KSZ8794CNX

Integrated 4-Port 10/100 Managed Ethernet Switch with Gigabit RGMII/MII/RMII Interface

General Description

The KSZ8794CNX is a highly integrated, Layer 2 managed, four-port switch with numerous features designed to reduce system cost. It is intended for costsensitive applications requiring three $10 / 100 \mathrm{Mbps}$ copper ports and one 10/100/1000Mbps Gigabit uplink port. The KSZ8794CNX incorporates a small package outline, lowest power consumption with internal biasing, and onchip termination. Its extensive features set includes enhanced power management, programmable rate limiting and priority ratio, tagged and port-based VLAN, port-based security and ACL rule-based packet filtering technology, QoS priority with four queues, management interfaces, enhanced MIB counters, high-performance memory bandwidth, and a shared memory-based switch fabric with non-blocking support. The KSZ8794CNX provides support for multiple CPU data interfaces to effectively address both current and emerging fast Ethernet and Gigabit Ethernet applications where the GMAC interface can be configured to any of RGMII, MII and RMII modes.

The KSZ8794CNX is built on Micrel's latest industryleading Ethernet analog and digital technology, with features designed to offload host processing and streamline your overall design:

- Three integrated 10/100Base-T/TX MAC/PHYs.
- One integrated 10/100/1000Base-T/TX GMAC with selectable RGMII, MII or RMII interfaces.
- Small 64-pin QFN package.

A robust assortment of power management features including Energy Efficient Ethernet (EEE), PME and WoL have been designed in to satisfy energy efficient environments.

All registers in the MAC and PHY units can be managed through the SPI interface. MIIM PHY registers can be accessed through the MDC/MDIO interface.
Datasheets and support documentation are available on Micrel's web site at: www.micrel.com.

Functional Diagram

LinkMD ${ }^{\circledR}$ is a registered trademark of Micrel, Inc.
Auto MDI/MDI-X™ is a trademark of Hewlett-Pacard Company, L.P
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131• USA• tel +1 (408) 944-0800• fax + 1 (408) 474-1000•http://www.micrel.com

Highlights and Features

Management Capabilities

- The KSZ8794CNX includes all the functions of a 10/100Base-T/TX switch system which combines a switch engine, frame buffer management, address lookup table, queue management, MIB counters, media access controllers (MAC) and PHY transceivers
- Non-blocking store-and-forward switch fabric assures fast packet delivery by utilizing 1024 entries forwarding table
- Port mirroring/monitoring/sniffing: ingress and/or egress traffic to any port
- MIB counters for fully compliant statistics gathering 36 counters per port
- Support hardware for port-based flush and freeze command in MIB counter.
- Multiple loopback of remote, PHY and MAC modes support for the diagnostics
- Rapid Spanning Tree Support (RSTP) for topology management and ring/linear recovery

Robust PHY Ports

- Four Integrated IEEE 802.3 / 802.3 u compliant Ethernet transceivers supporting 10Base-T and 100Base-TX
- IEEE 802.1az EEE supported
- On-Chip termination resistors and internal biasing for differential pairs to reduce power
- HP Auto MDI/MDI-X™ crossover support eliminating the need to differentiate between straight or crossover cables in applications

MAC and GMAC Ports

- Four internal media access control (MAC1 to MAC3) units and one internal gigabit media access control (GMAC4) unit
- RGMII, MII or RMII interfaces support for the port 4 GMAC4 with uplink
- 2KByte Jumbo packet support
- Tail tagging mode (one byte added before FCS) support on port 4 to inform the processor which ingress port receives the packet and its priority
- Supports Reduced Media Independent Interface (RMII) with 50 MHz reference clock output
- Supports Media Independent Interface (MII) in either PHY mode or MAC mode on port 4
- Micrel LinkMD ${ }^{\circledR}$ cable diagnostic capabilities for determining cable opens, shorts, and length

Advanced Switch Capabilities

- Non-blocking store-and-forward switch fabric assures fast packet delivery by utilizing 1024 entry forwarding table
- 64kb frame buffer RAM
- IEEE $802.1 q$ VLAN support for up to 128 active VLAN groups (full-range 4096 of VLAN IDs)
- IEEE 802.1p/Q tag insertion or removal on a per port basis (egress)
- VLAN ID tag/un-tag options on per port basis
- Fully compliant with IEEE 802.3/802.3u standards
- IEEE $802.3 x$ full-duplex with force mode option and halfduplex back-pressure collision flow control
- IEEE 802.1w rapid spanning tree protocol support
- IGMP v1/v2/v3 snooping for multicast packet filtering
- QoS/CoS packets prioritization support: 802.1p, DiffServ-based and re-mapping of 802.1p priority field per port basis on four priority levels
- IPv4/IPv6 QoS support
- IPV6 multicast listener discovery (MLD) snooping
- Programmable rate limiting at the ingress and egress ports on a per port basis
- Jitter-free per packet based rate limiting support
- Tail tag mode (1 byte added before FCS) support on Port 4 to inform the processor which ingress port receives the packet
- Broadcast storm protection with percentage control (global and per port basis)
- 1 K entry forwarding table with 64 K Byte frame buffer
- 4 priority queues with dynamic packet mapping for IEEE 802.1P, IPv4 TOS (DIFFSERV), IPv6 Traffic Class, etc.
- Supports Wake on LAN (WoL) using AMD's Magic Packet
- VLAN and Address Filtering
- Support 802.1 p port-based security, authentication and MAC-based authentication via access control lists (ACL)
- Provide port-based and rule-based ACLs to support layer 2 MAC SA/DA address, layer 3 IP address and IP mask, layer 4 TCP/UDP port number, IP protocol, TCP flag and their combination for the port security filtering
- Ingress and egress rate limit based on bit per second (bps) and packet-based rate limiting (pps)

Configuration Registers Access

- High speed SPI (4 -wire, up to 50 MHz) interface to access all internal registers
- MII Management (MIIM, MDC/MDIO 2-wire) Interface to access all PHY registers per Clause 22.2.4.5 of the IEEE 802.3 specification
- I/O pin strapping facility to set certain register bits from I/O pins during reset time
- Control registers configurable on-the-fly

Power and Power Management

- Full-chip software power down (All registers value are not saved and strap-in value will re-strap after release the power down.)
- Per port software power down
- Energy Detect Power Down (EDPD), which disables the PHY transceiver when cables are removed
- Supports IEEE P802.3az energy-efficient Ethernet (EEE) to reduce power consumption in transceivers in LPI state even though cables are not removed
- Dynamic clock tree control to reduce clocking in areas not in use
- Very low power consumption (less than 0.5 W) without extra power consumption on transformers
- Voltages: Using external LDO power supplies
- Analog VDDAT 3.3V
-VDDIO support $3.3 \mathrm{~V}, 2.5 \mathrm{~V}$ and 1.8 V
- Low 1.2 V voltage for analog and digital core power
- Wake on LAN support with configurable packet control

Additional Features

- Single $25 \mathrm{MHz}+50 \mathrm{ppm}$ reference clock requirement
- Comprehensive programmable two LED indicator support for link, activity, full/half duplex and 10/100 speed

Packaging and Environmental

- Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Small package available in an 64-pin lead free (ROHS) QFN form factor
- $0.065 \mu \mathrm{~m}$ CMOS technology for lower power consumption

Target Applications

- Industrial Ethernet applications that employ IEEE 802.3 compliant MACs. (Ethernet/IP, Profinet, MODBUS TCP, etc)
- VoIP Phone
- Set-top/Game Box
- Automotive
- Industrial Control
- IPTV POF
- SOHO Residential Gateway with full wire speed of four LAN Ports
- Broadband Gateway/Firewall/VPN
- Integrated DSL/Cable Modem
- Wireless LAN access point + gateway
- Standalone 10/100 switch
- Networked Measurement and Control Systems

Ordering Information

Part Number	Temperature Range	Package	Lead Finish/Grade	
KSZ8794CNXCC	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$64-$ Pin QFN	Pb-Free/Commercial	
KSZ8794CNXIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$64-$ Pin QFN	Pb-Free/Industrial	
KSZ8794CNX-EVAL	Evaluation Board			

Revision History

Revision	Date	Description
1.0	$06 / 03 / 14$	Initial document created
1.0	$07 / 18 / 14$	MarCom formatting/reflow of initial submission datasheet. D.Tanabe

