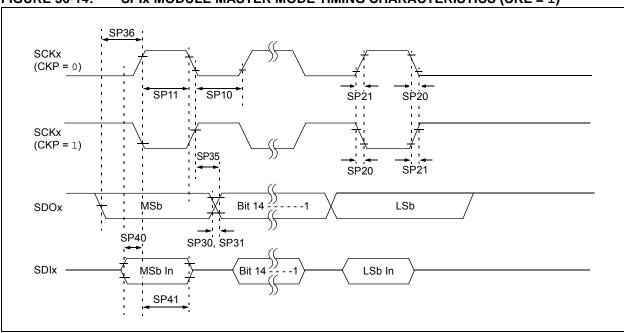

FIGURE 36-13: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 0)

TABLE 36-34:	SPIX MASTER MODE TIMING REQUIREMENTS (CKE = 0)
--------------	--

AC CHA	AC CHARACTERISTICS			herwise s	,		V to 3.6V			
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions							
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	_	_	ns				
SP11	TscH	SCKx Output High Time ⁽²⁾	TCY/2	—		ns				
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns				
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns				
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns				
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns				
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	—	30	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns				

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

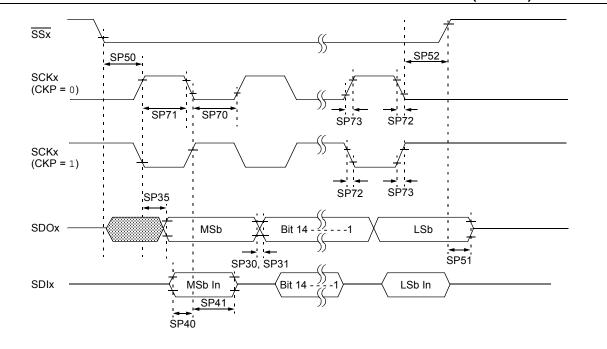

FIGURE 36-14: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 36-35: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

АС СНА	AC CHARACTERISTICS			perating C erwise sta emperature	ted)	anditions: 2.0V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Param No.	Symbol Characteristic		Min	Typ ⁽¹⁾	Мах	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	—	_	ns			
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	—	_	ns			
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns			
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns			
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns			
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	—	30	ns			
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

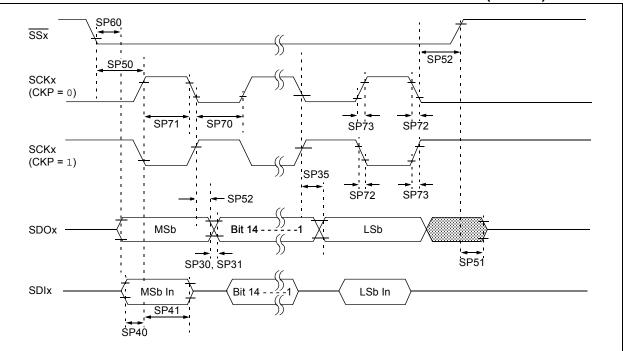


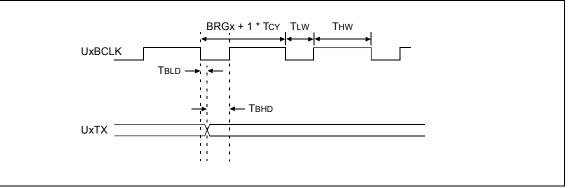
FIGURE 36-15: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 0)

TABLE 36-36: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 0)

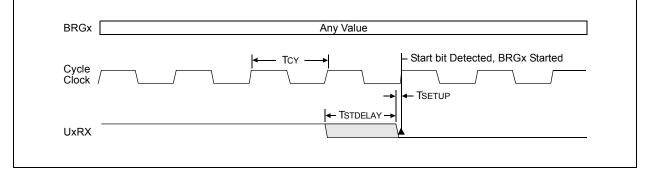
AC CHAI	AC CHARACTERISTICS			erwise sta	ited)		2.0V to 3.6V $a \le +85^{\circ}$ C for Industrial			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions			
SP70	TscL	SCKx Input Low Time	30	_	_	ns				
SP71	TscH	SCKx Input High Time	30	_		ns				
SP72	TscF	SCKx Input Fall Time ⁽²⁾	—	10	25	ns				
SP73	TscR	SCKx Input Rise Time ⁽²⁾		10	25	ns				
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾		10	25	ns				
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾		10	25	ns				
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	—	30	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	_	ns				
SP50	TssL2scH, TssL2scL	SSx to SCKx ↑ or SCKx Input	120	Ι	—	ns				
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns				
SP52	TscH2ssH TscL2ssH	SSx After SCKx Edge	1.5 Tcy + 40	—		ns				

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 36-16: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 1)


TABLE 36-37: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 1)

AC CH	ARACTERI	STICS	(unless othe	rwise stat	rating Conditions: 2.0V to 3.6V vise stated) berature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	_	_	ns		
SP71	TscH	SCKx Input High Time	30			ns		
SP72	TscF	SCKx Input Fall Time ⁽²⁾	—	10	25	ns		
SP73	TscR	SCKx Input Rise Time ⁽²⁾	—	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	—	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾	—	10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	_	30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	—	—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10		50	ns		
SP52	TscH2ssH TscL2ssH	SSx ↑ After SCKx Edge	1.5 TCY + 40			ns		
SP60	TssL2doV	SDOx Data Output Valid After SSx Edge	_	_	50	ns		


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

FIGURE 36-17: UARTX BAUD RATE GENERATOR OUTPUT TIMING

FIGURE 36-18: UARTX START BIT EDGE DETECTION

TABLE 36-38: UARTx AC SPECIFICATIONS

Symbol	Characteristics	Min	Тур	Max	Units
TLW	UxBCLK High Time	20	Tcy/2		ns
THW	UxBCLK Low Time	20	(TCY * BRGx) + TCY/2	—	ns
TBLD	UxBCLK Falling Edge Delay from UxTX	-50	—	50	ns
Твно	UxBCLK Rising Edge Delay from UxTX	Tcy/2 – 50	—	Tcy/2 + 50	ns
Twak	Min. Low on UxRX Line to Cause Wake-up	—	1	_	μS
Тстѕ	Min. Low on UxCTS Line to Start Transmission	Тсү	—	_	ns
TSETUP	Start bit Falling Edge to System Clock Rising Edge Setup Time	3	—	—	ns
TSTDELAY	Maximum Delay in the Detection of the Start bit Falling Edge	_	_	TCY + TSETUP	ns

AC CH	ARACTERI	STICS	Standard Operating Conditions: 2V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial							
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions			
Device Supply										
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 2.2		Lesser of: VDD + 0.3 or 3.6	V				
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V				
			Reference	e Inputs						
AD05	VREFH	Reference Voltage High	AVss + 1.7		AVdd	V				
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD - 1.7	V				
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	-	AVDD + 0.3	V				
Analog Input										
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)			
AD11	VIN	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V				
AD12	VINL	Absolute Vın∟ Input Voltage	AVss – 0.3		AVDD/3	V				
AD13		Leakage Current		±1.0	±610	nA	$V_{INL} = AV_{SS} = V_{REFL} = 0V,$ $AV_{DD} = V_{REFH} = 3V,$ Source Impedance = 2.5 k Ω			
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	_	2.5K	Ω	10-bit			
			Accu	racy			·			
AD20B	Nr	Resolution		12		bits				
AD21B	INL	Integral Nonlinearity	_	±1	<±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V			
AD22B	DNL	Differential Nonlinearity	—	—	<±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V			
AD23B	Gerr	Gain Error	—	±1	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V			
AD24B	EOFF	Offset Error	—	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V			
AD25B		Monotonicity ⁽¹⁾	_		_		Guaranteed			

TABLE 36-39: A/D MODULE SPECIFICATIONS

Note 1: The conversion result never decreases with an increase in the input voltage and has no missing codes.

2: Measurements are taken with the external VREF+ and VREF- used as the voltage reference.

TABLE 36-40: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS			Standard Operating Conditions: 2V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No. Symbol Characteristic			Min.	Тур	Max.	Units	Conditions
		Cloc	k Paramet	ters			
AD50	TAD	A/D Clock Period	278	_		ns	
AD51	tRC	A/D Internal RC Oscillator Period	_	250		ns	
		Con	version R	ate			
AD55	tCONV	Conversion Time	_	14		TAD	
AD56	FCNV	Throughput Rate	_	_	200	ksps	AVDD > 2.7V
AD57	tSAMP	Sample Time		1		TAD	
		Cloc	k Parame	ters			
AD61	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	_	3	Tad	

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

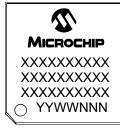
TABLE 36-41: 10-BIT DAC SPECIFICATIONS

AC CHARACTERISTICS			Operating Conditions: -40° C < TA < $+85^{\circ}$ C, 2.0 V < (A)VDD < 3.6 V ⁽¹⁾				
Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions
DAC01		Resolution	10		—	bits	
DAC02		DVREF+ Input Voltage Range	_	—	AVdd	V	
DAC03	DNL	Differential Linearity Error	-1		+1	LSb	
DAC04	INL	Integral Linearity Error	-3.0	_	+3.0	LSb	
DAC05		Offset Error	-20		+20	mV	Code 000h
DAC06		Gain Error	-3.0	—	+3.0	LSb	Code 3FFh, not including offset error

Note 1: Unless otherwise stated, test conditions are with VDD = AVDD = DVREF+ = 3.3V, 3 k Ω load to Vss.

37.0 PACKAGING INFORMATION

37.1 Package Marking Information

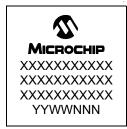

64-Lead QFN (9x9x0.9 mm)

64-Lead TQFP (10x10x1 mm)

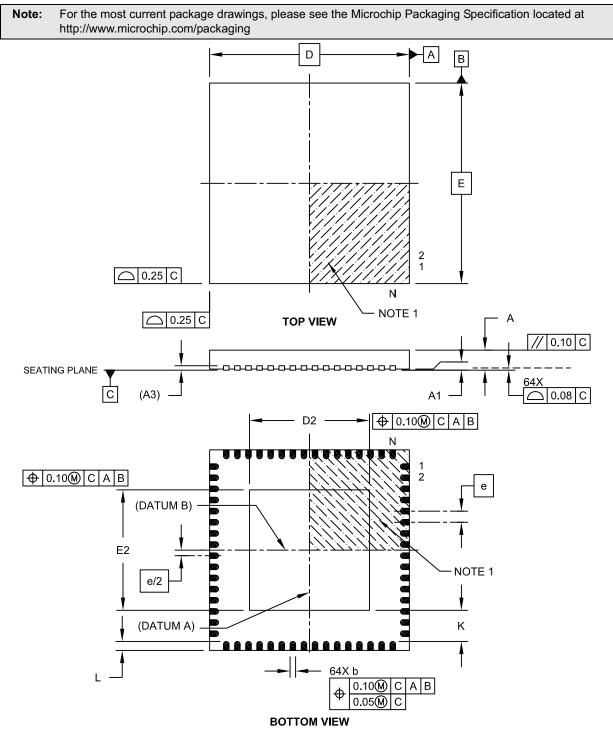
Example

Legend	I: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

37.2 Package Marking Information (Continued)

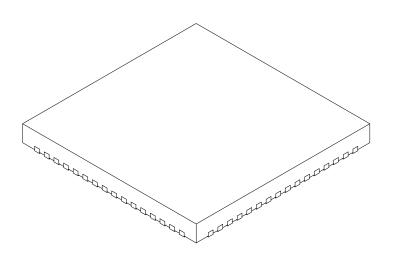


121-BGA (10x10x1.1 mm)


Example

37.3 Package Details

The following sections give the technical details of the packages.


64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

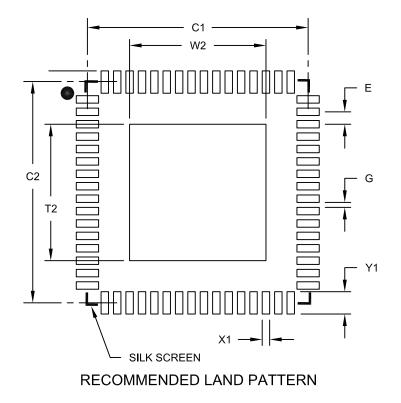
	Units			S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		64	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е	9.00 BSC		
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

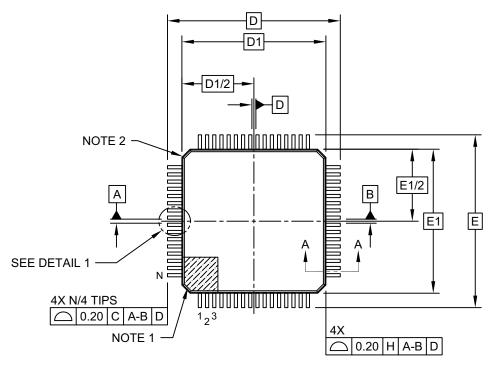
Microchip Technology Drawing C04-154A Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 5.40x5.40mm Exposed Pad

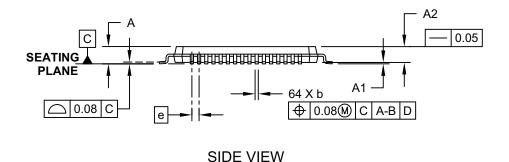
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	n Limits	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC		
Optional Center Pad Width	W2			5.50	
Optional Center Pad Length	T2			5.50	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	L C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64) Y1				0.85	
Distance Between Pads	G	0.20			

Notes:

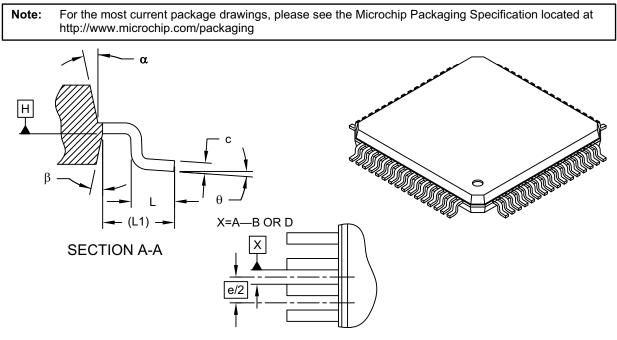

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing No. C04-2154A

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



TOP VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

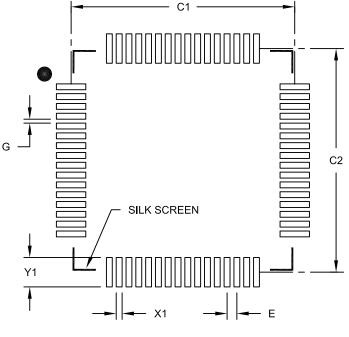
DETAIL 1

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Leads	Ν		64	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0° 3.5° 7°		
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.


- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

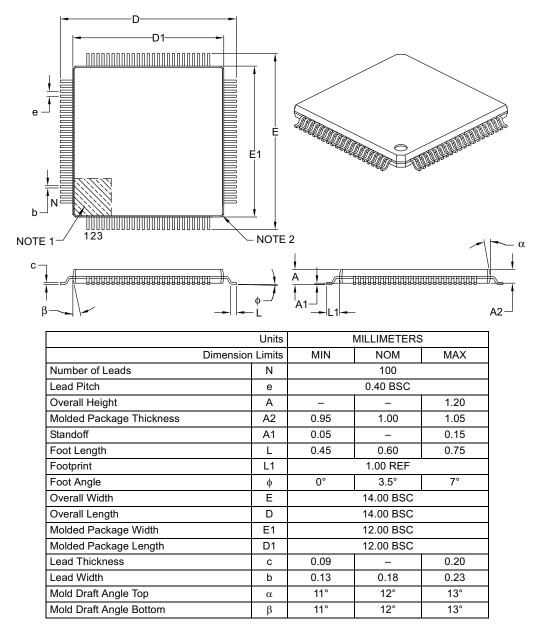
64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν		<u> </u>
	Units	N		<u> </u>
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

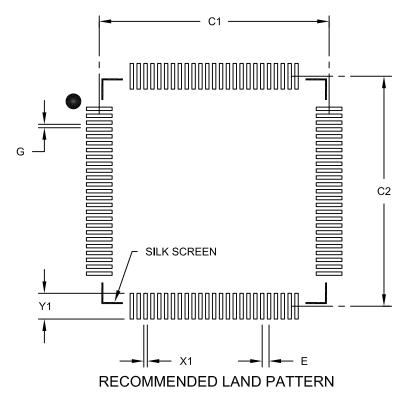
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

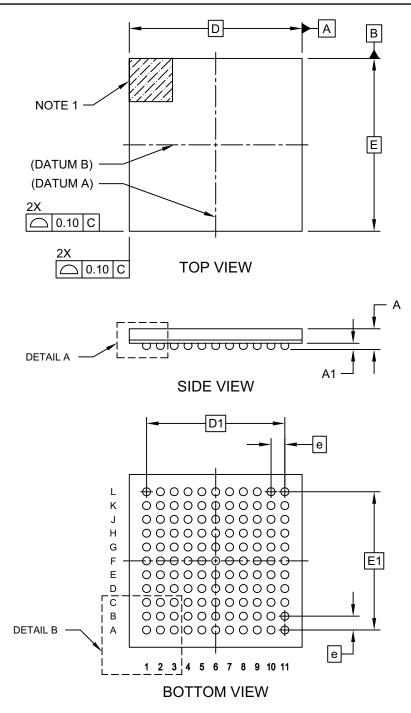
Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S
Dimensior	Dimension Limits		NOM	MAX
Contact Pitch	E	0.40 BSC		
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

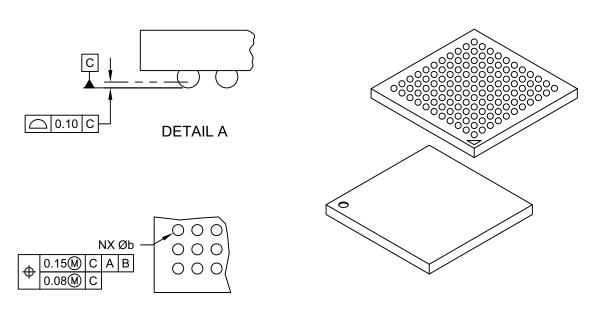
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

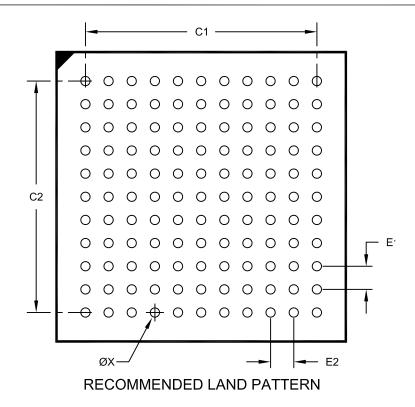
Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL B

	Units	MILLIMETERS			
Dimens	sion Limits	MIN	NOM	MAX	
Number of Contacts	N		121		
Contact Pitch	е		0.80 BSC		
Overall Height	А	1.00 1.10 1.20			
Ball Height	A1	0.25	0.30	0.35	
Overall Width	E		10.00 BSC		
Array Width	E1		8.00 BSC		
Overall Length	D	10.00 BSC			
Array Length	D1	8.00 BSC			
Contact Diameter	b	0.35 0.40 0.45			


Notes:

- 1. Ball A1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 3. The outer rows and colums of balls are located with respect to datums A and B.
- 4. Ball interface to package body: 0.37mm nominal diameter.

Microchip Technology Drawing C04-148 Rev F Sheet 2 of 2

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA--Formerly XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E1	0.80 BSC			
Contact Pitch	E2		0.80 BSC		
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Diameter (X121)	X			0.32	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148 Rev D

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (February 2015)

Original data sheet for the PIC24FJ256GA412/GB412 family of devices.

Revision B (July 2015)

This revision incorporates the following updates:

- · Sections:
 - Updates the Special Microcontroller Features and Peripheral Features sections at the beginning of the data sheet (Page 1 and Page 2).
 - Adds Section 4.2 "Unique Device Identifier (UDID)" and Section 4.3 "Unique Device Identifier (UDID) (TQAH Variant)".
 - Updates Section 22.0 "Liquid Crystal Display (LCD) Controller".
- Registers:
 - Updates Register 33-1 and Register 33-10.
- Tables:
 - Updates the 16/32-Bit Timers column in the Device Features table on Page 2.
 - Updates Table 1-5, Table 4-6, Table 4-7, Table 4-8, Table 4-9, Table 4-10, Table 4-11, Table 4-12, Table 4-13, Table 23-1, Table 36-4, Table 36-5 and Table 36-5.
 - Adds Table 36-41.
- Removes all references to ISO 7816 Support and Deep Sleep mode.
- Changes to text and formatting were incorporated throughout the document.

NOTES:

INDEX

	Δ.
•	•

A/D	
Extended DMA Operations	425
Operation	423
Registers	
Transfer Functions	
10-Bit	
12-Bit	
AC Characteristics	
10-Bit DAC Specifications	
A/D Conversion Timing	
A/D Module	
CLKO and I/O Timing Requirements	509
External Clock Timing	
I2Cx Bus Data (Master Mode)	515
I2Cx Bus Data (Slave Mode)	517
I2Cx Bus Start/Stop Bits (Master Mode)	514
I2Cx Bus Start/Stop Bits (Slave Mode)	516
Internal RC Accuracy	508
Load Conditions and Requirements for	
Specifications	506
PLL Clock Timing	508
RC Oscillator Start-up Time	
Reset and Brown-out Reset Requirements	
SPIx Master Mode (CKE = 0)	
SPIx Master Mode (CKE = 1)	
SPIx Slave Mode (CKE = 0)	
SPIx Slave Mode (CKE = 1)	
UARTx Specifications	
Alternate Interrupt Vector Table (AIVT)	107
Assembler	
MPASM Assembler	

В

438
424
249
249
243
255
85
97
328
426
82
379
378
377
451
253
59
417
417
399
454
455
454