Contents

General Description 1
Functional Diagram 1
Highlights and Features 2
Management Capabilities 2
Robust PHY Ports 2
MAC and GMAC Ports. 2
Advanced Switch Capabilities. 2
Configuration Registers Access 3
Power and Power Management 3
Additional Features 3
Packaging and Environmental 3
Target Applications 3
Ordering Information 4
Revision History 4
Contents 5
List of Figures. 13
List of Tables 14
Pin Configuration 15
Pin Description 16
Strap-in Options 21
Introduction. 22
Functional Overview: Physical Layer (PHY) 22
100BASE-TX Transmit 22
100BASE-TX Receive 22
PLL Clock Synthesizer 22
Scrambler/Descrambler (100BASE-TX only) 22
Straight Cable 24
Crossover Cable 24
Auto-Negotiation 25
LinkMD ${ }^{\circledR}$ Cable Diagnostics 27
Access 27
Usage 27
A LinkMD example 28
On-chip Termination and Internal Biasing 28
Functional Overview: Media Access Controller (MAC) 29
Media Access Controller (MAC) Operation 29
Inter-Packet Gap (IPG). 29
Back-off Algorithm 29
Late Collision 29
Illegal Frames 29
Flow Control. 29
Half-Duplex Back Pressure 29
Broadcast Storm Protection. 30
Functional Overview: Switch Core 31
Address Look-Up 31
Learning 31
Migration 31
Aging 31
Forwarding 31
Switching Engine 32
Functional Overview: Power 33
Functional Overview: Power Management 33
Normal Operation Mode 33
Energy Detect Mode 33
Soft Power-Down Mode 34
Port-based Power-Down Mode 34
Energy Efficient Ethernet (EEE) 34
LPI Signaling. 35
LPI Assertion 35
LPI Detection 36
PHY LPI Transmit Operation 36
PHY LPI Receive Operation. 37
Negotiation with EEE Capability. 37
Wake on LAN (WoL) 38
Direction of Energy. 38
Direction of Link-up. 38
Magic Packet ${ }^{\text {TM }}$ 38
Interrupt (INT_N/PME_N). 39
Functional Overview: Interfaces 40
Configuration Interface 40
SPI Slave Serial Bus Configuration. 40
MII Management Interface (MIIM). 43
Standard Media Independent Interface [MII]. 44
Reduced Media Independent Interface [RMII]. 44
Reduced Gigabit Media Independent Interface [RGMII] 44
Port 4 GMAC4 SW4-RGMII Interface 45
Functional Overview: Advanced Functionality 48
QoS Priority Support 48
Port-based Priority 48
802.1p-based Priority 48
DiffServ-Based Priority 49
Spanning Tree Support. 50
Rapid Spanning Tree Support 51
Tail Tagging Mode 52
IGMP Support 53
IGMP Snooping 53
IGMP Send Back to the Subscribed Port 53
IPv6 MLD Snooping 53
Port Mirroring Support 53
"Receive Only" mirror on a Port. 53
"Transmit Only" mirror on a Port. 53
"Receive and Transmit" mirror on two Ports. 53
VLAN Support 54
Ingress Rate Limit. 56
Egress Rate Limit 56
Transmit Queue Ratio Programming 56
802.1X Port-Based Security 57
Authentication Register and Programming Model. 58
ACL Filtering 58
Access Control Lists 58
Matching Field 60
Action Field 61
Processing Field 61
DOS Attack Prevention via ACL 62
Device Registers Mapping 63
Direct Register Description 64
Global Registers. 66
Register 0 (0x00): Chip IDO 66
Register 1 (0x01): Chip ID1 / Start Switch. 66
Register 2 (0x02): Global Control 0 66
Register 3 (0x03): Global Control 1 67
Register 4 (0x04): Global Control 2 68
Register 6 (0x06): Global Control 4 69
Register 7 (0x07): Global Control 5 69
Register 8 (0x08): Global Control 6 MIB Control. 70
Register 9 (0x09): Global Control 7. 70
Register 10 (0x0A): Global Control 8 70
Register 11 (0xOB): Global Control 9 71
Register 12 (0xOC): Global Control 10 72
Register 13 (0x0D): Global Control 11 72
Register 14 (0xOE): Power Down Management Control 1 72
Register 15 (0xOF): Power Down Management Control 2 72
Port Registers. 73
Register 16 (0x10): Port 1 Control 0. 73
Register 32 (0x20): Port 2 Control 0. 73
Register 48 (0x30): Port 3 Control 0. 73
Register 64 (0x40): Reserved. 73
Register 80 (0x50): Port 4 Control 0 73
Register 17 (0x11): Port 1 Control 1 74
Register 33 (0x21): Port 2 Control 1 74
Register 49 (0x31): Port 3 Control 1 74
Register 65 (0x41): Reserved. 74
Register 81 (0x51): Port 4 Control 1 74
Register 18 (0x12): Port 1 Control 2. 75
Register 34 (0x22): Port 2 Control 2 75
Register 50 (0x32): Port 3 Control 2 75
Register 66 (0x42): Reserved. 75
Register 82 (0x52): Port 4 Control 2. 75
Register 19 (0x13): Port 1 Control 3 75
Register 35 (0x23): Port 2 Control 3 75
Register 51 (0x33): Port 3 Control 3 75
Register 67 (0x43): Reserved. 75
Register 83 (0x53): Port 4 Control 3. 75
Register 20 (0x14): Port 1 Control 4. 76
Register 36 (0x24): Port 2 Control 4 76
Register 52 (0x34): Port 3 Control 4. 76
Register 68 (0x44): Reserved. 76
Register 84 (0x54): Port 4 Control 4. 76
Register 21 (0x15): Port 1 Control 5. 76
Register 37 (0x25): Port 2 Control 5. 76
Register 53 (0x35): Port 3 Control 5 76
Register 69 (0x45): Reserved. 76
Register 85 (0x55): Port 4 Control 5 76
Register 22 (0x16): Reserved. 76
Register 38 (0x26): Reserved. 76
Register 54 (0x36): Reserved. 76
Register 70 (0x46): Reserved. 76
Register 86 (0x56): Port 4 Interface Control 6. 77
Register 23 (0x17): Port 1 Control 7. 78
Register 39 (0x27): Port 2 Control 7. 78
Register 55 (0x37): Port 3 Control 7 78
Register 71 (0x47): Reserved. 78
Register 87 (0x57): Reserved. 78
Register 24 (0x18): Port 1 Status 0 79
Register 40 (0x28): Port 2 Status 0 79
Register 56 (0x38): Port 3 Status 0 79
Register 72 (0x48): Reserved. 79
Register 87 (0x57): Reserved. 79
Register 25 (0x19): Port 1 Status 1 80
Register 41 (0x29): Port 2 Status 1 80
Register 57 (0x39): Port 3 Status 1 80
Register 73 (0x49): Reserved. 80
Register 89 (0x59): Reserved. 80
Register 26 (0x1A): Port 1 PHY Control 8. 81
Register 42 (0x2A): Port 2 PHY Control 8 81
Register 58 (0x3A): Port 3 PHY Control 8 81
Register 74 (0x4A): Reserved 81
Register 90 (0x5A): Reserved 81
Register 27 (0x1B): Port 1 LinkMD result. 82
Register 43 (0x2B): Port 2 LinkMD result. 82
Register 59 (0x3B): Port 3 LinkMD result. 82
Register 75 (0x4B): Reserved 82
Register 91 (0x5B): Reserved 82
Register 28 (0x1C): Port 1 Control 9 82
Register 44 (0x2C): Port 2 Control 9 82
Register 60 (0x3C): Port 3 Control 9 82
Register 76 (0x4C): Reserved 82
Register 92 (0x5C): Reserved. 82
Register 29 (0x1D): Port 1 Control 10 83
Register 45 (0x2D): Port 2 Control 10 83
Register 61 (0x3D): Port 3 Control 10 83
Register 77 (0x4D): Reserved 83
Register 93 (0x5D): Reserved 83
Register 30 (0x1E): Port 1 Status 2. 84
Register 46 (0x2E): Port 2 Status 2. 84
Register 62 (0x3E): Port 3 Status 2. 84
Register 78 (0x4E): Reserved 84
Register 94 (0x5E): Reserved 84
Register 31 (0x1F): Port 1 Control 11 and Status 3 84
Register 47 (0x2F): Port 2 Control 11 and Status 3. 84
Register 63 (0x3F): Port 3 Control 11 and Status 3 84
Register 79 (0x4F): Reserved 84
Register 95 (0x5F): Reserved 84
Advanced Control Registers 86
Register 104 (0x68): MAC Address Register 0 86
Register 105 (0x69): MAC Address Register 1 86
Register 106 (0x6A): MAC Address Register 2. 86
Register 107 (0x6B): MAC Address Register 3. 86
Register 108 (0x6C): MAC Address Register 4. 86
Register 110 (0x6E): Indirect Access Control 0 87
Register 111 (0x6F): Indirect Access Control 1. 87
Register 112 (0x70): Indirect Data Register 8 88
Register 113 (0x71): Indirect Data Register 7 88
Register 114 (0x72): Indirect Data Register 6 88
Register 115 (0x73): Indirect Data Register 5. 88
Register 116 (0x74): Indirect Data Register 4 88
Register 117 (0x75): Indirect Data Register 3 88
Register 118 (0x76): Indirect Data Register 2 88
Register 119 (0x77): Indirect Data Register 1 88
Register 120 (0x78): Indirect Data Register 0. 88
Register 160 (OXAO): Indirect Byte Register (It is for PME, EEE and ACL Registers). 88
Register 124 (0x7C): Interrupt Status Register 89
Register 125 (0x7D): Interrupt Mask Register. 89
Register 126 (0x7E): ACL Interrupt Status Register 89
Register 127 (0x7F): ACL Interrupt Control Register 89
Register 128 (0x80): Global Control 12 90
Register 129 (0x81): Global Control 13 90
Register 130 (0x82): Global Control 14 90
Register 131 (0x83): Global Control 15 91
Register 132 (0x84): Global Control 16 91
Register 134 (0x86): Global Control 18 92
Register 135 (0x87): Global Control 19 92
Register 144 (0x90): TOS Priority Control Register 0 93
Register 145 (0x91): TOS Priority Control Register 1 93
Register 146 (0x92): TOS Priority Control Register 2 93
Register 147 (0x93): TOS Priority Control Register 3 93
Register 148 (0x94): TOS Priority Control Register 4 93
Register 149 (0x95): TOS Priority Control Register 5 94
Register 150 (0x96): TOS Priority Control Register 6 94
Register 151 (0x97): TOS Priority Control Register 7 94
Register 152 (0x98): TOS Priority Control Register 8 94
Register 153 (0x99): TOS Priority Control Register 9 94
Register 154 (0x9A): TOS Priority Control Register 10 94
Register 155 (0x9B): TOS Priority Control Register 11 94
Register 156 (0x9C): TOS Priority Control Register 12 95
Register 157 (0x9D): TOS Priority Control Register 13 95
Register 158 (0x9E): TOS Priority Control Register 14 95
Register 159 (0x9F): TOS Priority Control Register 15 95
Register 163 (0XA3): Global Control 20 96
Register 164 (OXA4): Global Control 21 96
Register 176 (0xBO): Port 1 Control 12 97
Register 192 (0xC0): Port 2 Control 12 97
Register 208 (0xD0): Port 3 Control 12 97
Register 224 (0xEO): Reserved 97
Register 240 (0xF0): Port 4 Control 12 97
Register 177 (0xB1): Port 1 Control 13 98
Register 193 (0xC1): Port 2 Control 13 98
Register 209 (0xD1): Port 3 Control 13 98
Register 225 (0xE1): Reserved 98
Register 241 (0xF1): Port 4 Control 13 98
Register 178 (0xB2): Port 1 Control 14 98
Register 194 (0xC2): Port 2 Control 14 98
Register 210 (0xD2): Port 3 Control 14 98
Register 226 (0xE2): Reserved 98
Register 242 (0xF2): Port 4 Control 14 98
Register 179 (0xB3): Port 1 Control 15 99
Register 195 (0xC3): Port 2 Control 15 99
Register 211 (0xD3): Port 3 Control 15 99
Register 227 (0xE3): Reserved 99
Register 243 (0xF3): Port 4 Control 15 99
Register 180 (0xB4): Port 1 Control 16 99
Register 196 (0xC4): Port 2 Control 16 99
Register 212 (0xD4): Port 3 Control 16 99
Register 228 (0xE4): Reserved 99
Register 244 (0xF4): Port 4 Control 16 99
Register 181 (0xB5): Port 1 Control 17 99
Register 197 (0xC5): Port 2 Control 17 99
Register 213 (0xD5): Port 3 Control 17 99
Register 229 (0xE5): Reserved 99
Register 245 (0xF5): Port 4 Control 17 99
Register 182 (0xB6): Port 1 Rate Limit Control. 100
Register 198 (0xC6): Port 2 Rate Limit Control. 100
Register 214 (0xD6): Port 3 Rate Limit Control. 100
Register 230 (0xE6): Reserved 100
Register 246 (0xF6): Port 4 Rate Limit Control 100
Register 183 (0xB7): Port 1 Priority 0 Ingress Limit Control $1^{(4)}$. 100
Register 199 (0xC7): Port 2 Priority 0 Ingress Limit Control 1 100
Register 215 (0xD7): Port 3 Priority 0 Ingress Limit Control 1 100
Register 231 (0xE7): Reserved 100
Register 247 (0xF7): Port 4 Priority 0 Ingress Limit Control 1 100
Register 184 (0xB8): Port 1 Priority 1 Ingress Limit Control $2^{(4)}$. 101
Register 200 (0xC8): Port 2 Priority 1 Ingress Limit Control 2 101
Register 216 (0xD8): Port 3 Priority 1 Ingress Limit Control 2 101
Register 232 (0xE8): Reserved 101
Register 248 (0xF8): Port 4 Priority 1 Ingress Limit Control 2. 101
Register 185 (0xB9): Port 1 Priority 2 Ingress Limit Control $3^{(4)}$. 101
Register 201 (0xC9): Port 2 Priority 2 Ingress Limit Control 3 101
Register 217 (0xD9): Port 3 Priority 2 Ingress Limit Control 3. 101
Register 233 (0xE9): Reserved 101
Register 249 (0xF9): Port 4 Priority 2 Ingress Limit Control 3. 101
Register 186 (0xBA): Port 1 Priority 3 Ingress Limit Control $4^{(4)}$ 102
Register 202 (0xCA): Port 2 Priority 3 Ingress Limit Control 4. 102
Register 218 (0xDA): Port 3 Priority 3 Ingress Limit Control 4 102
Register 234 (0xEA): Reserved. 102
Register 250 (0xFA): Port 4 Priority 3 Ingress Limit Control 4. 102
Register 187 (0xBB): Port 1 Queue 0 Egress Limit Control $1^{(5)}$ 103
Register 203 (0xCB): Port 2 Queue 0 Egress Limit Control 1 103
Register 219 (0xDB): Port 3 Queue 0 Egress Limit Control 1 103
Register 235 (0xEB): Reserved. 103
Register 251 (0xFB): Port 4 Queue 0 Egress Limit Control 1 103
Register 188 (0xBC) : Port 1 Queue 1 Egress Limit Control $2^{(5)}$ 103
Register 204 (0xCC) : Port 2 Queue 1 Egress Limit Control 2. 103
Register 220 (0xDC) : Port 3 Queue 1 Egress Limit Control 2. 103
Register 236 (0xEC) : Reserved.. 103
Register 252 (0xFC) : Port 4 Queue 1 Egress Limit Control 2 103
Register 189 (0xBD): Port 1 Queue 2 Egress Limit Control $3^{(5)}$ 103
Register 205 (0xCD): Port 2 Queue 2 Egress Limit Control 3 103
Register 221 (0xDD): Port 3 Queue 2 Egress Limit Control 3. 103
Register 237 (0xED): Reserved. 103
Register 253 (0xFD): Port 4 Queue 2 Egress Limit Control 3 103
Register 190 (0xBE) : Port 1 Queue 3 Egress Limit Control $4^{(5)}$ 103
Register 206 (0xCE) : Port 2 Queue 3 Egress Limit Control 4. 103
Register 222 (0xDE) : Port 3 Queue 3 Egress Limit Control 4. 103
Register 238 (0xEE): Reserved 103
Register 254 (0xFE): Port 4 Queue 3 Egress Limit Control 4 103
Register 191(0xBF): Testing Register 104
Register 207(0xCF): Reserved Control Register. 104
Register 223(0xDF): Test Register 2. 104
Register 239(0xEF): Test Register 3 104
Register 255(0xFF): Test Register 4 104
Indirect Register Description 105
Static MAC Address Table 106
VLAN Table 108
Dynamic MAC Address Table 110
PME Indirect Registers 112
Programming Examples: 113
Read Operation 113
Write Operation 113
ACL Rule Table and ACL Indirect Registers. 114
ACL Register and Programming Model. 114
ACL Indirect Registers. 115
EEE Indirect Registers 124
EEE Global Registers 124
Management Information Base (MIB) Counters 133
MIIM Registers 137
Absolute Maximum Ratings ${ }^{(6)}$ 141
Operating Ratings ${ }^{(7)}$ 141
Electrical Characteristics ${ }^{(9,10)}$ 141
Timing Diagrams 143
RGMII Timing 143
MII Timing 144
RMII Timing. 146
SPI Timing 147
Auto-Negotiation Timing 148
MDC/MDIO Timing 149
Power-down/Power-up and Reset Timing 150
Reset Circuit Diagram 151
Selection of Reference Crystal. 152
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA 154
Template Revision History 155

List of Figures

Figure 1. Typical Straight Cable Connection 24
Figure 2. Typical Crossover Cable Connection 24
Figure 3. Auto-Negotiation and Parallel Operation 26
Figure 4. Destination Address Lookup and Resolution Flow Chart 32
Figure 5. EEE Transmit and Receive Signaling Paths 35
Figure 6. Traffic Activity and EEE LPI Operations 37
Figure 7. SPI Access Timing. 41
Figure 8. SPI Multiple Access Timing 42
Figure 9. 802.1p Priority Field Format 48
Figure 10. Tail Tag Frame Format 52
Figure 11. ACL Format 59
Figure 12. Interface and Register Mapping 63
Figure 13. ACL Table Access 114
Figure 14. RGMII v2.0 Specification (Figure3-Multiplexing and Timing Diagram) 143
Figure 15. MAC Mode MII Timing - Data Received from MII 144
Figure 16. MAC Mode MII Timing - Data Transmitted from MII 144
Figure 17. PHY Mode MII Timing - Data Received from MII 145
Figure 18. PHY Mode MII Timing - Data Transmitted from MII 145
Figure 19. RMII Timing - Data Received from RMII 146
Figure 20. RMII Timing - Data Transmitted to RMII 146
Figure 21. SPI Input Timing 147
Figure 22. Auto-Negotiation Timing 148
Figure 23. MDC/MDIO Timing. 149
Figure 27. Reset Timing 150
Figure 28. Recommended Reset Circuit 151
Figure 29. Recommended Circuit for Interfacing with CPU/FPGA Reset. 151
Figure 30. 64 -Pin ($8 \mathrm{~mm} \times 8 \mathrm{~mm}$) QFN Package 153

List of Tables

Table 1. MDI/MDI-X Pin Definitions 23
Table 2. Internal Function Block Status 33
Table 3. Available Interfaces 40
Table 4. SPI Connections 40
Table 5. MII Management Interface Frame Format 43
Table 6. Signals of RGMII/MII/RMII 44
Table 7. Port 4 SW4-RGMII Connection 45
Table 8. Port 4 SW4-RGMII Clock Delay Configuration hwit Connection Partner. $=$ 45
Table 9. Port 4 SW4-MII Connection 46
Table 10. Port 4 SW4-RMII Connection 47
Table 11. Tail Tag Rules 52
Table 12. FID+DA Look-Up in the VLAN Mode 54
Table 13. FID+SA Look-Up in the VLAN Mode 54
Table 14. 10/100/1000Mbps Rate Selection for the Rate limit 55
Table 15. Mapping of Functional Areas within the Address Space 63
Table 16. Static MAC Address Table 106
Table 17. VLAN Table 108
Table 18. VLAN ID and Indirect Registers 109
Table 19. Dynamic MAC Address Table 110
Table 20. PME Indirect Registers 112
Table 21. ACL Indirect Registers for 14 Bytes ACL Rules 115
Table 22. Temporal storage for 14 Bytes ACL Rules 120
Table 23. ACL Read and Write Control 121
Table 24. Port 1 MIB Counter Indirect Memory Offerts 133
Table 25. Format of "Per Port" MIB Counter 134
Table 26. All Port Dropped Packet MIB Counters 134
Table 27. Format of Per Port RX/TX Total Bytes MIB Counter 135
Table 28. Format of "All Dropped Packet" MIB Counter 135
Table 29. RGMII v2.0 Specification (Timing Specifics from Table 2) 143
Table 30. MAC Mode MII Timing Parameters 144
Table 31. PHY Mode MII Timing Parameters 145
Table 32. RMII Timing Parameters 146
Table 33. SPI Input Timing Parameters. 147
Table 34. Auto-Negotiation Timing Parameters 148
Table 35. MDC/MDIO Typical Timing Parameters 149
Table 36. Reset Timing Parameters 150
Table 37. Transformer Selection Criteria 152
Table 38. Qualified Magnetic Vendors 152
Table 39. Typical Reference Crystal Characteristics 152

Pin Configuration

64-Pin QFN Pin Configuration

Pin Description

Pin Number	Pin Name	Type ${ }^{(1)}$	Port	Pin Function
1	VDD12A	P		1.2V Core Power
2	VDDAT	P		3.3V Analog Power
3	GNDA	GND		Analog Ground
4	RXP1	1	1	Port 1 Physical receive signal + (differential)
5	RXM1	1	1	Port 1 Physical receive signal - (differential)
6	TXP1	0	1	Port 1 Physical transmit signal + (differential)
7	TXM1	0	1	Port 1 Physical transmit signal - (differential)
8	RXP2	1	2	Port 2 Physical receive signal + (differential)
9	RXM2	1	2	Port 2 Physical receive signal - (differential)
10	TXP2	0	2	Port 2 Physical transmit signal + (differential)
11	TXM2	0	2	Port 2 Physical transmit signal - (differential)
12	VDDAT	P		3.3V Analog Power
13	RXP3	1	3	Port 3 Physical receive signal + (differential)
14	RXM3	1	3	Port 3 Physical receive signal - (differential)
15	TXP3	0	3	Port 3 Physical transmit signal + (differential)
16	TXM3	O	3	Port 3 Physical transmit signal - (differential)
17	GNDA	GND		Analog Ground.
18	INTR_N	Opu		Interrupt: Active low This pin is Open-Drain output pin.
19	LED3_1	Ipu/O	3	Port 3 LED Indicator 1 See global Register 11 bits [5:4] for details. Strap Option: Switch Port 4 GMAC4 Interface Mode Select by LED3[1:0] 00 = MII for SW4-MII $01=$ RMII for SW4-RMII 10 = Reserved 11 = RGMII for SW4-RGMII (Default)
20	LED3_0	Ipu/O	3	Port 3 LED Indicator 0 See global Register 11 bits [5:4] for details. Strap Option: see LED3_1
21	VDD12D	P		1.2V Core Power.
22	GNDD	GND		Digital Ground.

Notes:

1. $P=$ Power supply.

I = Input.
$\mathrm{O}=$ Output.
I/O = Bidirectional.
GND = Ground.
Ipu = Input w/internal pull-up.
$\operatorname{lpd}=$ Input w/internal pull-down.
Ipd/O = Input w/internal pull-down during reset, output pin otherwise.
Ipu/O = Input w/internal pull-up during reset, output pin otherwise.
OTRI = Output tristated.
PU = Strap pin pull-up.
PD = Strap pull-down.
$N C=$ No connect or tie to ground for this product only.

Pin Description (Continued)

Pin Number	Pin Name	Type ${ }^{(1)}$	Port	Pin Function
23	TXEN4/TXD4_CTL	Ipd	4	MII/RMII: Port 4 Switch transmit enable. RGMII: Transmit data control.
24	TXD4_0	Ipd	4	RGMII/MII/RMII: Port 4 Switch transmit bit [0].
25	TXD4_1	Ipd	4	RGMII/MII/RMII: Port 4 Switch transmit bit [1].
26	GNDD	GND		Digital Ground.
27	VDDIO	P		$3.3 \mathrm{~V}, 2.5 \mathrm{~V}$ or 1.8 V digital VDD for digital I/O circuitry.
28	TXD4_2	Ipd	4	RGMII/MII: Port 4 Switch transmit bit [2]. RMII: No connection.
29	TXD4_3	Ipd	4	RGMII/MII: Port 4 Switch transmit bit [3]. RMII: No connection.
30	TXER4	Ipd	4	MII: Port 4 Switch transmit error. RGMII/RMII: No connection.
31	NC	NC		No Connect
32	GNDD	GND		Digital Ground
33	VDD12D	P		1.2V Core Power
34	$\begin{gathered} \text { TXC4/REFCLKI4 } \\ \text { /GTXC4 } \end{gathered}$	1/O	4	Port 4 Switch GMAC4 Clock Pin MII: $2.5 / 25 \mathrm{MHz}$ clock, PHY mode is output, MAC mode is input. RMII: Input for receiving 50 MHz clock in normal mode RGMII: Input 125MHz clock with falling and rising edge to latch data for the transmit.
35	RXC4/GRXC4	I/O	4	Port 4 Switch GMAC4 Clock Pin MII: $2.5 / 25 \mathrm{MHz}$ clock, PHY mode is output, MAC mode is input. RMII: Output 50MHz reference clock for the receiving/transmit in the clock mode. RGMII: Output 125 MHz clock with falling and rising edge to latch data for the receiving.
36	RXD4_0	Ipd/O	4	RGMII/MII/RMII: Port 4 Switch receive bit [0].
37	RXD4_1	Ipd/O	4	RGMII/MII/RMII: Port 4 Switch receive bit [1].
38	GNDD	GND		Digital Ground.
39	VDDIO	P		$3.3 \mathrm{~V}, 2.5 \mathrm{~V}$ or 1.8V digital VDD for digital I/O circuitry.
40	RXD4_2	Ipd/O	4	RGMII/MII: Port 4 Switch receive bit [2]. RMII: No connection.