Data Access from Program Space	
Address Generation	
Direct Memory Access (DMA) Functional	89
Dual 16-Bit Timer Mode	
EDS Address Generation for Read Operations	80
EDS Address Generation for Write Operations	81
High/Low-Voltage Detect (HLVD)	461
High-Level RTCC	
I2Cx Module	
Individual Comparator Configurations,	
CREF = 0	446
Individual Comparator Configurations,	
CREF = 1 and CVREFP = 0	447
Individual Comparator Configurations,	
CREF = 1 and CVREFP = 1	447
Input Capture x Module	
LCD Controller	
MCLR Pin Connections Example	
On-Chip Regulator Connections	
Output Compare x (16-Bit Mode)	
Output Compare x (Double-Buffered,	210
16-Bit PWM Mode)	270
Output Compare x Module	
PIC24F CPU Core	
PIC24F CF0 Cole PIC24F256GA412 Family (General)	
PIC24F256GR412 Family (General)	20
PIC24FJ250GB412 Failing (General)	20 105
PLL System	
PSV Operation (Lower Word)	
PSV Operation (Upper Word)	
Recommended Minimum Connections	
Reference Clock (Simplified)	
Reset System	
Shared I/O Port Structure	
Simplified Single DAC	
SPIx Master, Frame Master Connection	
SPIx Master, Frame Slave Connection	300
SPIx Master/Slave Connection	
(Enhanced Buffer Modes)	299
SPIx Master/Slave Connection	
(Standard Mode)	
SPIx Module (Enhanced Mode)	
SPIx Module (Standard Mode)	
SPIx Slave, Frame Master Connection	
SPIx Slave, Frame Slave Connection	
System Clock	
Timer Clock Generator	
Timer2/3 and Timer4/5 (32-Bit)	248
Triple Comparator Module	445
UARTx (Simplified)	310
USB OTG Bus Power Only Interface Mode	325
USB OTG Dual Power Mode	325
USB OTG Host Interface Example	
USB OTG Interface Example	
USB OTG Interrupt Funnel	
USB OTG Module	
USB OTG Self-Power Only Mode	325
Watchdog Timer (WDT)	

С

C Compilers	
MPLAB C18	484
Capture/Compare/PWM/Timer	
Auxiliary Output	258
General Purpose Timer	
Input Capture Mode	
Output Compare Mode	
Synchronization Sources	
Time Base Generator	
Capture/Compare/PWM/Timer (MCCP, SCCP)	253
Charge Time Measurement Unit. See CTMU.	
CLC	
Control Registers	380
Code Examples	
Basic Clock Switching	10/
0	
Configuring UART1 Input/Output Functions	
EDS Read from Program Memory in	
Assembly Code	
EDS Read in Assembly Code	
EDS Write in Assembly Code	81
IOC Status Read/Clear in Assembly	
Port Read/Write in Assembly	
Port Read/Write in C	
PWRSAV Instruction Syntax	
Setting the WRLOCK Bit	
The Repeat Sequence	
Code Protection	481
CodeGuard [™] Security	481
Comparator Voltage Reference	451
Configuring	
Configurable Logic Cell (CLC)	
Configurable Logic Cell. See CLC.	
	400
Configuration Bits	
Core Features	19
Dual Partition Flash Memory	
Dual Partition Flash Memory CPU	
	19
CPU Arithmetic Logic Unit (ALU)	19 62
CPU Arithmetic Logic Unit (ALU) Clocking Scheme	19 62 178
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers	19 62 178 60
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Core Registers	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Core Registers Programmer's Model	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Core Registers Programmer's Model CRC	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Core Registers Programmer's Model CRC Polynomials	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Core Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials.	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Core Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials . User Interface	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Core Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials . User Interface	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Core Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials.	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Drogrammer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Ore Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Core Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM Operation Modes	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Core Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM Operation Modes	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM Operation Modes Sleep and Idle modes	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM Operation Modes Sleep and Idle modes Programming	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM Operation Modes Sleep and Idle modes Programming CFGPAGE Configuration Bits Key Erasure	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM Operation Modes Sleep and Idle modes Programming CFGPAGE Configuration Bits Key Erasure Keys	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM Operation Modes Sleep and Idle modes Programming CFGPAGE Configuration Bits Key Erasure Keys Verifying Keys	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model. CRC Polynomials. Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine. Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM. Operation Modes Sleep and Idle modes Programming CFGPAGE Configuration Bits Key Erasure Keys. Verifying Keys Pseudorandom Number (PRN) Generation	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model. CRC Polynomials. Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Encrypting Data Encrypting Data Key RAM. Operation Modes Sleep and Idle modes. Programming CFGPAGE Configuration Bits Key Erasure Keys Verifying Keys Pseudorandom Number (PRN) Generation	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model. CRC Polynomials. Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM. Operation Modes Sleep and Idle modes. Programming CFGPAGE Configuration Bits Key Erasure Keys Verifying Keys Pseudorandom Number (PRN) Generation Session Keys Encrypting	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM Operation Modes Sleep and Idle modes Programming CFGPAGE Configuration Bits Key Erasure Keys Verifying Keys Pseudorandom Number (PRN) Generation Session Keys Encrypting Receiving	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM Operation Modes Sleep and Idle modes Programming CFGPAGE Configuration Bits Key Erasure Keys Verifying Keys Pseudorandom Number (PRN) Generation Session Keys Encrypting Receiving Testing Key Source Configuration	
CPU Arithmetic Logic Unit (ALU) Clocking Scheme Control Registers Programmer's Model CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials. User Interface Cryptographic Engine Data Register Spaces Decrypting Data Enabling Encrypting Data Key RAM Operation Modes Sleep and Idle modes Programming CFGPAGE Configuration Bits Key Erasure Keys Verifying Keys Pseudorandom Number (PRN) Generation Session Keys Encrypting Receiving	

CTMU

Measuring Capacitance4	53
Measuring Time 4	54
Pulse Generation and Delay4	55
Customer Change Notification Service 5	48
Customer Notification Service5	48
Customer Support 5	48
Cyclic Redundancy Check. See CRC.	

D

Data Memory	
Address Space	69
Extended Data Space (EDS)	
Memory Map	
Near Data Space	
SFR Space	
Software Stack	
Space Organization, Alignment	
DC Characteristics	
Comparator	505
Comparator Voltage Reference	505
CTMU Current Source	
Delta Current (BOR, WDT, DSBOR,	
DSWDT, LCD)	500
I/O Pin Input Specifications	
I/O Pin Output Specifications	502
Idle Current (IIDLE)	498
Operating Current (IDD)	498
Power-Down Current (IPD)	499
Program Memory	502
Temperature and Voltage Specifications	497
USB OTG Specifications	504
Development Support	483
Device Features	
100-Pin	
121-Pin	
64-Pin	22
Digital-to-Analog Converter. See DAC.	
Direct Memory Access (DMA) Controller	20
Direct Memory Access Controller. See DMA.	
DMA	
Channel Trigger Sources	
Control Registers	
Peripheral Module Disable (PMD)	92
Summary of Operations	90
Types of Data Transfers	
Typical Setup	92

Е

Electrical Characteristics	
Absolute Maximum Ratings 4	195
Capacitive Loading on Output Pins5	506
High/Low-Voltage Detect	504
Internal Voltage Regulator	503
Thermal Operating Conditions	196
Thermal Packaging Characteristics4	196
V/F Graph	196
VBAT Operating Voltage	
Enhanced Parallel Master Port (EPMP)	
Feature Differences by Pin Count	357
Key Features	
Package Variations	357
Pin Descriptions	358
Enhanced Parallel Master Port. See EPMP.	

Equations

16-Bit, 32-Bit CRC Polynomials	
A/D Conversion Clock Period	
Calculating the PWM Period	
Calculation for Maximum PWM Resolution	
Estimating USB Transceiver Current	
Consumption	
I ² C Baud Rate Reload Calculation	
Relationship Between Device and	
SPIx Clock Speed	300
RTCC Clock Divider Output Frequency	
UARTx Baud Rate with BRGH = 0	
UARTx Baud Rate with BRGH = 1	
Errata	
Extended Data Space (EDS)	79, 357
Reading from Program Memory	
Reads from	80
Writes to	

F

Flash Configuration Words	67
Flash Program Memory	
and Table Instructions	
Control Register	98
Enhanced ICSP Operation	98
JTAG Operation	
Operations	100
Programming Algorithm	100
RTSP Operation	

G

Getting Started	
Basic Connection Requirements	
External Oscillator Pins	
ICSP Operation	
Analog and Digital Pin Configuration	56
Pins	
Master Clear Reset (MCLR) Pin	
Power Supply Pins	
Voltage Regulator (VCAP)	53

н

High/Low-Voltage Detect (HLVD)461 High/Low-Voltage Detect. See HLVD.

I

I/O Ports	
Analog Port Pins Configuration (ANSx)	. 210
Configuring Analog/Digital Function of I/O Pin	. 210
Interrupt-on-Change (IOC)	. 216
Open-Drain Configuration	. 210
Parallel (PIO)	
Peripheral Pin Select	. 219
Pull-ups and Pull-Downs	. 216
Selectable Input Sources	. 220
Selectable Output Sources	. 221
Write/Read Timing	
I ² C	
Clock Rates	. 303
Communicating as Master in Single	
Master Environment	. 301
Reserved Addresses	. 303
Setting Baud Rate as Bus Master	. 303
Slave Address Masking	. 303

Input Conturn	
Input Capture 32-Bit Cascaded Mode	270
Operations	
Synchronous and Trigger Modes	
Input Capture with Dedicated Timers	
Instruction Set	
Overview	
Summary	
Symbols Used in Opcode Descriptions	
Interfacing Program and Data Spaces Inter-Integrated Circuit. See I ² C.	83
Inter-Integrated Circuit. See F.C.	519
Interrupt Controller	
Interrupt Vector Table (IVT)	
Interrupt-on-Change (IOC)	
Interrupts	
Control and Status Registers	112
Implemented Vectors	
Reset Sequence	
Setup and Service Procedures	
Trap Vectors	
Vector Tables	108
J	
JTAG Interface	481
	101
K	
Key Features	463
L	
-	
LCD LCD Controller	20
Registers	
Liquid Crystal Display (LCD) Controller	
Liquid Crystal Display. See LCD.	000
Low-Voltage/Retention Regulator	193
Μ	
Memory Organization	
Microchip Internet Web Site	
MPLAB ASM30 Assembler, Linker, Librarian	484
MPLAB Integrated Development	400
Environment Software MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	
	-0-
Ν	
Near Data Space	70
0	
-	470
On-Chip Voltage Regulator POR	
	4/9

PUR	
Standby Mode	479
Oscillator Configuration	
Clock Switching	183
Sequence	183
Configuration Bit Values for Clock Selection	178
Control Registers	179
FRC Active Clock Tuning	184
Initial Configuration on POR	178
PLL Block	185
Reference Clock	187
Secondary Oscillator	186
USB Operation	
Special Considerations	186

Output Compare	
32-Bit Cascaded Mode	
Operations	
Synchronous and Trigger Modes	
Output Compare with Dedicated Timers	275

Р	
Packaging	525
Details	
Marking	
Peripheral Pin Select (PPS)	
Available Peripherals and Pins	
Configuration Control	
Considerations for Use	
Input Mapping	
Mapping Exceptions	
Output Mapping	
Peripheral Priority	
Registers	224
Pin Descriptions	
PIC24FJXXXGA406 Devices	
PIC24FJXXXGA410 Devices	
PIC24FJXXXGA412 Devices	
PIC24FJXXXGB406 Devices	6
PIC24FJXXXGB410 Devices	10
PIC24FJXXXGB412 Devices	15
Pinout Descriptions	
PIC24FJ256GA412 Family	27
PIC24FJ256GB412 Family	
Power-Saving Features	
Clock Frequency and Clock Switching	
Deep Sleep WDT	
Doze Mode	
Hardware-Based Modes	
Instruction-Based Modes	
Deep Sleep	
I/O Pins	
Idle	
Sleep	
Low-Voltage/Retention Sleep	
Overview of Modes	
Power-on Resets (PORs)	
Selective Peripheral Control	
VBAT Mode	197
VBAT Mode	
With No RTCC	
Product Identification System	550
Program Memory	
Access Using Table Instructions	
Address Construction	
Address Space	63
Dual Partition Configuration Words	67
Flash Configuration Words	67
Hard Memory Vectors	64
Organization	64
OTP Memory	67
Reading from Program Memory Using EDS	86
Single and Dual Partition Memory Organization	
Pull-ups and Pull-Downs (I/O)	
Pulse-Width Modulation (PWM) Mode	277
Pulse-Width Modulation. See PWM.	
PWM	
Duty Cycle and Period	278

R

Real-Time Clock and Calendar (RTCC)
with Timestamp
Real-Time Clock and Calendar. See RTCC.
Registers
AD1CHITH (A/D Scan Compare Hit,
High Word)
AD1CHITL (A/D Scan Compare Hit,
Low Word)
AD1CHS (A/D Sample Select)
AD1CON1 (A/D Control 1)
AD1CON2 (A/D Control 2)
AD1CON3 (A/D Control 3) 430
AD1CON4 (A/D Control 4)
AD1CON5 (A/D Control 5) 432
AD1CSSH (A/D Input Scan Select, High Word) 436
AD1CSSL (A/D Input Scan Select, Low Word) 436
AD1CTMENH (A/D CTMU Enable, High Word) 437
AD1CTMENL (A/D CTMU Enable, Low Word) 437
ANCFG (A/D Band Gap Reference
Configuration) 434
ANSA (PORTA Analog Function Selection)
ANSB (PORTB Analog Function Selection)
ANSC (PORTC Analog Function Selection)
ANSD (PORTD Analog Function Selection)
ANSE (PORTE Analog Function Selection)
ANSF (PORTF Analog Function Selection) 214
ANSG (PORTG Analog Function Selection)
ANSH (PORTH Analog Function Selection)
BDnSTAT Prototype (Buffer Descriptor n
Status, CPU Mode)
BDnSTAT Prototype (Buffer Descriptor n
Status, USB Mode)
CCPxCON1H (CCPx Control 1 High)
CCPxCON1L (CCPx Control 1 Low) 259
CCPxCON2H (CCPx Control 2 High)
CCPxCON2L (CCPx Control 2 Low)
CCPxCON3H (CCPx Control 3 High)
CCPxCON3L (CCPx Control 3 Low) 265
CCPxSTATL (CCPx Status)
CFGPAGE (Secure Array Configuration Bits) 411
CLCxCONH (CLCx Control High)
CLCxCONL (CLCx Control Low)
CLCxGLSH (CLCx Gate Logic Input
Select High)
CLCxGLSL (CLCx Gate Logic Input
Select Low)
CLCxSEL (CLCx Input MUX Select)
CLKDIV (Clock Divider)
CMSTAT (Comparator Status)
CMxCON (Comparator x Control,
Comparators 1-3) 448
CORCON (CPU Control)
CORCON (CPU Core Control)
CRCCON1 (CRC Control 1)
CRCCON2 (CRC Control 2)
CRCXORH (CRC XOR Polynomial, High Byte) 422
CRCXORH (CRC XOR Polynomial, High Byte) 422 CRCXORL (CRC XOR Polynomial, Low Byte)
CRYCONH (Cryptographic Control High)
CRYCONL (Cryptographic Control Low) 407
CRYOTP (Cryptographic OTP Page
Program Control) 410