Pin Description (Continued)

Pin Number	Pin Name	Type ${ }^{(1)}$	Port	Pin Function
41	RXD4_3	Ipd/O	4	RGMII/MII: Port 4 Switch receive bit [3]. RMII: No connection.
42	RXDV4/CRSDV4 /RXD4_CTL	Ipd/O	4	MII: RXDV4 is for Port 4 Switch GMII/MII receive data valid. RMII: CRSDV4 is for Port 4 RMII carrier sense/receive data valid output. RGMII: RXD4_CTL is for Port 4 RGMII receive data control
43	RXER4	Ipd/O	4	MII: Port 4 Switch receives error. RGMII/RMII: No connection.
44	CRS4	Ipd/O	4	MII: Port 4 Switch MII modes carrier sense. RGMII/RMII: No connection.
45	COL4	Ipd/O	4	MII: Port 4 Switch MII collision detects. RGMII/RMII: No connection.
46	REFCLKO	Ipu/O		25MHz Clock Output (Option) Controlled by the strap pin LED2_0. Default is enabled, it is better to disabled it if not be used.
47	PME_N	1/O		Power Management Event This output signal indicates that a Wake On LAN event has been detected as a result of a Wake-Up frame being detected. The KSZ8794CNX is requesting the system to wake up from low power mode. Its assertion polarity is programmable with the default polarity to be active low.
48	LED2_1	Ipu/O	2	Port 2 LED Indicator 1 See global register 11 bits [5:4] for details. Strap Option: Port 4 MII and RMII Modes Select When Port 4 is MII mode: $\mathrm{PU}=\mathrm{MAC}$ mode. $\mathrm{PD}=\mathrm{PHY}$ mode . When Port 4 is RMII mode: PU = Clock mode in RMII, using 25 MHz OSC clock and provide 50MHz RMII clock from pin RXC4. PD = Normal mode in RMII, the TXC4/REFCLKI4 pin on the Port 4 RMII will receive an external 50 MHz clock. Note: Port 4 also can use either an internal or external clock in RMII mode based on this strap pin or the setting of the Register $86(0 \times 56)$ bit [7].

Pin Description (Continued)

Pin Number	Pin Name	Type ${ }^{(1)}$	Port	Pin Function
49	LED2_0	Ipu/O	2	Port 2 LED Indicator 0 See global register 11 bits [5:4] for details. Strap Option: REFCLKO Enable PU = REFCLK_O (25MHz) is enabled. (Default) $\mathrm{PD}=$ REFCLK_O is disabled Note: It is better to disable this 25 MHz clock if do not provide an extra 25 MHz clock for system.
50	LED1_1	Ipu/O	1	Port 1 LED Indicator 1. See global Register 11 bits [5:4] for details. Strap Option: PLL Clock Source Select PU = Still use 25 MHz clock from XI/XO pin even though it is in Port 4 RMII normal mode. PD = Use external clock from TXC4 in Port 4 RMII normal mode. Note: If received clock in Port 4 RMII normal mode has bigger clock jitter, still can select to use the 25 MHz crystal/Oscillator as switch's clock source.
51	LED1_0	Ipu/O	1	Port 1 LED Indicator 0 See global Register 11 bits [5:4] for details. Strap Option: Speed Select in RGMII PU = 1Gbps in RGMII. (Default) PD $=10 / 100 \mathrm{Mbps}$ in RGMII. Note: Programmable through internal registers also.
52	SPIQ	Ipd/O	All	SPI Serial Data Output in SPI Slave Mode Strap Option: Serial Bus Configuration PD = SPI slave mode. PU = MDC/MDIO mode. Note: An external pull-up or pull-down resistor is required.
53	SCL_MDC	Ipu	All	Clock for SPI or MDC/MDIO Interfaces Input clock up to 50 MHz in SPI slave mode. Input clock up to 25 MHz in MDC/MDIO for MIIM access.
54	SDA_MDIO	Ipu/O	All	Data Line for SPI or MDC/MDIO Interfaces Serial data input in SPI slave mode. MDC/MDIO interface input/output data line.
55	SPIS_N	Ipu	All	SPI Interface Chip Select When SPIS_N is high, the KSZ8794CNX is deselected and SPIQ is held in the high impedance state. A high-to-low transition initiates the SPI data transfer. This pin is active low.
56	VDDIO	P		$3.3 \mathrm{~V}, 2.5 \mathrm{~V}$ or 1.8 V digital VDD for digital I/O circuitry.
57	GNDD	GND		Digital Ground.
58	RST_N	Ipu		Reset This active low signal resets the hardware in the device. See the timing requirements in the Timing Diagram Section.
59	VDD12D	P		1.2V Core Power.
60	VDDAT	P		3.3V Analog Power.

Pin Description (Continued)

Pin Number	Pin Name	Type $^{(1)}$	Port	Pin Function
61	ISET			Transmit Output Current Set This pin configures the physical transmit output current. It should be connected to GND thru a 12.4k 1\% resistor.
62	GNDA	GND		Analog Ground.
63	XI	I		Crystal Clock Input/Oscillator Input When using a 25MHz crystal, this input is connected to one end of the crystal circuit. When using a 3.3V oscillator, this is the input from the oscillator. The crystal or oscillator should have a tolerance of $\pm 50 \mathrm{ppm}$.
64	XO	O	Crystal Clock Output. When using a 25MHz crystal, this output is connected to one end of the crystal circuit.	

Strap-in Options

The KSZ8794CNX can function as a managed switch and utilizes strap-in pins to configure the device for different modes. The strap-in option pins are configured by using external pull-up/down resistors to create a high or low state on the pins which are sampled after power down reset or warm reset. The functions are described in the table below.

Pin \#	Pin Name	PU/PD ${ }^{(2)}$	Description
49	LED2_0	Ipu/O	REFCLKO Enable Strap Option: PU = REFCLK_O (25 MHz) is enabled. (Default) PD = REFCLK_O is disabled
63	LED2_1	Ipu/O	Port 4 MII and RMII Modes Select Strap Option: When Port 4 is MII mode: $\mathrm{PU}=\mathrm{MAC}$ mode. $P D=P H Y$ mode. When Port 4 is RMII mode: PU = Clock mode in RMII, using 25 MHz OSC clock and provide 50 MHz RMII clock from pin RXC4. PD = Normal mode in RMII, the TXC4/REFCLKI4 pin on the Port 4 RMII will receive an external 50 MHz clock Note: Port 4 also can use either an internal or external clock in RMII mode based on this strap pin or the setting of the Register 86 (0×56) bit [7].
19,20	LED3[1,0]	Ipu/O	Switch Port 4 GMAC4 Interface Mode Select Strap Option: $00=$ MII for SW4-MII 01 = RMII for SW4-RMII 10 = Reserved 11 = RGMII for SW4-RGMII (Default)
51	LED1_0	Ipu/O	Port 4 Gigabit Select Strap Option: PU = 1 Gbps in RGMII. (Default) PD = 10/100Mbps in RGMII. Note: Also programmable through internal register.
50	LED1_1	Ipu/O	PLL Clock Source Select Strap Option: PU = Still use 25 MHz clock from XI/XO pin even though it is in Port 4 RMII normal mode. PD = Use external clock from TXC4 in Port 4 RMII normal mode. Note: If received clock in Port 4 RMII normal mode has bigger clock jitter, still can select to use the 25 MHz crystal/Oscillator as switch's clock source.
52	SPIQ	Ipd/O	Serial Bus Configuration Strap Option: PD = SPI slave mode. (Default) PU = MDC/MDIO mode. Note: An external pull-up or pull-down resistor is requested.

Notes:

2. Ipd/O = Input w/internal pull-down during reset, output pin otherwise.

Ipu/O = Input w/internal pull-up during reset, output pin otherwise.

Introduction

The KSZ8794CNX contains three 10/100 physical layer transceivers, three media access control (MAC) units and one Gigabit media access control (GMAC) units with an integrated Layer 2 managed switch. The device runs in two modes. The first mode is as a three-port stand-alone switch. The second is as four-port switch with a fourth port that is provided through a Gigabit media independent interface that supports RGMII, MII and RMII. This is useful for implementing an integrated broadband router.
The KSZ8794CNX has the flexibility to reside in a managed mode. In a managed mode, a host processor has complete control of the KSZ8794CNX via the SPI bus, or the MDC/MDIO interface.

On the media side, the KSZ8794CNX supports IEEE 802.3 10BASE-T, 100BASE-TX on all copper ports with AutoMDI/MDIX. The KSZ8794CNX can be used as a fully managed four-port switch or hooked up to a microprocessor via its RGMII/MII/RMII interfaces to allow for integrating into a variety of environments.
Physical signal transmission and reception are enhanced through the use of patented analog circuitry and DSP technology that makes the design more efficient and allows for reduced power consumption and smaller die size.

Major enhancements from the KSZ8864RMN to the KSZ8794CNX include high speed host interface options such as the RGMII interfaces, power saving features such as IEEE 802.1az energy efficient Ethernet (EEE), MLD snooping, Wake On LAN (WoL), port-based ACL filtering and the port security, programmable QoS priority and flexible rate limiting.

Functional Overview: Physical Layer (PHY)

100BASE-TX Transmit

The 100BASE-TX transmit function performs parallel-to-serial conversion, 4B/5B coding, scrambling, NRZ-to-NRZI conversion, MLT3 encoding and transmission. The circuit starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125 MHz serial bit stream. The data and control stream is then converted into $4 \mathrm{~B} / 5 \mathrm{~B}$ coding followed by a scrambler. The serialized data is further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output. The output current is set by an external $1 \% 12.4 \mathrm{k} \Omega$ resistor for the $1: 1$ transformer ratio. It has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude balance, overshoot, and timing jitter. The wave-shaped 10BASE-T output is also incorporated into the 100BASE-TX transmitter.

100BASE-TX Receive

The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and clock recovery, NRZI-to-NRZ conversion, descrambling, 4B/5B decoding, and serial-to-parallel conversion. The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair cable. Since the amplitude loss and phase distortion is a function of the length of the cable, the equalizer has to adjust its characteristics to optimize the performance. In this design, the variable equalizer will make an initial estimation based on comparisons of incoming signal strength against some known cable characteristics, then tunes itself for optimization. This is an ongoing process and can self-adjust against environmental changes such as temperature variations.

The equalized signal then goes through a DC restoration and data conversion block. The DC restoration circuit is used to compensate for the effect of baseline wander and improve the dynamic range. The differential data conversion circuit converts the MLT3 format back to NRZI. The slicing threshold is also adaptive.
The clock recovery circuit extracts the 125 MHz clock from the edges of the NRZI signal. This recovered clock is then used to convert the NRZI signal into the NRZ format. The signal is then sent through the de-scrambler followed by the 4B/5B decoder. Finally, the NRZ serial data is converted to the MII format and provided as the input data to the MAC.

PLL Clock Synthesizer

The KSZ8794CNX generates 125 MHz , $83 \mathrm{MHz}, 41 \mathrm{MHz}, 25 \mathrm{MHz}$ and 10 MHz clocks for system timing. Internal clocks are generated from an external 25 MHz crystal or oscillator.

Scrambler/Descrambler (100BASE-TX only)

The purpose of the scrambler is to spread the power spectrum of the signal in order to reduce EMI and baseline wander. The data is scrambled through the use of an 11-bit wide linear feedback shift register (LFSR). This can generate a 2047bit non-repetitive sequence. The receiver will then descramble the incoming data stream with the same sequence at the transmitter.

10BASE-T Transmit

The 10BASE-T output driver is incorporated into the 100BASE-T driver to allow transmission with the same magnetics. They are internally wave-shaped and pre-emphasized into outputs with a typical 2.3 V amplitude. The harmonic contents are at least 27 dB below the fundamental when driven by an all-ones Manchester-encoded signal.

10BASE-T Receive

On the receive side, input buffers and level detecting squelch circuits are employed. A differential input receiver circuit and a PLL perform the decoding function. The Manchester-encoded data stream is separated into a clock signal and NRZ data. A squelch circuit rejects signals with levels less than 400 mV or with short pulsewidths in order to prevent noises at the RXP or RXM input from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming signal and the KSZ8794CNX decodes a data frame. The receiver clock is maintained active during idle periods in between data reception.

MDI/MDI-X Auto Crossover

To eliminate the need for crossover cables between similar devices, the KSZ8794CNX supports HP Auto-MDI/MDI-X and IEEE 802.3 standard MDI/MDI-X auto crossover. HP Auto-MDI/MDI-X is the default.

The auto-sense function detects remote transmit and receive pairs and correctly assigns transmit and receive pairs for the KSZ8794CNX device. This feature is extremely useful when end users are unaware of cable types, and also, saves on an additional uplink configuration connection. The auto-crossover feature can be disabled through the Port control registers, or MIIM PHY registers. The IEEE 802.3u standard MDI and MDI-X definitions are:
Table 1. MDI/MDI-X Pin Definitions

MDI		MDI- \mathbf{X}	
RJ-45 Pins	Signals	RJ-45 Pins	Signals
1	TD+	1	RD+
2	TD-	2	RD-
3	RD+	3	TD+
6	RD-	6	TD-

Straight Cable

A straight cable connects an MDI device to an MDI-X device, or an MDI-X device to an MDI device. The following diagram depicts a typical straight cable connection between a NIC Card (MDI) and a switch, or hub (MDI-X).

Figure 1. Typical Straight Cable Connection

Crossover Cable

A crossover cable connects an MDI device to another MDI device, or an MDI-X device to another MDI-X device. The following diagram shows a typical crossover cable connection between two switches or hubs (two MDI-X devices).

Figure 2. Typical Crossover Cable Connection

Auto-Negotiation

The KSZ8794CNX conforms to the auto-negotiation protocol as described by the 802.3 committee. Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the highest common mode of operation. Link partners advertise their capabilities to each other, and then compare their own capabilities with those they received from their link partners. The highest speed and duplex setting that is common to the two link partners is selected as the mode of operation. Auto-negotiation is supported for the copper ports only.
The following list shows the speed and duplex operation mode (highest to lowest):

- 100Base-TX, full-duplex
- 100Base-TX, half-duplex
- 10Base-T, full-duplex
- 10Base-T, half-duplex

If auto-negotiation is not supported or the KSZ8794CNX link partner is forced to bypass auto-negotiation, the KSZ8794CNX sets its operating mode by observing the signal at its receiver. This is known as parallel detection, and allows the KSZ8794CNX to establish link by listening for a fixed signal protocol in the absence of auto-negotiation advertisement protocol. The auto-negotiation link up process is shown in the following flow chart.

Figure 3. Auto-Negotiation and Parallel Operation

LinkMD ${ }^{\circledR}$ Cable Diagnostics

The LinkMD feature utilizes time domain reflectometry (TDR) to analyze the cabling plant for common cabling problems such as open circuits, short circuits and impedance mismatches.
LinkMD works by sending a pulse of known amplitude and duration down the MDI and MDI-X pairs and then analyzes the shape of the reflected signal. Timing the pulse duration gives an indication of the distance to the cabling fault with maximum distance of 200 m and accuracy of $\pm 2 \mathrm{~m}$. Internal circuitry displays the TDR information in a user-readable digital format.

Note: Cable diagnostics are only valid for copper connections only.

Access

LinkMD is initiated by accessing the PHY special control/status Registers $\{26,42,58\}$ and the LinkMD result Registers $\{27$, $43,59\}$ for Ports 1, 2 and 3 respectively; and in conjunction with the Port Registers control 10 for Ports 1, 2 and 3 respectively to disable Auto MDI/MDIX.
Alternatively, the MIIM PHY Registers 0 and 1d can be used for LinkMD access also.