CRYSTAT (Cryptographic Status)	409
CTMUCON1H (CTMU Control 1 High)	457
CTMUCON1L (CTMU Control 1 Low)	
CTMUCON2L (CTMU Control 2 Low)	
CVRCON (Comparator Voltage	
Reference Control)	452
DAC1CON (DAC Control)	442
DATEH/ALMDATEH/TSADATEH/TSBDATEH	
(RTCC Date High)	398
DATEL/ALMDATEL/TSADATEL/TSBDATEL	
(RTCC Date Low)	
DEVID (Device ID)	478
DEVREV (Device Revision)	478
DMACHn (DMA Channel n Control)	
DMACON (DMA Engine Control)	
DMAINTn (DMA Channel n Interrupt)	
DSCON (Deep Sleep Control)	
DSWAKE (Deep Sleep Wake-up Source)	
FBOOT (Boot Mode Configuration Word)	477
FBSLIM (Boot Segment Limit	
Configuration Word)	466
FBTSEQ (Boot Sequence Configuration Word)	
FDEVOPT1 (Device Options	
Configuration Word)	475
	475
FDS (Deep Sleep Configuration Word)	
FICD (ICD Configuration Word)	472
FOSC (Oscillator Configuration Word)	468
FOSCSEL (Oscillator Select	
Configuration Word)	467
FPOR (POR Configuration Word)	
FSEC (Security Configuration Word)	
TOEO (Occurity Configuration Word)	
ESICN (Signature Configuration Word)	166
FSIGN (Signature Configuration Word)	
FWDT (Watchdog Timer Configuration Word)	469
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control)	469 462
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High)	469 462 304
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low)	469 462 304 306
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low)	469 462 304 306
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask)	469 462 304 306 308
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status)	469 462 304 306 308 307
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1)	469 462 304 306 308 307 271
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2)	469 304 306 308 307 271 272
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0)	469 304 306 308 307 271 272 131
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1)	469 304 306 308 307 271 272 131 133
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC2 (Interrupt Enable Control 1)	469 304 306 308 307 271 272 131 133 135
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3)	469 304 306 308 307 271 272 131 133 135 137
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4)	469 462 304 306 307 271 272 131 133 135 137 139
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4)	469 462 304 306 307 271 272 131 133 135 137 139
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5)	469 462 304 306 308 271 272 131 133 135 137 139 140
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 5)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 7)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 7) IEC7 (Interrupt Enable Control 7)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 118
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 6) IEC7 (Interrupt Enable Control 7) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 120
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 7) IEC6 (Interrupt Enable Control 7) IEC7 (Interrupt Enable Control 7) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 118 120 122
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 7) IEC6 (Interrupt Enable Control 7) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 120 122 124
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 6) IEC7 (Interrupt Enable Control 7) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 120 122 124 126
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 6) IEC7 (Interrupt Enable Control 7) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 120 122 124 126
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 6) IEC7 (Interrupt Enable Control 7) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 120 122 124 126 127
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC2 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 6) IEC7 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) IFS6 (Interrupt Flag Status 6)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 142 120 122 124 126 127 129
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 6) IEC7 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) IFS6 (Interrupt Flag Status 6) IFS7 (Interrupt Flag Status 7)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 120 122 124 126 127 129 130
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1). ICxCON2 (Input Capture x Control 2). IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 0) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 5) IEC5 (Interrupt Enable Control 6) IEC7 (Interrupt Enable Control 6) IEC7 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 5) IFS6 (Interrupt Flag Status 5) IFS6 (Interrupt Flag Status 7) INTCON1 (Interrupt Control 1).	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 122 124 126 127 129 130 115
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 6) IEC7 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) IFS6 (Interrupt Flag Status 5) IFS6 (Interrupt Flag Status 7) INTCON1 (Interrupt Control 1)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 122 124 126 127 129 130 115 116
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1). ICxCON2 (Input Capture x Control 2). IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 5) IEC5 (Interrupt Enable Control 6) IEC7 (Interrupt Enable Control 6) IEC7 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) IFS6 (Interrupt Flag Status 7) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2).	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 142 122 124 126 127 129 130 115 116 117
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 6) IEC7 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 5) IFS6 (Interrupt Flag Status 6) IFS7 (Interrupt Flag Status 7) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 4) INTCON4 (Interrupt Control 4)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 142 122 124 126 127 129 130 115 116 117 174
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 6) IEC7 (Interrupt Enable Control 7) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) IFS6 (Interrupt Flag Status 7) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 4) INTCON4 (Interrupt Control 4) INTCON4 (Interrupt Control 4)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 122 124 124 127 129 130 115 116 117 174 218
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxCONL (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 7) IEC6 (Interrupt Enable Control 7) IFS0 (Interrupt Enable Control 7) IFS0 (Interrupt Enable Control 7) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) IFS7 (Interrupt Flag Status 7) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 1) INTCON4 (Interrupt Control 4) INTTREG (Interrupt Flag Status 5) IFC0 (Interrupt Priority Control 0)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 120 122 124 127 127 127 127 116 117 174 144
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxCONL (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 7) IEC6 (Interrupt Enable Control 7) IFS0 (Interrupt Enable Control 7) IFS0 (Interrupt Enable Control 7) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) IFS7 (Interrupt Flag Status 7) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 1) INTCON4 (Interrupt Control 4) INTTREG (Interrupt Flag Status 5) IFC0 (Interrupt Priority Control 0)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 120 122 124 127 127 127 127 116 117 174 144
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 3) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 7) IFS6 (Interrupt Enable Control 7) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) IFS7 (Interrupt Flag Status 7) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTCON4 (Interrupt Control 4) INTCON4 (Interrupt Control 4) INTTREG (Interrupt Priority Control 0) IPC0 (Interrupt Priority Control 0)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 122 124 124 127 116 117 116 117
FWDT (Watchdog Timer Configuration Word) HLVDCON (High/Low-Voltage Detect Control) I2CxCONH (I2Cx Control High) I2CxCONL (I2Cx Control Low) I2CxCONL (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1) ICxCON2 (Input Capture x Control 2) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IEC5 (Interrupt Enable Control 5) IEC6 (Interrupt Enable Control 7) IEC6 (Interrupt Enable Control 7) IFS0 (Interrupt Enable Control 7) IFS0 (Interrupt Enable Control 7) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) IFS5 (Interrupt Flag Status 5) IFS7 (Interrupt Flag Status 7) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 1) INTCON4 (Interrupt Control 4) INTTREG (Interrupt Flag Status 5) IFC0 (Interrupt Priority Control 0)	469 462 304 306 308 307 271 272 131 133 135 137 139 140 142 143 120 122 124 126 127 127 127 126 127 127 126 127 127 128 117 174 144 145 154

IPC12 (Interrupt Priority Control 12)	156
IPC13 (Interrupt Priority Control 13)	
IPC14 (Interrupt Priority Control 14)	
IPC15 (Interrupt Priority Control 15)	
IPC16 (Interrupt Priority Control 16)	160
IPC17 (Interrupt Priority Control 17)	
IPC18 (Interrupt Priority Control 18)	
IPC19 (Interrupt Priority Control 19)	
IPC2 (Interrupt Priority Control 2)	
IPC20 (Interrupt Priority Control 20)	164
IPC21 (Interrupt Priority Control 21)	165
IPC22 (Interrupt Priority Control 22)	
IPC23 (Interrupt Priority Control 23)	
IPC24 (Interrupt Priority Control 24)	
IPC25 (Interrupt Priority Control 25)	169
IPC26 (Interrupt Priority Control 26)	170
IPC27 (Interrupt Priority Control 27)	
IPC28 (Interrupt Priority Control 28)	
IPC29 (Interrupt Priority Control 29)	
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	148
IPC5 (Interrupt Priority Control 5)	149
IPC6 (Interrupt Priority Control 6)	
IPC7 (Interrupt Priority Control 7)	
IPC8 (Interrupt Priority Control 8)	
IPC9 (Interrupt Priority Control 9)	
LCDCON (LCD Control)	
LCDDATAx (LCD Data x)	
LCDPS (LCD Phase)	
LCDREF (LCD Reference Ladder Control)	375
LCDREG (LCD Charge Pump Control)	
LCDSEx (LCD Segment x Enable)	
NVMCON (Flash Memory Control)	
OCxCON1 (Output Compare x Control 1)	
OCxCON2 (Output Compare x Control 2)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tune)	
PADCON (Pad Configuration Control)	367
PADCON (Port Configuration)	
PMCON1 (EPMP Control 1)	
PMCON2 (EPMP Control 2)	
PMCON3 (EPMP Control 3)	
PMCON4 (EPMP Control 4)	362
PMCSxBS (EPMP Chip Select x	
Base Address)	364
PMCSxCF (EPMP Chip Select x Configuration)	363
PMCSxMD (EPMP Chip Select x Mode)	365
PMD1 (Peripheral Module Disable 1)	
PMD2 (Peripheral Module Disable 2)	
PMD3 (Peripheral Module Disable 3)	
PMD4 (Peripheral Module Disable 4)	
PMD5 (Peripheral Module Disable 5)	206
PMD6 (Peripheral Module Disable 6)	207
PMD7 (Peripheral Module Disable 7)	207
PMD8 (Peripheral Module Disable 8)	
PMSTAT (EPMP Status, Slave Mode)	
RCON (Reset Control)	
RCON2 (Reset and System Control 2) 104, 2	
REFOCONH (Reference Clock Control High)	
REFOCONL (Reference Clock Control Low)	
REFOTRIM (Reference Clock Trim)	189
RPINR0 (PPS Input 0)	
RPINR1 (PPS Input 1)	
RPINR11 (PPS Input 11)	
RPINR12 (PPS Input 12)	
	0