Usage

The following is a sample procedure for using LinkMD with Registers \{26, 27, 29\} on Port 1:

1. Disable auto MDI/MDI-X by writing a ' 1 ' to Register 29, bit [2] to enable manual control over the differential pair used to transmit the LinkMD pulse.
2. Start cable diagnostic test by writing a ' 1 ' to Register 26 , bit [4]. This enable bit is self-clearing.
3. Wait (poll) for Register 26, bit [4] to return a ' 0 ', and indicating cable diagnostic test is completed.
4. Read cable diagnostic test results in Register 26, bits [6:5]. The results are as follows:
$00=$ normal condition (valid test)
01 = open condition detected in cable (valid test)
$10=$ short condition detected in cable (valid test)
11 = cable diagnostic test failed (invalid test)
The ' 11 ' case, invalid test, occurs when the KSZ8794CNX is unable to shut down the link partner. In this instance, the test is not run, since it would be impossible for the KSZ8794CNX to determine if the detected signal is a reflection of the signal generated or a signal from another source.
5. Get distance to fault by concatenating Register 26, bit [0] and Register 27, bits [7:0]; and multiplying the result by a constant of 0.4 . The distance to the cable fault can be determined by the following formula:

D (distance to cable fault) $=0.4 \times$ (Register 26, bit [0], Register 27, bits [7:0])
D (distance to cable fault) is expressed in meters.
Concatenated value of Registers 26 bit [0] and 27 bits [7:0] should be converted to decimal before decrease 26 and multiplying by 0.4 .
The constant (0.4) may be calibrated for different cabling conditions, including cables with a velocity of propagation that varies significantly from the norm.
For Port 2, 3 and using the MIIM PHY Registers, LinkMD usage is similar.

A LinkMD example

The following is a sample procedure for using LinkMD on port 1, port 2 and port 3.
//Disable Auto-MDI/MDI-X and Force to MDI-X mode
I/'w' is WRITE the register. 'r' is READ register below
w 1d 04
w 2d 04
w 3d 04
//Set Internal registers temporary by indirect registers, adjust for LinkMD
w 6e a0
w $6 f 4 \mathrm{~d}$
wa0 08
//Enable LinkMD Testing with Fault Cable for port 1, port 2 and port 3 by Port Register Control 8 bit [4]
w 1a 10
w 2a 10
w 3a 10
//Wait until Port Register Control 8 bit [4] returns a '0' (Self Clear)
//Diagnosis results
r 1a
r 1b
r 2a
r 2b
r 3a
r 3b
//For example on port 1, the result analysis based on the values of the register 0x1a and 0x1b
//The register 0x1a bits [6-5] are for the open or the short detection.
//The register 0x1a bit [0] + the register 0x1b bits [7-0] = CDT_Fault_Count [8-0]
$/ /$ The distance to fault is about $0.4 \times$ (CDT_Fault_Count [8-0])

On-chip Termination and Internal Biasing

The KSZ8794CNX reduces the board cost and simplifies the board layout by using on-chip termination resistors for all ports and RX/TX differential pairs without the external termination resistors. The combination of the on-chip termination and the internal biasing will save more PCB space and power consumption in system, compared with using external biasing and termination resistors for multiple ports' switches because the transformers do not consume power anymore. The center taps of the transformer should not need to be tied to the analog power.

Functional Overview: Media Access Controller (MAC)

Media Access Controller (MAC) Operation

The KSZ8794CNX strictly abides by IEEE 802.3 standards to maximize compatibility.

Inter-Packet Gap (IPG)

If a frame is successfully transmitted, the 96 -bit time IPG is measured between the two consecutive MTXEN. If the current packet is experiencing collision, the 96 -bit time IPG is measured from MCRS and the next MTXEN.

Back-off Algorithm

The KSZ8794CNX implements the IEEE Standard 802.3 binary exponential back-off algorithm, and optional "aggressive mode" back-off. After 16 collisions, the packet may be optionally dropped depending on Register 3's chip configuration.

Late Collision

If a transmit packet experiences collisions after 512-bit times of the transmission, the packet will be dropped.

Illegal Frames

The KSZ8794CNX discards frames less than 64 bytes and can be programmed to accept frames up to 1536 bytes in Register 4. For special applications, the KSZ8794CNX can also be programmed to accept frames up to 2 K bytes in Register 3 bit [6]. Since the KSZ8794CNX supports VLAN tags, the maximum sizing is adjusted when these tags are present.

Flow Control

The KSZ8794CNX supports standard 802.3x flow control frames on both transmit and receive sides.
On the receive side, if the KSZ8794CNX receives a pause control frame, the KSZ8794CNX will not transmit the next normal frame until the timer, specified in the pause control frame, expires. If another pause frame is received before the current timer expires, the timer will be updated with the new value in the second pause frame. During this flow controlled period, only flow control packets from the KSZ8794CNX will be transmitted.
On the transmit side, the KSZ8794CNX has intelligent and efficient ways to determine when to invoke flow control. The flow control is based on availability of the system resources, including available buffers, available transmit queues and available receive queues.
The KSZ8794CNX flow controls the port that receives a packet if the destination port resource is busy. The KSZ8794CNX issues a flow control frame (XOFF), containing the maximum pause time defined in IEEE standard $802.3 x$. Once the resource is freed up, the KSZ8794CNX sends out the other flow control frame (XON) with zero pause time to turn off the flow control, which turns on transmission to the port. A hysteresis feature is also provided to prevent over-activation and deactivation of the flow control mechanism.
The KSZ8794CNX flow controls all ports if the receive queue becomes full.

Half-Duplex Back Pressure

The KSZ8794CNX also provides a half-duplex back pressure option. Note that this is not in IEEE 802.3 standards. The activation and deactivation conditions are the same as the ones given for full-duplex mode. If back pressure is required, the KSZ8794CNX sends preambles to defer the other station's transmission (carrier sense deference). To avoid jabber and excessive deference as defined in IEEE 802.3 standards, after a certain period of time, the KSZ8794CNX discontinues carrier sense but raises it quickly after it drops packets to inhibit other transmissions. This short silent time (no carrier sense) is to prevent other stations from sending out packets and keeps other stations in a carrier sensedeferred state. If the port has packets to send during a back pressure situation, the carrier sense-type back pressure is interrupted and those packets are transmitted instead. If there are no more packets to send, carrier sense-type back pressure becomes active again until switch resources are free. If a collision occurs, the binary exponential back-off algorithm is skipped and carrier sense is generated immediately, reducing the chance of further colliding and maintaining carrier sense to prevent reception of packets. To ensure no packet loss in 10BASE-T or 100BASE-TX half-duplex modes, the user must enable the following:

- Aggressive back-off (Register 3, bit [0])
- No excessive collision drop (Register 4, bit [3])
- Back pressure (Register 4, bit [5])

These bits are not set as the default because this is not the IEEE standard.

Broadcast Storm Protection

The KSZ8794CNX has an intelligent option to protect the switch system from receiving too many broadcast packets. Broadcast packets are normally forwarded to all Ports except the source Port and thus use too many switch resources (bandwidth and available space in transmit queues). The KSZ8794CNX has the option to include "multicast packets" for storm control. The broadcast storm rate parameters are programmed globally and can be enabled or disabled on a per port basis. The rate is based on a $50 \mathrm{~ms}(0.05 \mathrm{~s})$ interval for 100BT and a 500 ms (0.5 s) interval for 10BT. At the beginning of each interval, the counter is cleared to zero and the rate limit mechanism starts to count the number of bytes during the interval. The rate definition is described in Registers 6 and 7. The default setting for Registers 6 and 7 is $0 \times 4 \mathrm{~A}$ (74 decimal). This is equal to a rate of 1%, calculated as follows:

148,80 frames $/ \mathrm{sec} \times 50 \mathrm{~ms}$ (0.05 s)/interval X $1 \%=74$ frames/interval (approx.) $=0 \times 4 \mathrm{~A}$

Functional Overview: Switch Core

Address Look-Up

The internal look-up table stores MAC addresses and their associated information. It contains a 1 K unicast address table plus switching information. The KSZ8794CNX is guaranteed to learn 1 K addresses and distinguishes itself from a hashbased look-up table, which, depending on the operating environment and probabilities, may not guarantee the absolute number of addresses it can learn.

Learning

The internal look-up engine updates its table with a new entry if the following conditions are met:

- The received packet's source address (SA) does not exist in the look-up table.
- The received packet is good; the packet has no receiving errors and is of legal length.

The look-up engine inserts the qualified SA into the table, along with the Port number and time stamp. If the table is full, the last entry of the table is deleted first to make room for the new entry.

Migration

The internal look-up engine also monitors whether a station is moved. If this occurs, it updates the table accordingly. Migration happens when the following conditions are met:

- The received packet's SA is in the table but the associated source Port information is different.
- The received packet is good; the packet has no receiving errors and is of legal length.

The look-up engine will update the existing record in the table with the new source Port information.

Aging

The look-up engine will update the time stamp information of a record whenever the corresponding SA appears. The time stamp is used in the aging process. If a record is not updated for a period of time, the look-up engine will remove the record from the table. The look-up engine constantly performs the aging process and will continuously remove aging records. The aging period is $300+/-75$ seconds. This feature can be enabled or disabled through Register 3 bit [2].

Forwarding

The KSZ8794CNX will forward packets using an algorithm that is depicted in the following flowcharts. Figure 4 shows stage one of the forwarding algorithm where the search engine looks up the VLAN ID, static table, and dynamic table for the destination address, and comes up with "Port to forward 1" (PTF1). PTF1 is then further modified by the spanning tree, IGMP snooping, port mirroring, and port VLAN processes and authentication to come up with "Port to forward 2" (PTF2). The authentication and ACL have highest priority in the forwarding process, ACL result will overwrite the result of the forwarding process. This is where the packets will be sent.

The KSZ8794CNX will not forward the following packets:

1. Error packets

These include framing errors, Frame Check Sequence (FCS) errors, alignment errors, and illegal size packet errors.
2. IEEE802.3x PAUSE frames

KSZ8794CNX intercepts these packets and performs full duplex flow control accordingly.
3. "Local" packets

Based on destination address (DA) lookup, if the destination port from the lookup table matches the port from which the packet originated, the packet is defined as "local."

Figure 4. Destination Address Lookup and Resolution Flow Chart

Switching Engine

The KSZ8794CNX features a high-performance switching engine to move data to and from the MAC's packet buffers. It operates in store and forward mode, while the efficient switching mechanism reduces overall latency. The KSZ8794CNX has a 64kB internal frame buffer. This resource is shared between all five Ports. There are a total of 512 buffers available. Each buffer is sized at 128Byte.

Functional Overview: Power

The KSZ8794CNX device requires 3.3 V analog power. An external 1.2 V LDO provides the necessary 1.2 V to power the analog and digital logic cores. The various I/O's can be operated at $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V . Table below illustrates the various voltage options and requirements of the device.

Power Signal Name	Device Pin	Requirement
VDDAT	$2,12,60$	3.3 V input power to the analog blocks of transceiver in the device.
VDDIO	$27,39,56$	Choice of 1.8 V or 2.5 V or 3.3 V for the I / O circuits. These input power pins power the //O circuitry of the device.
VDD12A	1	1.2 V core power. Filtered 1.2 V input voltage. These pins feed 1.2 V to power the internal analog and digital cores.
VDD12D	$21,33,59$	Analog Ground.
GNDA	$3,17,62$	Digital Ground.
GNDD	$22,26,32,38,57$	

Functional Overview: Power Management

The KSZ8794CNX supports enhanced power management in a low power state, with energy detection to ensure low power dissipation during device idle periods. There are three operation modes under the power management function which are controlled by the Register 14 bits [4:3] and the Port Control 10 Register bit [3] as shown below:
Register 14 bits [4:3] = 00 Normal Operation Mode
Register 14 bits [4:3] = 01 Energy Detect Mode
Register 14 bits [4:3] = 10 Soft Power Down Mode
Register 14 bits [4:3] = 11 Reserved
The Port Control 10 Register 29, 45, 61 bit [3] = 1 are for the Port Based Power-Down Mode.
Table 2 indicates all internal function blocks' status under four different power management operation modes.
Table 2. Internal Function Block Status

KSZ8794CNX Function Blocks	Power Management Operation Modes		
	Normal Mode	Energy Detect Mode	Soft Power Down Mode
Internal PLL Clock	Enabled	Disabled	Disabled
Tx/Rx PHY	Enabled	Energy detect at Rx	Disabled
MAC	Enabled	Disabled	Disabled
Host Interface	Enabled	Disabled	Disabled

Normal Operation Mode

This is the default setting bits [4:3] = 00 in Register 14 after chip power-up or hardware reset. When KSZ8794CNX is in normal operation mode, all PLL clocks are running, PHY and MAC are on, and the host interface is ready for CPU read or writes.
During normal operation mode, the host CPU can set the bits [4:3] in Register 14 to change the current normal operation mode to any one of the other three power management operation modes.

Energy Detect Mode

Energy detect mode provides a mechanism to save more power than in the normal operation mode when the KSZ8794CNX Port is not connected to an active link partner. In this mode, the device will save more power when the cables are unplugged. If the cable is not plugged in, the device can automatically enter a low power state-the energy detect mode. In this mode, the device will keep transmitting 120ns width pulses at a 1-pulse rate. Once activity resumes
due to plugging a cable in or attempting by the far end to establish link, the device can automatically power up to normal power state in energy detect mode.
The energy detect mode consists of two states, normal power state and low power state. While in low-power state, the device reduces power consumption by disabling all circuitry except the energy detect circuit of the receiver. The energy detect mode is entered by setting bits $[4: 3]=01$ in Register 14. When the KSZ8794CNX is in this mode, it will monitor the cable energy. If there is no energy on the cable for a time longer than the pre-configured value at bits [7:0]-the go-sleep time in Register 15, KSZ8794CNX will go into low power state. When KSZ8794CNX is in low power state, it will keep monitoring the cable energy. Once the energy is detected from the cable, the device will enter normal power state. When the device is at normal power state, it is able to transmit or receive packet from the cable.

Soft Power-Down Mode

The soft power-down mode is entered by setting bits [4:3] = 10 in Register 14. When KSZ8794CNX is in this mode, all PLL clocks are disabled, also all of PHYs and the MACs are off. Any dummy host access will wake-up this device from current soft power down mode to normal operation mode and internal reset will be issued to make all internal Registers go to the default values.

Port-based Power-Down Mode

In addition, the KSZ8794CNX features a per-port power down mode. To save power, a PHY port that is not in use can be powered down via the Port Control 10 Register bit [3], or MIIM PHY Register 0 bit [11].

Energy Efficient Ethernet (EEE)

Along with the supports of different type of power saving modes (H/W power down, S/W power down and Energy Detect mode), the KSZ8794CNX extends the green function capability by supporting EEE (Energy Efficient Ethernet) features defined in IEEE P802.3azTM/D2.3, March 2010. Both 10Base-T and 100Base-TX EEE functions are supported in KSZ8794CNX. In 100Base-TX the EEE operation is asymmetric on the same link, which means one direction could be at Low Power Idle (LPI) state while another direction could exist on packet transfer activity. Differing from other types of power saving modes, the EEE is able to maintain the link while power saving is achieved. Based on EEE specification, the energy saving from EEE is done at the PHY level. KSZ8794CNX reduces the power consumption not only at PHY level but also at MAC and switch level by shutting down the unused clocks as much as possible when the device is in a LPI phase.

Figure 5. EEE Transmit and Receive Signaling Paths
The KSZ8794CNX supports the IEEE 802.3az EEE standard for both 10 and 100 Mbps interfaces. The EEE capability combines switch, MAC with PHY to support operation in the LPI mode. When the LPI mode is enabled, systems on both sides of the link can save power during periods of low link utilization.
EEE implementation provides a protocol to coordinate transitions to or from lower power consumption without changing the link status and without dropping or corrupting frames. The transition time into and out of the lower power consumption is kept small enough to be transparent to upper layer protocols and applications. EEE specifies means to exchange capabilities between link partners to determine whether EEE is supported and to select the best set of parameters common to both sides.
Besides supporting the 100BASE-TX PHY EEE, KSZ8794CNX also supports 10BASE-T with reduced transmit amplitude requirements for 10Mbps mode to allow a reduction in power consumption.