RPINR17 (PPS Input 17)	
RPINR18 (PPS Input 18)	220
RPINR19 (PPS Input 19)	
RPINR2 (PPS Input 2)	
RPINR20 (PPS Input 20)	
RPINR21 (PPS Input 21)	230
RPINR22 (PPS Input 22)	
RPINR23 (PPS Input 23)	
RPINR25 (PPS Input 25)	
RPINR27 (PPS Input 27)	
RPINR28 (PPS Input 28)	
RPINR29 (PPS Input 29)	
RPINR3 (PPS Input 3)	
RPINR4 (PPS Input 4)	226
RPINR7 (PPS Input 7)	
RPINR8 (PPS Input 8)	
RPOR0 (PPS Output 0)	
RPOR1 (PPS Output 1)	
RPOR10 (PPS Output 10)	
RPOR11 (PPS Output 11)	
RPOR12 (PPS Output 12)	
RPOR13 (PPS Output 13)	
RPOR14 (PPS Output 14)	241
RPOR15 (PPS Output 15)	
RPOR2 (PPS Output 2)	
RPOR3 (PPS Output 3)	
RPOR4 (PPS Output 4)	
RPOR5 (PPS Output 5)	
RPOR6 (PPS Output 6)	
RPOR7 (PPS Output 7)	
RPOR8 (PPS Output 8)	
RPOR9 (PPS Output 9)	238
RTCCON1H (RTCC Control 1 High)	303
RTCCON1L (RTCC Control 1 Low)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High)	392 395
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low)	392 395 394
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low)	392 395 394 395
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low)	392 395 394 395 396
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low)	392 395 394 395 396
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High)	392 395 394 395 396 290
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low)	392 395 394 395 396 290 288
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low)	392 395 394 395 396 290 288 292
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATL (SPIx Status Low)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATL (SPIx Status Low) SR (ALU STATUS)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATL (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATL (SPIx Status Low) SR (ALU STATUS)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATL (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status High) SPIxSTATL (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL (RTCC Time Low)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL (RTCC Time Low) TxCON (Timer2 and Timer4 Control)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL (RTCC Time Low)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL (RTCC Time Low) TxCON (Timer2 and Timer4 Control) TyCON (Timer3 and Timer5 Control)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status High) SPIxSTATL (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL (RTCC Time Low) TxCON (Timer2 and Timer4 Control) TyCON (Timer3 and Timer5 Control) U1ADDR (USB Address)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status High) SPIxSTATL (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL (RTCC Time Low) TxCON (Timer2 and Timer4 Control) TyCON (Timer3 and Timer5 Control) U1ADDR (USB Address) U1CNFG1 (USB Configuration 1)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL (RTCC Time Low) TxCON (Timer2 and Timer4 Control) TyCON (Timer3 and Timer5 Control) U1ADDR (USB Address) U1CNFG1 (USB Configuration 1) U1CNFG2 (USB Configuration 2)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL (RTCC Time Low) TxCON (Timer2 and Timer4 Control) TyCON (Timer3 and Timer5 Control) U1ADDR (USB Address) U1CNFG1 (USB Configuration 1) U1CON (USB Control, Device Mode) 	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL (RTCC Time Low) TxCON (Timer2 and Timer4 Control) TyCON (Timer3 and Timer5 Control) U1ADDR (USB Address) U1CNFG1 (USB Configuration 1) U1CNFG2 (USB Configuration 2)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL (RTCC Time Low) TxCON (Timer2 and Timer4 Control) TyCON (Timer3 and Timer5 Control) U1ADDR (USB Address) U1CNFG1 (USB Configuration 1) U1CON (USB Control, Povice Mode) U1CON (USB Control, Host Mode).	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TIMEL/ALMTIMEL/TSATIMEL/TSBTIMEL (RTCC Time Low) TxCON (Timer2 and Timer4 Control) TyCON (Timer3 and Timer5 Control) U1ADDR (USB Address) U1CNFG1 (USB Configuration 1) U1CON (USB Control, Povice Mode) U1CON (USB Control, Host Mode) U1CON (USB Error Interrupt Enable)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TXCON (Timer2 and Timer4 Control) TXCON (Timer3 and Timer5 Control) U1CNFG1 (USB Configuration 1) U1CNFG2 (USB Configuration 2) U1CON (USB Control, Host Mode) U1CON (USB Error Interrupt Status) U1EIR (USB Error Interrupt Status)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATL (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TXCON (Timer2 and Timer4 Control) TXCON (Timer3 and Timer5 Control) U1CNFG1 (USB Configuration 1) U1CNFG2 (USB Configuration 2) U1CON (USB Control, Host Mode) U1CON (USB Error Interrupt Status) U1EPn (USB Endpoint n Control)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TXCON (Timer2 and Timer4 Control) TXCON (Timer3 and Timer5 Control) U1CNFG1 (USB Address) U1CNFG2 (USB Configuration 1) U1CON (USB Control, Device Mode) U1CON (USB Control, Host Mode) U1CON (USB Error Interrupt Status) U1EIR (USB Endpoint n Control) U1ADDas, All Modes) U1CINEG2 (USB Control)	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TXCON (Timer2 and Timer5 Control) TXCON (Timer3 and Timer5 Control) U1CNFG1 (USB Configuration 1) U1CNFG2 (USB Configuration 2) U1CON (USB Control, Host Mode) U1CON (USB Error Interrupt Status) U1EIR (USB Endpoint n Control) U1ADDE, LISB Endpoint n Control) U1EIR (USB Interrupt Enable) U1EIR (USB Interrupt Status, Device Mode) U1IR (USB Interrupt Status,	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TXCON (Timer2 and Timer5 Control) TXCON (Timer3 and Timer5 Control) U1CNFG1 (USB Configuration 1) U1CNFG2 (USB Configuration 2) U1CON (USB Control, Host Mode) U1CON (USB Error Interrupt Status) U1EIR (USB Endpoint n Control) U1ADDE, LISB Endpoint n Control) U1EIR (USB Interrupt Enable) U1EIR (USB Interrupt Status, Device Mode) U1IR (USB Interrupt Status,	
RTCCON1L (RTCC Control 1 Low) RTCCON2H (RTCC Control 2 High) RTCCON2L (RTCC Control 2 Low) RTCCON3L (RTCC Control 3 Low) RTCSTATL (RTCC Status Low) SPIxCON1H (SPIx Control 1 High) SPIxCON1L (SPIx Control 1 Low) SPIxCON2L (SPIx Control 2 Low) SPIxIMSKH (SPIx Interrupt Mask High) SPIxIMSKH (SPIx Interrupt Mask Low) SPIxIMSKL (SPIx Interrupt Mask Low) SPIxSTATH (SPIx Status High) SPIxSTATH (SPIx Status Low) SR (ALU STATUS) T1CON (Timer1 Control) TIMEH/ALMTIMEH/TSATIMEH/TSBTIMEH (RTCC Time High) TXCON (Timer2 and Timer4 Control) TXCON (Timer3 and Timer5 Control) U1CNFG1 (USB Address) U1CNFG2 (USB Configuration 1) U1CON (USB Control, Device Mode) U1CON (USB Control, Host Mode) U1CON (USB Error Interrupt Status) U1EIR (USB Endpoint n Control) U1ADDas, All Modes) U1CINEG2 (USB Control)	