LPI Signaling

Low Power Idle LPI signaling allows switch to indicate to the PHY, and to the link partner, that a break in the data stream is expected, and switch can use this information to enter power-saving modes that require additional time to resume normal operation. LPI signaling also informs the switch when the link partner has sent such an indication. The definition of LPI signaling uses the MAC for simplified full-duplex operation (with carrier sense deferral). This provides full-duplex operation but uses the carrier sense signal to defer transmission when the PHY is in the LPI mode.
The decision on when to signal LPI (LPI request) to the link partner is made by the switch and communicated to the PHY through MAC MII interface. The switch is also informed when the link partner is signaling LPI, indication of LPI activation (LPI indication) on the MAC interface. The conditions under which switch decides to send LPI, and what actions are taken by switch when it receives LPI from the link partner, are specified in implementation section.

LPI Assertion

Without LPI assertion, the normal traffic transition continues on the MII interface. As soon as an LPI request is asserted, the LPI assert function starts to transmit the "Assert LPI" encoding on the MII and stop the MAC from transmitting normal
traffic. Once the LPI request is de-asserted, the LPI assert function starts to transmit the normal inter-frame encoding on the MII again. After a delay, the MAC is allowed to start transmitting again. This delay is provided to allow the link partner to prepare for normal operation. The following figure illustrates the EEE LPI between two active data idles.

LPI Detection

In the absence of "Assert LPI" encoding on the receive MII, the LPI detect function maps the receive MII signals as normal conditions. At the start of LPI, indicated by the transition from normal inter-frame encoding to the "Assert LPI" encoding on the receive MII, the LPI detect function continues to indicate idle on interface, and asserts LP_IDLE indication. At the end of LPI, indicated by the transition from the "Assert LPI" encoding to any other encoding on the receive MII, LP_IDLE indication is de-asserted and the normal decoding operation resumes.

PHY LPI Transmit Operation

When the PHY detects the start of "Assert LPI" encoding on the MII, the PHY signals sleep to its link partner to indicate the local transmitter is entering LPI mode. The EEE capability requires the PHY transmitter to go quiet after sleep is signaled. LPI requests are passed from one end of the link to the other and system energy savings can be achieved even if the PHY link does not go into a low power mode.
The transmit function of the local PHY is enabled periodically to transmit refresh signals that are used by the link partner to update adaptive filters and timing circuits in order to maintain link integrity. This quiet-refresh cycle continues until the reception of the normal inter-frame encoding on the MII. The transmit function in the PHY communicates this to the link partner by sending a wake signal for a predefined period of time. The PHY then enters the normal operating state. No data frames are lost or corrupted during the transition to or from the LPI mode.
In 100BT/Full duplex EEE operation, Refresh transmission are used to maintain link and the Quiet periods are used for the power saving. Approximately, every $20-22 \mathrm{~ms}$ a Refresh of $200-220$ us is sent to the link partner. The Refresh transmission and Quiet periods are shown in Figure 6.

Ts = THE PERIOD OF TIME THAT THE PHY TRANSMITS THE SLEEP SIGNAL BEFORE TURNING ALL TRANSMITTERS OFF, $200 \leq T s \leq 220$ USED IN $100 B A S E-T X$. $\mathrm{Tq}=$ THE PERIOD OF TIME THAT THE PHY REMAINS QUIET BEFORE SENDING THE REFRESH SIGNAL, $20 _000 \leq T q \leq 22 _000$ USED IN 100BASE-TX. $\mathrm{Tr}=$ DURATION OF THE REFRESH SIGNAL, $200 \leq \mathrm{Tr} \leq 220$ USED IN 100BASE-TX.

Figure 6. Traffic Activity and EEE LPI Operations

PHY LPI Receive Operation

On receive, entering the LPI mode is triggered by the reception of a sleep signal from the link partner, which indicates that the link partner is about to enter the LPI mode. After sending the sleep signal, the link partner ceases transmission. When the receiver detects the sleep signal, the local PHY indicates "Assert LPI" on the MII and the local receiver can disable some functionality to reduce power consumption. The link partner periodically transmits refresh signals that are used by the local PHY. This quiet-refresh cycle continues until the link partner initiates transition back to normal mode by transmitting the wake signal for a predetermined period of time controlled by the LPI assert function. This allows the local receiver to prepare for normal operation and transition from the "Assert LPI" encoding to the normal inter-frame encoding on the MII. After a system specified recovery time, the link supports the nominal operational data rate.

Negotiation with EEE Capability

The EEE capability shall be advertised during the auto-negotiation stage. Auto-negotiation provides a linked device with the capability to detect the abilities supported by the device at the other end of the link, determine common abilities, and configure for joint operation. Auto-negotiation is performed at power up or reset, on command from management, due to link failure, or due to user intervention.

During auto-negotiation, both link partners indicate their EEE capabilities. EEE is supported only if during Auto-negotiation both the local device and link partner advertise the EEE capability for the resolved PHY type. If EEE is not supported, all EEE functionality is disabled and the LPI client does not assert LPI. If EEE is supported by both link partners for the negotiated PHY type, then the EEE function can be used independently in either direction.

Wake on LAN (WoL)

Wake on LAN allows a computer to be turned on or woken up by a network message. The message is usually sent by a program executed on another computer on the same local area network. Wake-up frame events are used to wake the system whenever meaningful data is presented to the system over the network. Examples of meaningful data include the reception of a Magic Packet, a management request from a remote administrator, or simply network traffic directly targeted to the local system. The KSZ8794CNX can be programmed to notify the host of the Wake-Up frame detection with the assertion of the interrupt signal (INTR_N) or assertion of the power management event signal (PME). The PME control is by PME indirect Registers.

KSZ8794CNX MAC supports the detection of the following Wake-Up events:

- Detection of energy signal over a pre-configured value: Port PME Control Status Register bit [0] in PME indirect registers.
- Detection of a linkup in the network link state: Port PME Control Status Register bit [1] in the PME indirect registers.
- Receipt of a Magic Packet: Port PME Control Status Register bit [2] in the PME indirect registers.

There are also other types of Wake-Up events that are not listed here as manufacturers may choose to implement these in their own way.

Direction of Energy

The energy is detected from the cable and is continuously presented for a time longer than pre-configured value, especially when this energy change may impact the level at which the system should re-enter to the normal power state.

Direction of Link-up

Link status wake events are useful to indicate a linkup in the network's connectivity status.

Magic Packet ${ }^{\text {™ }}$

The Magic Packet is a broadcast frame containing anywhere within its payload 6 bytes of all 1s (FF FF FF FF FF FF) followed by sixteen repetitions of the target computer's 48 -bit DA MAC address. Since the magic packet is only scanned for the above string, and not actually parsed by a full protocol stack, it may be sent as any network- and transport-layer protocol.
Magic Packet technology is used to remotely wake up a sleeping or powered off PC on a LAN. This is accomplished by sending a specific packet of information, called a Magic Packet frame, to a node on the network. When a PC capable of receiving the specific frame goes to sleep, it enables the Magic Packet RX mode in the LAN controller. When the LAN controller receives a Magic Packet frame, it will alert the system to wake up. Once the KSZ8794CNX has been enabled for Magic Packet Detection in Port PME Control Mask Register bit [2] in the PME indirect register, it scans all incoming frames addressed to the node for a specific data sequence, which indicates to the controller this is a Magic Packet frame.
A Magic Packet frame must also meet the basic requirements for the LAN technology chosen, such as Source Address (SA), Destination Address (DA), which may be the receiving station's IEEE MAC address, or a multicast or broadcast address and CRC. The specific sequence consists of 16 duplications of the MAC address of this node, with no breaks or interruptions. This sequence can be located anywhere within the packet, but must be preceded by a synchronization stream. The synchronization stream is defined as 6 bytes of $0 x F F$. The device will also accept a broadcast frame, as long as the 16 duplications of the IEEE address match the address of the machine to be awakened.

Example of Magic Packet:

If the IEEE address for a particular node on a network is $11 \mathrm{~h} 22 \mathrm{~h}, 33 \mathrm{~h}, 44 \mathrm{~h}, 55 \mathrm{~h}, 66 \mathrm{~h}$, the LAN controller would be scanning for the data sequence (assuming an Ethernet frame): DA - SA - TYPE - FF FF FF FF FF FF - 112233445566 -1122334455 66-11 $2233445566-112233445566-112233445566-112233445566-112233445566$ -$112233445566-112233445566-112233445566-112233445566-112233445566-112233445566-$ $112233445566-112233445566-112233445566$-MISC-CRC.
There are no further restrictions on a Magic Packet frame. For instance, the sequence could be in a TCP/IP packet or an IPX packet. The frame may be bridged or routed across the network without affecting its ability to wake-up a node at the frame's destination. If the scans do not find the specific sequence shown above, it discards the frame and takes no further action. If the KSZ8794CNX detects the data sequence, however, it then alerts the PC's power management circuitry (assert the PME pin) to wake up the system.

Interrupt (INT_N/PME_N)

INT_N is an interrupt signal that is used to inform the external controller that there has been a status update in the KSZ8794CNX interrupt status register. Bits [3:0] of Register 125 are the interrupt mask control bits to enable and disable the conditions for asserting the INT_N signal. Bits [3:0] of Register 124 are the interrupt status bits to indicate which interrupt conditions have occurred. The interrupt status bits are cleared after reading those bits in Register 124.
PME_N is an optional PME interrupt signal that is used to inform the external controller that there has been a status update in the KSZ8794CNX interrupt status register. Bits [4] of Register 125 are the PME mask control bits to enable and disable the conditions for asserting the PME_N signal. Bits [4] of Register 124 are the PME interrupt status bits to indicate which PME interrupt conditions have occurred. The PME interrupt status bit [4] is cleared after reading this bit of Register 124.

Additionally, the interrupt pins of INT_N and PME_N eliminate the need for the processor to poll the switch for status change.

Functional Overview: Interfaces

The KSZ8794CNX device incorporates a number of interfaces to enable it to be designed into a standard network environment as well as a vendor unique environment. The available interfaces are summarized in Table 3. The detail of each usage in this table is provided in the following sections.

Table 3. Available Interfaces

Interface	Type	Usage	Registers Accessed
SPI	Configuration and Register Access	[As Slave Serial Bus] - External CPU or controller can R/W all internal registers thru this interface.	All
MIIM	Configuration and Register Access	MDC/MDIO capable CPU or controllers can R/W 3 PHYs registers.	PHYs Only
RMII	Data Flow	Interface to the Port 4 GMAC using the faster reduced RMII timing.	n / a
MII	Data Flow	Interface to the Port 4 GMAC using the standard MII timing.	n / a
RGMII	Data Flow	Interface to the Port 4 GMAC using the faster reduced RGMII timing.	n / a

Configuration Interface

SPI Slave Serial Bus Configuration

The KSZ8794CNX can also act as an SPI slave device. Through the SPI, the entire feature set can be enabled, including "VLAN," "IGMP snooping," "MIB counters," etc. The external master device can access any register from Register 0 to Register 127 randomly. The system should configure all the desired settings before enabling the switch in the KSZ8794CNX. To enable the switch, write a "1" to Register 1 bit [0].
Two standard SPI commands are supported (00000011 for "READ DATA," and 00000010 for "WRITE DATA"). To speed configuration time, the KSZ8794CNX also supports multiple reads or writes. After a byte is written to or read from the KSZ8794CNX, the internal address counter automatically increments if the SPI Slave Select Signal (SPIS_N) continues to be driven low. If SPIS_N is kept low after the first byte is read, the next byte at the next address will be shifted out on SPIQ. If SPIS_N is kept low after the first byte is written, bits on the Master Out Slave Input (SPID) line will be written to the next address. Asserting SPIS_N high terminates a read or write operation. This means that the SPIS_N signal must be asserted high and then low again before issuing another command and address. The address counter wraps back to zero once it reaches the highest address. Therefore the entire register set can be written to or read from by issuing a single command and address.
The KSZ8794CNX is able to support a SPI bus up to 50 MHz . A high performance SPI master is recommended to prevent internal counter overflow.

To use the KSZ8794CNX SPI:

1. At the board level, connect KSZ8794CNX pins as follows:

Table 4. SPI Connections

KSZ8794CNX Signal Name	Microprocessor Signal Description
SPIS_N (S_CS)	SPI Slave Select.
SCL (S_CLK)	SPI Clock.
SDA (S_DI)	Master Output. Slave Input.
SPIQ (S_DO)	Master Input. Slave Output.

2. Configure the serial communication to SPI slave mode by pulling down pin SPIQ with a pull-down resistor.
3. Write configuration data to registers using a typical SPI write data cycle as shown in Figure 7 or SPI multiple write as shown in Figure 8. Note that data input on SDA is registered on the rising edge of SCL clock.
4. Registers can be read and the configuration can be verified with a typical SPI read data cycle as shown in Figure 7 or a multiple read as shown in Figure 8. Note that read data is registered out of SPIQ on the falling edge of SCL clock.

SPI READ CYCLE
Figure 7. SPI Access Timing

Figure 8. SPI Multiple Access Timing

MII Management Interface (MIIM)

The KSZ8794CNX supports the standard IEEE 802.3 MII Management Interface, also known as the Management Data Input/output (MDIO) Interface. This interface allows upper-layer devices to monitor and control the states of the KSZ8794CNX. An external device with MDC/MDIO capability is used to read the PHY status or configure the PHY settings. Further details on the MIIM interface are found in Clause 22.2.4.5 of the IEEE 802.3u Specification.
The MIIM interface consists of the following:

- A physical connection that incorporates the data line MDIO and the clock line MDC.
- A specific protocol that operates across the aforementioned physical connection that allows an external controller to communicate with the KSZ8794CNX device.
- Access to a set of eight 16 -bit registers, consisting of 8 standard MIIM Registers [0:5h], 1d and 1 f MIIM registers per port.
The MIIM Interface can operate up to a maximum clock speed of 25 MHz MDC clock.
The following table depicts the MII Management Interface frame format.
Table 5. MII Management Interface Frame Format

	Preamble	Start of Frame	Read/Write OP Code	PHY Address Bits[4:0]	REG Address Bits[4:0]	TA	Data Bits[15:0]	Idle
Read	321 1's	01	10	AAAAA	RRRRR	Z0	DDDDDDDD_DDDDDDDD	Z
Write	321 1's	01	01	AAAAA	RRRRR	10	DDDDDDDD_DDDDDDDD	Z

The MIIM interface does not have access to all the configuration registers in the KSZ8794CNX. It can only access the standard MIIM registers. See "MIIM Registers". The SPI interface, on the other hand, can be used to access all registers with the entire KSZ8794CNX feature set.

Switch Port 4 GMAC Interface

The KSZ8794CNX GMAC4 interface supports MII/RGMII/RMII four interfaces protocols and shares one set of input/output signals. The purpose of this interface is to provide a simple, inexpensive, and easy-to implement interconnection between the GMAC/MAC sub layer and a GPHY/PHY. Data on these interfaces are framed using the IEEE Ethernet standard. As such it consists of a preamble, start of frame delimiter, Ethernet headers, protocol specific data and a cyclic redundancy check (CRC) checksum.
Transmit and Receive signals for MII/RGMII/RMII interfaces shown in Table 6.
Table 6. Signals of RGMII/MII/RMII

Direction Type	RGMII	MII	RMII
Input (Output)	GTXC	TXC	REFCLKI
Input		TXER	
Input	TXD_CTL	TXEN	TXEN
Input (Output)		COL	
Input	TXD[3:0]	TXD[3:0]	TXD[1:0]
Input (Output)	GRXC	RXC	RXC
Output		RXER	RXER
Output	RXD_CTL	RXDV	CRS_DV
Input (Output)		CRS	
Output	RXD[3:0]	RXD[3:0]	RXD[1:0]

Standard Media Independent Interface [MII]

The MII interface is capable of supporting 10/100Mbps. Data and delimiters are synchronous to clock references. It provides independent four transmit and receive data paths and uses signal levels, two media status signals are provided. The CRS indicates the presence of carrier, and the COL indicates the occurrence of a collision. Both half and full duplex operations are provided by MII interface.
The MII transfers data using 4-bit words (nibble) in each direction. Clocked at $2.5 / 25 \mathrm{MHz}$ to achieve $10 / 100 \mathrm{Mbps}$ speed.

Reduced Media Independent Interface [RMII]

The Reduced Media Independent Interface (RMII) specifies a low pin count Media Independent Interface (MII). The KSZ8794CNX supports the RMII interface on the Port 4 GMAC4 and provides the following key characteristics:

- Supports 10 Mbps and 100 Mbps data rates.
- Uses a single 50 MHz clock reference (provided internally or externally): in internal mode, the chip provides a reference clock from the RXC pin to the opposite clock input pin for RMII interface. In external mode, the chip receives 50 MHz reference clock from an external oscillator or opposite RMII interface.
- Provides independent 2-bit wide (bi-bit) transmit and receive data paths.

Reduced Gigabit Media Independent Interface [RGMII]

It is intended to be an alternative to the IEEE802.3u MII and the IEEE802.3z RGMII. The principle objective is to reduce the number of pins required to interconnect the GMAC and the GPHY in a cost effective and technology independent manner. In order to accomplish this objective, the data paths and all associated control signals will be reduced and control signals will be multiplexed together and both edges of the clock will be used. For gigabit operation, the clocks will operate at 125 MHz with using rising edge and falling edge to latch data.

Port 4 GMAC4 SW4-RGMII Interface

Table 7 shows the RGMII reduced connections when connecting to an external GMAC or GPHY:
Table 7. Port 4 SW4-RGMII Connection

KSZ8794CNX SW4-RGMII Connection			
External GMAC/GPHY	KSZ8794CNX SW4-RGMII Signals	Type	Description
MRX_CTL	TXD4_CTL	Input	Transmit control
MRXD[3:0]	TXD4[3:0]	Input	Transmit data bit [3:0]
MRX_CLK	GTX4_CLK	Input	Transmit clock
MTX_CTL	RXD4_CTL	Output	Receive control
MTXD[3:0]	RXD4[3:0]	Output	Receive data bit [3:0]
MGTX_CLK	GRXC4	Output	Receive clock

The RGMII interface operates at up to a 1000Mbps speed rate. Additional transmit and receive signals control the different direction of the data transfer. This RGMII interface supports RGMII Rev 2.0 with adjustble ingress clock and egress clock delay by the Register 86 (0×56).
For RGMII correct configuration with the connection partner, the Register 86 (0×56) bits [4:3] need to setup correctly, a configuration table as below.
Table 8. Port 4 SW4-RGMII Clock Delay Configuration with Connection Partner.=

KSZ8794 Register 86 Bits [4:3] Configuration	RGMII Clock Mode (Receive and Transmit)	KSZ8794 Register 86 (0x56)	KSZ8794 RGMII Clock Delay/Slew Configuration	Connection Partner RGMII Clock Configuration (A processor, an external GPHY or back to back connection)
Bit $[4: 3]=11$ Mode	Ingress Clock Input	Bit $[4]=1$	Delay	No Delay
	Egress Clock Output	Ingress Clock Input	Bit $[3]=1$	Delay

For example, two KSZ8795 devices are the back to back connection, if one device set bit [4:3] ='11', another one should set bit [4:3] = '00'. If one device set bit [4:3] ='01', another one should set bit [4:3] = '01' too.
The RGMII mode is configured by the strap-in pin LED3 [1:0] ='11' (default) or Register 86 (0×56) bits [1:0] = ' 11 ' (default). The speed choice is by the strap-in pin LED1_0 or Register 86 (0×56) bit [6], the default speed is 1Gbps with bit [6] = 1', set bit [6] = ' 0 ' is for 10/100Mbps speed in RGMII mode. KSZ8795CLX provides Register 86 Bits [4:3] with the adjustable clock delay and Register 164 Bits [6:4] with the adjustable drive strength for best RGMII timing on board level in 1Gbps mode.

Port 4 GMAC4 SW4-MII Interface

Table 9 shows two connection methods below:

1. The first is an external MAC connecting in SW4-MII PHY mode.
2. The second is an external PHY connecting in SW4-MII MAC mode.
3. The MAC mode or PHY mode setting is determined by the strap pin LED2_1.

Table 9. Port 4 SW4-MII Connection

MAC to MAC Connection			MAC to PHY Connection KSZ8794CNX SW4-MII PHY Mode			KSZ8794CNX SW4-MII MAC Mode	

The MII interface operates in either MAC mode or PHY mode. These interfaces are nibble-wide data interfaces, so they run at one-quarter the network bit rate (not encoded). Additional signals on the transmit side indicate when data is valid or when an error occurs during transmission. Likewise, the receive side has indicators that convey when the data is valid and without physical layer errors. For half-duplex operation, there is a COL signal that indicates a collision has occurred during transmission.
Note: Normally MRXER would indicate a receive error coming from the physical layer device. MTXER would indicate a transmit error from the MAC device. These signals are not appropriate for this configuration. For PHY mode operation with an external MAC, if the device interfacing with the KSZ8794CNX has an MRXER pin, it can be tied low. For MAC mode operation with an external PHY, if the device interfacing with the KSZ8794CNX has an MTXER pin, it can be tied low.

Port 4 GMAC4 SW4-RMII Interface

The Reduced Media Independent Interface (RMII) specifies a low pin count Media Independent Interface (MII). The KSZ8794CNX supports RMII interface on Port 4 and provides the following key characteristics:

- Supports 10 Mbps and 100 Mbps data rates.
- Uses a single 50 MHz clock reference (provided internally or externally): In internal mode, the chip provides a reference clock from the RXC4 pin to the opposite clock input pin for RMII interface when Port 4 RMII is set to clock mode.
- In external mode, the chip receives 50 MHz reference clock on the TXC4/REFCLKI4 pin from an external oscillator or opposite RMII interface when the device is set to normal mode.
- Provides independent 2-bit wide (bi-bit) transmit and receive data paths.
- For the details of SW4-RMII (Port 4 GMAC4 RMII) signal connection, see the table below:

When the device is strapped to normal mode, the reference clock comes from the TXC4/REFCLKI4 pin and will be used as the device's clock source. Set the strap pin LED1_1 can select the device's clock source either from the TXC4/REFCLKI4 pin or from an external 25 MHz crystal/oscillator clock on the XI/XO pin.

In internal mode, when using an internal 50MHz clock as SW4-RMII reference clock, the KSZ8794CNX Port 4 should be set to clock mode by the strap pin LED2_1 or the port Register 86 bit [7]. The clock mode of the KSZ8794CNX device will provide the 50 MHz reference clock to the Port 4 RMII interface.
In external mode, when using an external 50MHz clock source as SW4-RMII reference clock, the KSZ8794CNX Port 4 should be set to normal mode by the strap pin LED2_1 or the port Register 86 bit [7]. The normal mode of the KSZ8794CNX device will start to work when it receives the 50 MHz reference clock on the TXC4/REFCLKI4 pin from an external 50MHz clock source.
Table 10. Port 4 SW4-RMII Connection

SW4-RMII MAC to MAC Connection ('PHY mode')			Description	SW4-RMII MAC to PHY Connection ('MAC mode')		
External MAC	$\begin{aligned} & \text { KSZ8794CNX } \\ & \text { SW4-RMII } \end{aligned}$	KSZ8794CNX SW Signal Type		External PHY	$\begin{aligned} & \text { KSZ8794CNX } \\ & \text { SW4-RMII } \end{aligned}$	KSZ8794CNX SW Signal Type
REF_CLKI	RXC4	Output 50MHz in Clock mode	Reference Clock	50 MHz	REFCLKI4	Input 50 MHz in Normal Mode
CRS_DV	RXDV4 /CRSDV4	Output	Carrier Sense/Receive data valid	CRS_DV	TXEN4	Input
			Receive error	RXER	TXER4	Input
RXD[1:0]	RXD4[1:0]	Output	Receive data bit [1:0]	$\mathrm{RXD}[1: 0]$	TXD4[1:0]	Input
TX_EN	TXEN4	Input	Transmit data enable	TX_EN	RXDV4 /CRSDV4	Output
TXD[1:0]	TXD4[1:0]	Input	Transmit data bit [1:0]	TXD[1:0]	RXD4[1:0]	Output
50MHz	REFCLKI4	Input 50MHz in Normal Mode	Reference Clock	REF_CLKI	RXC4	Output 50MHz in Clock mode

Note: MAC/PHY mode in RMII is different than MAC/PHY mode in MII. There is no strap pin and register configuration request in RMI. Follow the signals connection in the table.

Functional Overview: Advanced Functionality

QoS Priority Support

The KSZ8794CNX provides Quality of Service (QoS) for applications such as VolP and video conferencing. The KSZ8794CNX offers one, two, or four priority queues per port by setting the Port Control 13 Register bit [1] and the Port Control 0 Register bit [0], the 1/2/4 queues split as follows:
[Port Control 9 bit [1], Control 0 Register bit [0]] = 00 Single output queue as default.
[Port Control 9 bit [1], Control 0 Register bit [0]] $=01$ Egress Port can be split into two priority transmit queues.
[Port Control 9 bit [1], Control 0 Register bit [0]] = 10 Egress Port can be split into four priority transmit queues.
The four priority transmit queue is a new feature in the KSZ8794CNX. Queue 3 is the highest priority queue and queue 0 is the lowest priority queue. The Port Control 9 Register bit [1] and the Port Control 0 Register bit [0] are used to enable split transmit queues for Ports 1, 2, 3 and 4, respectively. If a Port's transmit queue is not split, high priority and low priority packets have equal priority in the transmit queue.

There is an additional option to either always deliver high priority packets first or to use programmable weighted fair queuing for the four priority queue scale by the Port Control 14, 15, 16 and 17 Registers (default values are $8,4,2,1$ by their bits [6:0].
Register 130 bit [7:6] Prio_2Q[1:0] is used when the 2 Queue configuration is selected. These bits are used to map the 2bit result of IEEE 802.1p from the registers 128, 129 or TOS/DiffServ mapping from Registers 144-159 (for 4 Queues) into two-queue mode with priority high or low.

Please see the descriptions of Register 130 bits [7:6] for detail.

Port-based Priority

With port-based priority, each ingress Port is individually classified as a priority 0-3 receiving Port. All packets received at the priority 3 receiving Port are marked as high priority and are sent to the high-priority transmit queue if the corresponding transmit queue is split. The Port Control 0 Register bits [4:3] is used to enable Port-based priority for Ports 1, 2, 3 and 4, respectively.

802.1p-based Priority

For 802.1 p-based priority, the KSZ8794CNX examines the ingress (incoming) packets to determine whether they are tagged. If tagged, the 3-bit priority field in the VLAN tag is retrieved and compared against the "priority mapping" value, as specified by the registers 128 and 129 , both register $128 / 129$ can map 3 -bit priority field of $0-7$ value to 2 -bit result of $0-3$ priority levels. The "priority mapping" value is programmable.

Figure 9 illustrates how the 802.1p priority field is embedded in the 802.1Q VLAN tag.

Figure 9. 802.1p Priority Field Format
802.1p-based priority is enabled by bit [5] of the Port Control 0 Registers for ports 1, 2, 3 and 4, respectively.

The KSZ8794CNX provides the option to insert or remove the priority tagged frame's header at each individual egress port. This header, consisting of the two-byte VLAN Protocol ID (VPID) and the two-byte tag control Information field (TCI), is also referred to as the IEEE 802.1Q VLAN tag.
Tag Insertion is enabled by bit[2] of the Port control 0 Register and the Port Control 8 Register to select which source port (ingress port) PVID can be inserted on the egress port for Ports 1, 2, 3 and 4, respectively. At the egress port, untagged packets are tagged with the ingress port's default tag. The default tags are programmed in the Port Control 3 and control 4 register for ports 1, 2, 3 and 4, respectively. The KSZ8794CNX will not add tags to already tagged packets.
Tag Removal is enabled by bit [1] of the port registers control 0 for Ports 1, 2, 3 and 4, respectively. At the egress port, tagged packets will have their 802.1 Q VLAN tags removed. The KSZ8794CNX will not modify untagged packets.
The CRC is recalculated for both tag insertion and tag removal.
802.1p Priority Field Re-mapping is a QoS feature that allows the KSZ8794CNX to set the "User Priority Ceiling" at any ingress port by the Port Control 2 Register bit [7]. If the ingress packet's priority field has a higher priority value than the default tag's priority field of the ingress port, the packet's priority field is replaced with the default tag's priority field.

DiffServ-Based Priority

DiffServ-based priority uses the ToS registers (Registers 144 to 159) in the Advanced Control Registers section. The ToS priority control registers implement a fully decoded, 128-bit differentiated services code point (DSCP) register to determine packet priority from the 6-bit ToS field in the IP header. When the most significant six bits of the ToS field are fully decoded, 64 code points for DSCP result. These are compared with the corresponding bits in the DSCP register to determine priority.

Spanning Tree Support

Port 4 is the designated port for spanning tree support.
The other ports (Port 1 - Port 3) can be configured in one of the five spanning tree states via "transmit enable," "receive enable," and "learning disable" register settings in Registers 18, 34 and 50 for Ports 1, 2 and 3, respectively. The following description shows the port setting and software actions taken for each of the five spanning tree states.
The KSZ8794CNX supports common spanning tree (CST). To support spanning tree, the host port (Port 4) is the designated port for the processor. The other ports can be configured in one of the five spanning tree states via "transmit enable", "receive enable" and "learning disable" register settings in Port Control 2 Registers. The following table shows the port setting and software actions taken for each of the five spanning tree states.

Disable State	Port Setting	Software Action
The port should not forward or receive any packets. Learning is disabled.	$\begin{gathered} \text { "Transmit enable }=0, \\ \text { Receive enable }=0, \\ \text { Learning disable }=1 . " \end{gathered}$	The processor should not send any packets to the port. The switch may still send specific packets to the processor (packets that match some entries in the static table with "overriding bit" set) and the processor should discard those packets. Note: Processor is connected to Port 4 via MII interface. Address learning is disabled on the port in this state.
Blocking State	Port Setting	Software Action
Only packets to the processor are forwarded. Learning is disabled.	$\begin{aligned} & \text { "Transmit enable = } 0 \text {, } \\ & \text { Receive enable = 0, } \\ & \text { Learning disable = } 1 " \end{aligned}$	The processor should not send any packets to the port(s) in this state. The processor should program the "Static MAC table" with the entries that it needs to receive (e.g., BPDU packets). The "overriding" bit should also be set so that the switch will forward those specific packets to the processor. Address learning is disabled on the Port in this state.
Listening State	Port Setting	Software Action
Only packets to and from the processor are forwarded. Learning is disabled.	$\begin{gathered} \text { "Transmit enable = } 0, \\ \text { Receive enable = 0, } \\ \text { Learning disable }=1 \end{gathered}$	The processor should program the static MAC table with the entries that it needs to receive (e.g. BPDU packets). The "overriding" bit should be set so that the switch will forward those specific packets to the processor. The processor may send packets to the port(s) in this state, see "Tail Tagging Mode" section for details. Address learning is disabled on the port in this state.
Learning State	Port Setting	Software Action
Only packets to and from the processor are forwarded. Learning is enabled.	$\begin{gathered} \text { "Transmit enable }=0, \\ \text { Receive enable }=0, \\ \text { Learning disable }=0 . " \end{gathered}$	The processor should program the static MAC table with the entries that it needs to receive (e.g., BPDU packets). The "overriding" bit should be set so that the switch will forward those specific packets to the processor. The processor may send packets to the port(s) in this state, see "Tail Tagging Mode" section for details. Address learning is enabled on the port in this state.
Forwarding State	Port Setting	Software Action
Packets are forwarded and received normally. Learning is enabled.	$\begin{gathered} \text { "Transmit enable }=1 \text {, } \\ \text { Receive enable }=1, \\ \text { Learning disable }=0 . " \end{gathered}$	The processor should program the static MAC table with the entries that it needs to receive (e.g., BPDU packets). The "overriding" bit should be set so that the switch will forward those specific packets to the processor. The processor may send packets to the port(s) in this state, see "Tail Tagging Mode" section for details. Address learning is enabled on the port in this state.

Rapid Spanning Tree Support

There are three operational states of the discarding, learning, and forwarding assigned to each port for RSTP. Discarding ports do not participate in the active topology and do not learn MAC addresses. Ports in the Learning states learn MAC addresses, but do not forward user traffic. Ports in the Forwarding states fully participate in both data forwarding and MAC learning. RSTP uses only one type of BPDU called RSTP BPDUs. They are similar to STP Configuration BPDUs with the exception of a type field set to "version 2" for RSTP and "version 0" for STP, and flag field carrying additional information.

Disable State	Port Setting	Software Action
The state includes three states of the disable, blocking and listening of STP.	$\begin{gathered} \text { "Transmit enable }=0, \\ \text { Receive enable }=0, \\ \text { Learning disable }=1 . " \end{gathered}$	The processor should not send any packets to the port. The switch may still send specific packets to the processor (packets that match some entries in the static table with "overriding bit" set) and the processor should discard those packets. When disable the port's learning capability (learning disable = '1'), set the Register 2 bit [5] and bit [4] will flush rapidly with the port related entries in the dynamic MAC table and static MAC table. Note: processor is connected to Port 4 via MII interface. Address learning is disabled on the port in this state.
Learning State	Port Setting	Software Action
Only packets to and from the processor are forwarded. Learning is enabled.	$\begin{gathered} \text { "Transmit enable }=0, \\ \text { Receive enable }=0, \\ \text { Learning disable }=0 . " \end{gathered}$	The processor should program the static MAC table with the entries that it needs to receive (e.g., BPDU packets). The "overriding" bit should be set so that the switch will forward those specific packets to the processor. The processor may send packets to the port(s) in this state, see "Tail Tagging Mode" section for details. Address learning is enabled on the port in this state.
Forwarding State	Port Setting	Software Action
Packets are forwarded and received normally. Learning is enabled.	$\begin{aligned} & \text { "Transmit enable = } 1 \text {, } \\ & \text { Receive enable = } 1, \\ & \text { Learning disable = } 0 . " \end{aligned}$	The processor should program the static MAC table with the entries that it needs to receive (e.g., BPDU packets). The "overriding" bit should be set so that the switch will forward those specific packets to the processor. The processor may send packets to the port(s) in this state, see "Tail Tagging Mode" section for details. Address learning is enabled on the port in this state.