U1OTGIE (USB OTG Interrupt Enable,	
Host Mode)	349
U1OTGIR (USB OTG Interrupt Status,	0.40
Host Mode) U1OTGSTAT (USB OTG Status, Host Mode)	348
U1PWRC (USB Power Control) U1SOF (USB OTG Start-of-Token Threshold,	340
	245
Host Mode)	
U1STAT (USB Status) U1TOK (USB Token, Host Mode)	
UxGTC (UARTx Guard Time Counter)	
UxMODE (UARTx Mode)	
UxSCCON (UARTx Smart Card Control)	
UxSCINT (UARTx Smart Card Interrupt)	
UxSTAH (UARTx Status High and Control)	
UxSTAL (UARTx Status Low and Control)	
UxTXREG (UARTx Transmit)	
UxWTCH (UARTx Waiting Time Counter,	
Upper Bits)	321
UxWTCL (UARTx Waiting Time Counter,	521
Lower Bits)	321
Resets	521
BOR (Brown-out Reset)	101
Brown-out Reset (BOR)	105
Clock Source Selection	105
CM (Configuration Mismatch Reset)	
Delay Times	
Device Times	
IOPUWR (Illegal Opcode Reset)	
MCLR (Master Clear Pin Reset)	
POR (Power-on Reset)	
RCON Flags, Operation	
SFR States	
SWR (RESET Instruction)	
TRAPR (Trap Conflict Reset)	
UWR (Uninitialized W Register Reset)	
WDT (Watchdog Timer Reset)	101
Revision History	
RTCC	
Alarm Configuration	389
Alarm Mask Settings (figure)	
Control and Status Registers	
Date/Alarm/Timestamp Value Registers	398
Event Timestamping	
Module Registers	
Power Control	
Source Clock	
Selection	
Time/Alarm/Timestamp Value Registers	
Write Lock	
e	
S	
Serial Peripheral Interface (SPI)	. 285
Serial Peripheral Interface. See SPI.	
SFR Block	
000h	71
SFR Blocks	

Software Simulator (MPLAB SIM) 485 Software Stack 82 Special Features 21
т
Timer1
Timer2/3 and Timer4/5247
Timing Diagrams
CLKO and I/O
External Clock
I2Cx Bus Data (Master Mode)515
I2Cx Bus Data (Slave Mode)517
I2Cx Bus Start/Stop Bits (Master Mode)514
I2Cx Bus Start/Stop Bits (Slave Mode)516
Input Capture x512
Output Compare x512
PWMx Requirements513
SPIx Master Mode (CKE = 0)518
SPIx Master Mode (CKE = 1)519
SPIx Slave Mode (CKE = 0)520
SPIx Slave Mode (CKE = 1)521
Timer1/2/3/4/5 External Clock Input511
UARTx Baud Rate Generator Output522
UARTx Start Bit Edge Detection 522
Timing Requirements
Input Capture x512
Output Compare 1512
PWMx513
Timer1/2/3/4/5 External Clock Input511
Triple Comparator Module
U
UART
Baud Rate Generator (BRG)

UAN
Baud Rate Generator (BRG)
Infrared Support
Operation of UxCTS and UxRTS Pins
Receiving
8-Bit or 9-Bit Data Mode
Transmitting
8-Bit Data Mode
9-Bit Data Mode 312
Break and Sync Sequence
Unique Device Identifier (UDID)68
Unique Device Identifier (UDID) (TQAH Variant)68
Universal Asynchronous Receiver Transmitter. See UART.
Universal Serial Bus. See USB OTG.
Unused I/Os

USB

CCD	
USB On-The-Go (OTG)	23
Buffer Descriptors and BDT	28
Assignment in Different Buffering Modes 32	29
Device Mode Operation 33	33
DMA Interface 32	29
Hardware	
Calculating Transceiver Power	
Requirements	27
Device Mode Configuration	25
Host and OTG Mode Configuration	26
Host Mode Operation	34
Interrupts	32
and USB Transactions	33
Operation	36
HNP	37
SRP	36
Registers	37
-	

W

Watchdog Timer (WDT)	480
Control Register	480
Windowed Operation	480
WWW Address	548
WWW, On-Line Support	

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count — Tape and Reel F		Exal a) b) c)	 mples: PIC24FJ64GA406-I/MR: PIC24F General Purpose Device with Dual Partition Flash Program Memory and XLP Technology, 64-Kbyte Program Memory, 64-Pin, Industrial Temp., QFN Package. PIC24FJ128GB410-I/PT: PIC24F USB OTG Device with Dual Partition Flash Program Memory and XLP Technology, 128-Kbyte Program Memory, 100-Pin, Industrial Temp., TQFP Package. PIC24FJ128GB412-I/BG: PIC24F USB OTG Device with Dual Partition Flash Program Memory and XLP Technology, 256-Kbyte Program Memory, 121-Pin, Industrial Temp., BGA Package.
Architecture Flash Memory Family	24 = 16-Bit Modified Harvard without DSP FJ = Flash Program Memory		
Product Group	GA4 = General Purpose Microcontrollers with Dual Partition Flash Program Memory and XLP Technology GB4 = USB OTG Microcontrollers with Dual Partition Flash Program Memory and XLP Technology		
Pin Count	06 = 64-pin 10 = 100-pin (TQFP) 12 = 121-pin (BGA)		
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)		
Package	BG = 121-ball (10x10x1.10 mm) BGA (Ball Grid Array) PT = 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PT = 64-lead (10x10x1 mm) TQFP (Thin Quad Flatpack) MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack, No Lead)		
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample		

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-557-3

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

 PIC24FJ256GB412T-I/BG
 PIC24FJ256GB406T-I/MR
 PIC24FJ256GB410T-I/PT
 PIC24FJ256GB406-I/MR

 PIC24FJ256GA406-I/MR
 PIC24FJ256GA406T-I/PT
 PIC24FJ256GA406-I/PT
 PIC24FJ256GB406-I/MR

 PIC24FJ256GB406-I/PT
 PIC24FJ256GA406T-I/PT
 PIC24FJ256GB406-I/PT
 PIC24FJ256GB406-I/MR

 PIC24FJ256GB406-I/PT
 PIC24FJ256GA412T-I/BG
 PIC24FJ256GB406T-I/PT
 PIC24FJ256GB410-I/PT

 PIC24FJ256GA412-I/BG
 PIC24FJ256GB412-I/BG
 PIC24FJ256GA410T-I/PT
 PIC24FJ256GB410-I/PT

 PIC24FJ64GB410-I/PT
 PIC24FJ128GA406-I/MR
 PIC24FJ128GB410-I/PT
 PIC24FJ128GA410-I/PT

 PIC24FJ64GA410-I/PT
 PIC24FJ128GA406-I/MR
 PIC24FJ128GB410-I/PT
 PIC24FJ128GA410-I/PT