Tail Tagging Mode

The tail tag is only seen and used by the Port 4 interface, which should be connected to a processor by the SW4- RGMII, MII or RMII interfaces. One byte tail tagging is used to indicate the source/destination port on port 4. Only bits [3:0] are used for the destination in the tail tagging byte. Other bits are not used. The tail tag feature is enabled by setting Register 12 bit [1].

Figure 10. Tail Tag Frame Format

Table 11. Tail Tag Rules

Ingress to Port 4 (Host --> KSZ8794CNX)	
Bits [3:0]	Destination
0,0,0,0	Reserved
0,0,0,1	Port 1 (Direct forward to Port 1)
0,0,1,0	Port 2 (Direct forward to Port 2)
0,1,0,0	Port 3 (Direct forward to Port 3)
1,0,0,0	Reserved
x,1,1,1	Port 1, 2 and 3 (direct forward to Port 1, 2, 3)
Bits [7:4]	
0,0,0,0	Queue 0 is used at destination Port
0,0,0,1	Queue 1 is used at destination Port
0,0,1,0	Queue 2 is used at destination Port
0,0,1,1	Queue 3 is used at destination Port
0, 1, x, x	Anyhow send packets to specified Port in bits [3:0]
1, $\mathrm{x}, \mathrm{x}, \mathrm{x}$	Bits [6:0] will be ignored as normal (Address look-up)
Egress from Port 4 (KSZ8794CNX --> Host)	
Bits [1:0]	Source
0,0	Port 1 (Packets from Port 1)
0,1	Port 2 (Packets from Port 2)
1,0	Port 3 (Packets from Port 3)
1,1	Reserved

IGMP Support

There are two components involved with the support of the internet group management protocol (IGMP) in layer 2. The first part is IGMP snooping, the second part is this IGMP packet which is sent back to the subscribed port. Those components are described below.

IGMP Snooping

The KSZ8794CNX traps IGMP packets and forwards them only to the processor (port 4 SW4-RGMII/MII/RMII). The IGMP packets are identified as IP packets (either Ethernet IP packets, or IEEE 802.3 SNAP IP packets) with IP version $=0 \times 4$ and protocol version number $=0 \times 2$. Set Register 5 bit [6] to ' 1 ' to enable IGMP snooping.

IGMP Send Back to the Subscribed Port

Once the host responds to the received IGMP packet, the host should know the original IGMP ingress port and send back the IGMP packet to this port only, to avoid this IGMP packet being broadcast to all ports which will downgrade the performance.
With the tail tag mode enabled, the host will know the port which IGMP packet has been received from tail tag bits [1:0] and can send back the response IGMP packet to this subscribed port by setting bits [3:0] in the tail tag. Enable "Tail Tag Mode" by setting register 12 bit[1].

IPv6 MLD Snooping

The KSZ8794CNX traps IPv6 multicast listener discovery (MLD) packets and forwards them only to the processor (Port 4). MLD snooping is controlled by Register 164 bit [2] (MLD snooping enable) and Register 164 bit [3] (MLD option).

With MLD snooping enabled, the KSZ8794CNX traps packets that meet all of the following conditions:

- IPv6 multicast packets
- Hop count limit = 1
- IPv6 next header $=1$ or 58 (or $=0$ with hop-by-hop next header $=1$ or 58) If the MLD option bit is set to " 1 ", the KSZ8794CNX traps packets with the following additional condition:
- IPv6 next header $=43,44,50,51$, or 60 (or $=0$ with hop-by-hop next header $=43,44,50,51$, or 60)
- For MLD snooping, tail tag mode also needs to be enabled, so that the processor knows which port the MLD packet was received on. This is achieved by setting register 12 bit [1].

Port Mirroring Support

The KSZ8794CNX supports "port mirror" as described below:

"Receive Only" Mirror on a Port

All the packets received on the port will be mirrored on the sniffer sort. For example, Port 1 is programmed to be "rx sniff," and Port 4 is programmed to be the "sniffer port." A packet, received on Port 1, is destined to Port 3 after the internal lookup. The KSZ8794CNX will forward the packet to both Port 3 and Port 4. KSZ8794CNX can optionally forward even "bad" received packets to Port 3.

"Transmit Only" Mirror on a Port

All the packets transmitted on the port will be mirrored on the sniffer port. For example, Port 1 is programmed to be "tx sniff," and Port 4 is programmed to be the "sniffer port." A packet, received on any of the ports, is destined to Port 1 after the internal look-up. The KSZ8794CNX will forward the packet to both Ports 1 and 4.

"Receive and Transmit" Mirror on two Ports

All the packets received on Port A AND transmitted on Port B will be mirrored on the sniffer port. To turn on the "AND" feature, set Register 5 bit 0 to 1 . For example, Port 1 is programmed to be "rx sniff," Port 2 is programmed to be "tx sniff," and Port 4 is programmed to be the "Sniffer Port." A packet, received on Port 1, is destined to Port 3 after the internal look-up. The KSZ8794CNX will forward the packet to Port 4 only, since it does not meet the "AND" condition. A packet, received on Port 1, is destined to Port 2 after the internal look-up. The KSZ8794CNX will forward the packet to both Port 2 and Port 4, since it does meet the "AND" condition.
Multiple ports can be selected to be "rx sniffed" or "tx sniffed." Any port can be selected to be the "sniffer port." All these per port features can be selected through the Port Control 1 Register.

VLAN Support

The KSZ8794CNX supports 128 active VLANs and 4096 possible VIDs specified in IEEE 802.1q. KSZ8794CNX provides a 128 -entry VLAN table, which correspond to 4096 possible VIDs and converts to FID (7 bits) for address look-up max 128 active VLANs. If a non-tagged or null-VID-tagged packet is received, then the ingress port VID is used for look-up when $802.1 q$ is enabled by the global register 5 control 3 bit [7]. In the VLAN mode, the look-up process starts from VLAN table look-up to determine whether the VID is valid. If the VID is not valid, the packet will then be dropped and its address will not be learned. If the VID is valid, FID is retrieved for further look-up by the static MAC table or dynamic MAC table. FID+DA is used to determine the destination port. The following table describes the different actions in different situations of DA and FID+DA in the static MAC table and dynamic MAC table after the VLAN table finish a look-up action. FID+SA is used for learning purposes. The following table also describes learning in the dynamic MAC table when the VLAN table has done a look-up in the static MAC table without a valid entry.

Table 12. FID+DA Look-Up in the VLAN Mode

DA found in Static MAC table	USE FID Flag?	FID Match?	DA+FID found in Dynamic MAC table	Action
No	Don't care	Don't care	No	Broadcast to the membership ports defined in the VLAN table bits [11:7].
No	Don't care	Don't care	Yes	Send to the destination port defined in the dynamic MAC table bits [58:56].
Yes	0	Don't care	Don't care	Send to the destination port(s) defined in the static MAC table bits [52:48].
Yes	1	No	No	Broadcast to the membership ports defined in the VLAN table bits [11:7].
Yes	1	No	Yes	Send to the destination port defined in the dynamic MAC table bits [58:56].
Yes	1	Yes	Don't care	Send to the destination port(s) defined in the static MAC table bits [52:48].

Table 13. FID+SA Look-Up in the VLAN Mode

SA+FID found in Dynamic MAC table	Action
No	The SA+FID will be learned into the dynamic table.
Yes	Time stamp will be updated.

Advanced VLAN features are also supported in KSZ8794CNX, such as "VLAN ingress filtering" and "discard non PVID" defined in bits [6:5] of the Port Control 2 Register. These features can be controlled on a port basis.

Rate Limiting Support

The KSZ8794CNX provides a fine resolution hardware rate limiting based on both bit per second (bps) and packet per second (pps).
For bps, the rate step is 64 kbps when the rate limit is less than 1 Mbps rate for 100 BT or 10 BT , and 640 kbps for 1000 . The rate step is 1 Mbps when the rate limit is more than 1 Mbps rate for 100 BT or $10 \mathrm{BT}, 10 \mathrm{Mbps}$ for 1000.
For pps, the rate step is 128 pps (besides the 1 st one which is 64 pps) when the rate limit is less than 1 Mbps rate for 100BT or 10BT, and 1280pps (except the 1st one of 640pps) for 1000 . The rate step is 1 Mbps when the rate limit is more than 1.92 Kpps rate for 100BT or 10BT, 19.2 kpps for 1000.
Refer to the table below. Note: the pps limiting is bounded by bps rate for each pps setting, the mapping is shown in the 2nd column of the table.

Table 14. 10/100/1000Mbps Rate Selection for the Rate limit

Item	Bps bound of pps (egress only)	10Mbps		100Mbps		1000Mbps	
Code	Code	PPS	BPS	PPS	BPS	PPS	BPS
7'd0	7'd0	19.2Kpps	10Mbps	192Kpps	100Mbps	1.92Mpps	1000Mbps
7d'1 - 7d'10	7d'3,6, (8x)10	1.92 Kpps * code	1Mbps * code	$\begin{aligned} & 1.92 \mathrm{Kpps} \text { * } \\ & \text { code } \end{aligned}$	1 Mbps * code	$\begin{aligned} & \text { 19.2Kpps * } \\ & \text { code } \end{aligned}$	10Mbps * code
7d'11-7d'100	7d'11-7d'100		10Mbps	$\begin{aligned} & 1.92 \mathrm{Kpps} \text { * } \\ & \text { code } \end{aligned}$	$\begin{gathered} \text { 1Mbps * } \\ \text { code } \end{gathered}$	$\begin{aligned} & \text { 19.2Kpps * } \\ & \text { code } \end{aligned}$	$\begin{gathered} \text { 10Mbps * } \\ \text { code } \end{gathered}$
7d'101	7d'102	64pps	64Kbps	64pps	64Kbps	640pps	640Kbps
7d'102	7d'104	128pps	128Kbps	128pps	128Kbps	1280pps	1280Kbps
7d'103	7d'108	256pps	192Kbps	256pps	192Kbps	2560pps	1920Kbps
7d'104	7d'112	384pps	256Kbps	384pps	256Kbps	3840pps	2560Kbps
7d'105	7d'001	512pps	320 Kbps	512pps	320Kbps	5120pps	3200Kbps
7d'106	7d'001	640pps	384Kbps	640pps	384Kbps	6400pps	3840Kbps
7d'107	7d'001	768pps	448Kbps	768pps	448Kbps	7680pps	4480Kbps
7d'108	7d'002	896pps	512 Kbps	896pps	512Kbps	8960pps	5120Kbps
7d'109	7d'002	1024pps	576Kbps	1024pps	576Kbps	10240pps	5760Kbps
7d'110	7d'002	1152pps	640Kbps	1152pps	640Kbps	11520pps	6400Kbps
7d'111	7d'002	1280pps	704Kbps	1280pps	704Kbps	12800pps	7040Kbps
7d'112	7d'002	1408pps	768 Kbps	1408pps	768Kbps	14080pps	7680Kbps
7d'113	7d'003	1536pps	832Kbps	1536pps	832Kbps	15360pps	8320Kbps
7d'114	7d'003	1664pps	896Kbps	1664pps	896Kbps	16640pps	8960Kbps
7d'115	7d'003	1792pps	969Kbps	1792pps	969Kbps	17920pps	9690Kbps

The rate limit is independently on the "receiving side" and on the "transmitting side" on a per port basis. For 10BASE-T, a rate setting above 10Mbps means the rate is not limited.

On the receive side, the data receive rate for each priority at each port can be limited by setting up ingress rate control registers. On the transmit side, the data transmit rate for each queue at each port can be limited by setting up Egress Rate Control registers. For bps mode, the size of each frame has options to include minimum IFG (Inter Frame Gap) or preamble byte, in addition to the data field (from packet DA to FCS).

Ingress Rate Limit

For ingress rate limiting, KSZ8794CNX provides options to selectively choose frames from all types; multicast, broadcast, and flooded unicast frames via bits [3:2] of the Port Rate Limit Control Register. The KSZ8794CNX counts the data rate from those selected type of frames. Packets are dropped at the ingress port when the data rate exceeds the specified rate limit or the flow control takes effect without packet dropped when the ingress rate limit flow control is enabled by the Port Rate Limit Control Register bit [4]. The ingress rate limiting supports the port-based, 802.1p and DiffServ-based priorities, the Port-based priority is fixed priority $0-3$ selection by bits [4:3] of the port Control 0 Register. The 802.1 p and DiffServ-based priority can be mapped to priority 0-3 by default of the Register 128 and 129. In the ingress rate limit, set Register 135 Global Control 19 bit [3] to enable queue-based rate limit if using two-queue or four-queue mode. All related ingress ports and egress port should be split to two-queue or four-queue mode by the Port Control 9 and Control 0 Registers. The four-queue mode will use Q0-Q3 for priority 0-3 by bits [6:0] of the Port Register Ingress Limit Control 1-4. The two-queue mode will use Q0-Q1 for priority $0-1$ by bits [6:0] of the port ingress limit control 1-2 Registers. The priority levels in the packets of the 802.1 p and DiffServ can be programmed to priority 0-3 via the Register 128 and 129 for a remapping.

Egress Rate Limit

For egress rate limiting, the leaky bucket algorithm is applied to each output priority queue for shaping output traffic. Interframe gap is stretched on a per frame base to generate smooth, non-burst egress traffic. The throughput of each output priority queue is limited by the egress rate specified by the data rate selection table followed the egress rate limit control registers.
If any egress queue receives more traffic than the specified egress rate throughput, packets may be accumulated in the output queue and packet memory. After the memory of the queue or the port is used up, packet dropping or flow control will be triggered. As a result of congestion, the actual egress rate may be dominated by flow control/dropping at the ingress end, and may be therefore slightly less than the specified egress rate. The egress rate limiting supports the portbased, 802.1 p and DiffServ-based priorities, the port-based priority is fixed priority $0-3$ selection by bits [4:3] of the port Control 0 Register. The 802.1p and DiffServ-based priority can be mapped to priority 0-3 by default of the Register 128 and 129. In the egress rate limit, set Register 135 Global Control 19 bit [3] for queue-based rate limit to be enabled if using two-queue or four-queue mode. All related ingress ports and egress port should be split to two-queue or four-queue mode by the Port Control 9 and Control 0 Registers. The four-queue mode will use Q0-Q3 for priority $0-3$ by bits [6:0] of the port Egress Limit Control 1-4 Register. The two-queue mode will use Q0-Q1 for priority $0-1$ by bits [6:0] of the Port Egress Rate Limit Control 1-2 Register. The priority levels in the packets of the 802.1 p and DiffServ can be programmed to priority 0-3 by Register 128 and 129 for a re-mapping.
When the egress rate is limited, just use one queue per port for the egress port rate limit. The priority packets will be based upon the data rate selection table (see Tables 13 above). If the egress rate limit uses more than one queue per port for the egress port rate limit, then the highest priority packets will be based upon the data rate selection table for the rate limit exact number. Other lower priority packet rates will be limited based upon 8:4:2:1 (default) priority ratio, which is based on the highest priority rate. The transmit queue priority ratio is programmable.

To reduce congestion, it is good practice to make sure the egress bandwidth exceeds the ingress bandwidth.

Transmit Queue Ratio Programming

In transmit queues $0-3$ of the egress port, the default priority ratio is $8: 4: 2: 1$. The priority ratio can be programmed by the port control $10,11,12$ and 13 registers. When the transmit rate exceeds the ratio limit in the transmit queue, the transmit rate will be limited by the transmit queue $0-3$ ratio of the port control $10,11,12$ and 13 registers. The highest priority queue will not be limited. Other lower priority queues will be limited based on the transmit queue ratio.

VLAN and Address Filtering

To prevent certain kinds of packets that could degrade the quality of the switch in applications such as voice over Internet protocol (VoIP), the switch provides the mechanism to filter and map the packets with the following MAC addresses and VLAN IDs.

- Self-address packets
- Unknown unicast packets
- Unknown multicast packets
- Unknown VID packets
- Unknown IP multicast packets

The packets sourced from switch itself can be filtered out by enabling self-address filtering via the Global Control 18 Register bit [6]. The self-address filtering will filter packets on the egress Port, self MAC address is assigned in the Register 104-109 MAC Address Registers 0-5.
The unknown unicast packet filtering can be enabled by the Global Control Register 15 bit [5] and bits [4:0] specify the port map for forwarding.
The unknown multicast packet filtering can be enabled by the Global Control Register 16 bit [5] and forwarding port map is specified in bits [4:0].
The unknown VID packet filtering can be enabled by Global Control Register 17 bit [5] with forwarding port map specified in bits [4:0].
The unknown IP multicast packet filtering can be enable by Global Control Register 18 bit [5] with forwarding port map specified in bits [4:0].
Those filtering above are global based.

802.1X Port-Based Security

IEEE 802.1x is a port-based authentication protocol. EAPOL is the protocol normally used by the authentication process as uncontrolled port. By receiving and extracting special EAPOL frames, the microprocessor (CPU) can control whether the ingress and egress ports should forward packets or not. If a user port wants service from another port (authenticator), it must get approved by the authenticator. The KSZ8794 detect EAPOL frames by checking the destination address of the frame. The destination addresses should be either a multicast address as defined in IEEE 802.1x (01-80-C2-00-00-03) or an address used in the programmable reserved multicast address domain with offset $-00-03$. Once EAPOL frames are detected, the frames are forwarded to the CPU so it can send the frames to the authenticator server. Eventually, the CPU determines whether the requestor is qualified or not based on its MAC_Source addresses, and frames are either accepted or dropped.
When the KSZ8794CNX is configured as an authenticator, the Ports of the switch must then be configured for authorization. In an authenticator-initiated port authorization, a client is powered up or plugs into the port, and the authenticator port sends an Extensible Authentication Protocol (EAP) PDU to the supplicant requesting the identification of the supplicant. At this point in the process, the port on the switch is connected from a physical standpoint; however, the 802.1X process has not authorized the port and no frames are passed from the port on the supplicant into the switching fabric. If the PC attached to the switch did not understand the EAP PDU that it was receiving from the switch, it would not be able to send an ID and the port would remain unauthorized. In this state, the port would never pass any user traffic and would be as good as disabled. If the client PC is running the 802.1X EAP, it would respond to the request with its configured ID. (This could be a user name/password combination or a certificate.)
After the switch, the authenticator receives the ID from the PC (the supplicant). The KSZ8794CNX then passes the ID information to an authentication server (RADIUS server) that can verify the identification information. The RADIUS server responds to the switch with either a success or failure message. If the response is a success, the port will be authorized and user traffic will be allowed to pass through the port like any switch port connected to an access device. If the response is a failure, the port will remain unauthorized and, therefore, unused. If there is no response from the server, then the port will also remain unauthorized and will not pass any traffic.

Authentication Register and Programming Model

The Port Authentication Control Registers define the control of port based authentication. The per-port authentication can be programmed in these registers. KSZ8794CNX provides three modes for implementing the IEEE 802.1x feature. Each mode can be selected by setting the appropriate bits in the Port Authentication Registers.
When mode control bits AUTHENCIATION_MODE = 00 (pass mode), forced-authorization is enabled and a port is always authorized and does not require any messages from either the supplicant or the authentication server. This is typically the case when connecting to another switch, a router, or a server, and also when connecting to clients that do not support 802.1X. When ACL is enabled, all the packets are passed if they miss ACL rules, otherwise, ACL actions apply.

The Block mode (when AUTHENCIATION_MODE $=01$) is the standard port based authentication mode. A port in this mode sends EAP packets to the supplicant and will not become authorized unless it receives a positive response from the authentication server. Traffic is blocked before authentication to all of the incoming packets, upon authentication, software will switch to pass mode to allow all the incoming packets. In this mode, the source address of incoming packets is not checked. Including the EAP address, the forwarding map of all reserved multicast addresses need to be configured to be allowed to be forwarded before and after authentication in lookup table. When ACL is enabled, packets except ACL hit are blocked.

The third mode is called Trap mode (when AUTHENTICATION_MODE = 11'b). In this mode, all the packets are sent to CPU port. If ACL is enabled, the missed packets would be forwarded to the CPU rather than dropped. All these per port features can be selected through the Port Control 5 Register, bit [2] is used to enable ACL, bits [1:0] are for the modes selected.

ACL Filtering

ACL (Access Control List) can be created to perform the protocol-independent layer 2 MAC, layer 3 IP or layer 4 TCP/UDP ACL filtering that filters incoming Ethernet packets based on the ACL rule table. The feature allows the switch to filter customer traffic based on the source MAC address in the Ethernet header, the IP address in the IP header, and the port number and protocol in the TCP header. This function can be performed through MAC table and ACL Rule table. Besides multicast filtering handled using entries in the static table, ACL can be configured for all routed network protocols to filter the packets of those protocols as the packets pass through the switch. Access lists can prevent certain traffic from entering or exiting a network.

Access Control Lists

KSZ8794CNX offers a rule-based access control list (ACL Rule table). ACL Rule table is an ordered list of access control entries. Each entry specifies certain rules (a set of matching conditions and action rules) to permit or deny the packet access to the switch fabric. The meaning of 'permit' or 'deny' depends on the context in which the ACL is used. When a packet is received on an interface, the switch compares the fields in the packet against any applied ACLs to verify that the packet has the permissions required to be forwarded, based on the conditions specified in the lists.

The filter tests the packets against the ACL entries one-by-one. Usually the first match determines whether the router accepts or rejects packets. However, it is allowed to cascade the rules to form more robust and/or stringent requirements for incoming packets. ACLs allow switch filter ingress traffic based on the source, Layer 2 header destination MAC address and Ethernet type, source, destination IP address in Layer 3 header, port number, and protocol in the Layer 4 header of a packet.
Each list consists of 3 parts: the Matching, the Action, and the Processing field. The Matching field specifies the rules that each packet matches against and the Action field specifies the action taken if the test succeeds against the rules. The figure below shows the format of ACL and a description of the individual fields.

Figure 11. ACL Format

Matching Field

MD [1:0]: MODE- there are three modes of operation defined in ACL.
$M D=00$ disables the current rule list. No action will be taken.
MD $=01$ is qualification rules for Layer 2 MAC header filtering.
MD $=10$ is used for Layer 3 IP address filtering.
MD $=11$ performs Layer 4 TCP port number/protocol filtering.
ENB [1:0]: ENABLE - Enables different rules in the current list.
When MD = 01,
If $\mathrm{ENB}=00$, the 11 bits of the aggregated bit field from PM, $\mathrm{P}, \mathrm{RPE}, \mathrm{RP}, \mathrm{MM}$ in the action field specify a count value for packets matching the MAC address and type in the matching fields.
The count unit is defined in MSB of the forward bit field; while $=0, \mu \mathrm{sec}$ will be used and while $=1$, msec will be used.
The second MSB of the forwarded bit determines the algorithm used to generate an interrupt when the counter terminates. When $=0$, an 11-bit counter is loaded with the count value from the ACL and starts counting down every unit of time. An interrupt is generated when it expires (i.e., the next qualified packet has not been received within the period specified by the value). When $=1$, the counter is incremented on every matched packet received and an interrupt is generated when the terminal count reaches the count value in the ACL. The count resets thereafter.

If $\mathrm{ENB}=01$, the MAC address bit field is used for testing;
If $E N B=10$, the MAC type bit field is used for testing;
If $\mathrm{ENB}=11$, both the MAC address and type are tested against these bit fields in the list.
When MD = 10,
If ENB $=01$, the IP address and mask or IP protocol is enabled to be tested accordingly.
If ENB $=10$, the source and destination addresses are compared. The drop/forward decision is based on the EQ bit setting.
When MD = 11,
If $E N B=00$, protocol comparison is enabled.
If ENB $=01$, TCP address comparison is selected.
If ENB $=10$, UDP address comparison is selected.
If $\mathrm{ENB}=11$, the sequence number of the TCP is compared.
SID: Source or destination selection
S/D $=0$, the destination address/port is compared;
$S / D=1$, the source is chosen.
E/Q: comparison algorithm:
$E / Q=0$, match if they are not equal;
$E / Q=1$, match if they are equal.
MAC Address [47:0]: MAC source or destination address
TYPE [15:0]: MAC Ether Type
IP Address [31:0]: IP source or destination address
IP Mask [31:0]: IP address mask for group address filtering
MAX Port [15:0], MIN Port [15:0] (Sequence Number [31:0]): The range of TCP Port number or sequence number matching.

PC [1:0]: Port Comparison
$P C=00$, the comparison is disabled.
$P C=01$, matches either one of MAX or MIN.
$P C=10$, match if the Port number is in the range of MAX to MIN.
$P C=11$, match if the Port number is out of the range.
PRO [7:0]: IP Protocol to be matched
FME: Flag Match Enable
FME $=0$, disable TCP FLAG matching.
FME $=1$, enable TCP FLAG matching
FLAG [5:0]: TCP Flag to be matched.

Action Field

PM [1:0]: Priority Mode
$P M=00$, no priority is selected, the priority is determined by the QoS/Classification is used.
$P M=01$, the priority in P bit field is used if it is greater than QoS result.
$P M=10$, the priority in P bit field is used if it is smaller than QoS result.
$P M=11$, the P bit field will replace the priority determined by QoS.
P [2:0]: Priority.
RPE: Remark Priority Enable -
RPE $=0$, no remarking is necessary.
RPE $=1$, the VLAN priority bits in the tagged packets are replaced by RP bit field in the list.
RP [2:0]: Remarked Priority.
MM [1:0]: Map Mode
$M M=00$, no forwarding remapping is necessary.
$M M=01$, the forwarding map in FORWORD is OR'ed with the Forwarding map from the look-up table.
$M M=10$, the forwarding map in FORWORD is AND'ed with the Forwarding map from the look-up table.
$M M=11$, the forwarding map in FORWORD replaces the Forwarding map from the look-up table.
FORWARD Bits [4:0]: Forwarding Port(s) - Each bit indicates the forwarding decision of one Port.
Processing Field
FRN Bits [3:0]: First Rule Number - Assign which entry with its Action Field in 16 entries is used in the rule set.
For the rule set, see description below.
RULESET Bits [15:0]: Rule Set - Group of rules to be qualified, there are 16 entries rule can be assigned to a rule set per port by the two rule-set registers. The Rule table allows the rules to be cascaded. There are 16 entries in the RTB. Each entry can be a rule on its own, or can be cascaded with other entries to form a rule set. The test result of incoming packets against rule set will be the AND'ed result of all the test result of incoming packets against the rules included in this rule set. The action of the rule set will be the action of the first rule specified in FRN field. The rule with higher priority will have lower index number. Or rule 0 is the highest priority rule and rule 15 is the lowest priority. ACL rule table entry is disabled when mode bits are set to 2'b00.

A rule set (RULESET) is used to select the match results of different rules against incoming packets. These selected match results will be AND'ed to determine whether the frame matches or not. The conditions of different rule sets having the same action will be OR'ed for comparison with frame fields, and the CPU will program the same action to those rule sets that are to be OR'ed together. For matched rule sets, different rule sets having different actions will be arbitrated or
chosen based upon the first rule number (FRN) of each rule set. The rule table will be set up with the high priority rule at the top of the table or with the smaller index. Regardless whether the matched rule sets have the same or different action, the hardware will always compare the first rule number of different rule sets to determine the final rule set and action.

DOS Attack Prevention via ACL

The ACL can provide certain detection/protection of the following DoS (Denial of Service) attack types based on rule setting, which can be programmed to drop or not to drop each type of DoS packet respectively.

Example 1:

When MD = ' 10 ', ENABLE = ' 10 ', setting EQ bit to ' 1 ' can determine the drop or forward packets with identical source and destination IP addresses in IPv4/IPv6.

Example 2: When MD = ' 11 ', ENABLE = '01/10', setting EQ bit to ' 1 ' can determine the drop or forward packets with identical source and destination TCP/UDP Ports in IPv4/IPv6.
Example 3:
When MD = ' 11 ', ENABLE = ' 11 ', Sequence Number = ' 0 ', FME = ' 1 ', FMSK = '00101001', FLAG = 'xx1x1xx1', Setting the EQ bit to ' 1 ' will drop/forward the all packets with a TCP sequence number equal to ' 0 ', and flag bit URG = ' 1 ', PSH = ' 1 ' and FIN = ' 1 '.

Example 4:
When MD = '11', ENABLE = ‘01', MAX Port = '1024’, MIN Port = '0’, FME = '1', FMSK = ‘00010010', FLAG = ‘xxx0xx1x', Setting the EQ bit to ' 1 ' will drop/forward the all packets with a TCP Port number ≤ 1024, and flag bit URB $=$ ' 0 ', SYN = ' 1 '.
ACL related registers are Register 110 (0x6E), Register 111 ($0 \times 6 \mathrm{~F}$), and the ACL rule tables.

Device Registers Mapping

The KSZ8794CLX device has a rich set of registers available to manage the functionality of the device. Access to these registers is via the MIIM or SPI interfaces. The Figure below provides a global picture of accessibility via the various interfaces and addressing ranges from the perspective of each interface.

Figure 12. Interface and Register Mapping
The registers within the linear 0x00-0xFF address space are all accessible via the SPI interface by a CPU attached to that bus. The mapping of the various functions within that linear address space is summarized in table below.

Table 15. Mapping of Functional Areas within the Address Space

Register Locations	Device Area	Description
$0 \times 00-0 \times F F$	Switch Control and Configuration	Registers which control the overall functionality of the Switch, MAC, and PHYs
$0 \times 6 \mathrm{E}-0 \times 6 \mathrm{~F}$		Registers used to indirectly address and access distinct areas within the device. - MIB (Management Information Base) Counters - Static MAC Address Table - - Dynamic MAC Address Table - VLAN Table
		- PME Indirect Register - ACL Indirect Register
		- EEE Indirect Register

Direct Register Description

Address	Contents
0x00-0x01	Family ID, Chip ID, Revision ID, and start switch Registers
0x02-0x0D	Global Control Registers 0-11
0x0E-0x0F	Global Power Down Management Control Registers
0x10-0x14	Port 1 Control Registers 0-4
0x15	Port 1 Authentication Control Register
0x16-0x18	Port 1 Reserved (Factory Test Registers)
0x19-0x1F	Port 1 Control/Status Registers
0x20-0x24	Port 2 Control Registers 0-4
0x25	Port 2 Authentication Control Register
0x26-0x28	Port 2 Reserved (Factory Test Registers)
0x29-0x2F	Port 2 Control/Status Registers
0x30-0x34	Port 3 Control Registers 0-4
0x35	Port 3 Authentication Control Register
0x36-0x38	Port 3 Reserved (Factory Test Registers)
0x39-0x3F	Port 3 Control/Status Registers
0x40-0x44	Port 4 Control Registers 0-4
0x45	Port 4 Authentication Control Register
0x46-0x48	Port 4 Reserved (Factory Test Registers)
0x49-0x4F	Port 4 Control/Status Registers
0x50-0x54	Port 4 Control Registers 0-4
0x56-0x58	Port 4 Reserved (Factory Test Registers)
0x59-0x5F	Port 4 Control/Status Registers
0x60-0x67	Reserved (Factory Testing Registers)
0x68-0x6D	MAC Address Registers
0x6E-0x6F	Indirect Access Control Registers
0x70-0x78	Indirect Data Registers
0x79-0x7B	Reserved (Factory Testing Registers)
0x7C-0x7D	Global Interrupt and Mask Registers
0x7E-0x7F	Reserved (Factory Testing Registers)
0x80-0x87	Global Control Registers 12-19
0x88	Switch Self Test Control Register
0x89-0x8F	QM Global Control Registers
0x90-0x9F	Global TOS Priority Control Registers 0-15
OxA0	Global Indirect Byte Register
OxA0-0xAF	Reserved (Factory Testing Registers)
0xB0-0xBE	Port 1 Control Registers
0xBF	Reserved (Factory Testing Register): Transmit Queue Remap Base Register
0xC0-0xCE	Port 2 Control Registers

Address	Contents
0xCF	Reserved (Factory Testing Register)
0xD0-0xDE	Port 3 Control Registers
$0 x D F$	Reserved (Factory Testing Register)
0xE0-0xEE	Port 4 Control Registers
0xEF	Reserved (Factory Testing Register)
0xF0-0xFE	Port 4 Control Registers
0xFF	Reserved (Factory Testing Register)

Global Registers

Address	Name	Description	Mode	Default
Register 0 (0x00): Chip IDO				
7-0	Family ID	Chip family.	RO	0×87
Register 1 (0x01): Chip ID1 / Start Switch				
7-4	Chip ID	$0 \times 6=8794$	RO	0×6
3-1	Revision ID		RO	0x0
0	Start Switch	1 = Start the switch function of the chip $0=$ Stop the switch function of the chip	R/W	1
Register 2 (0x02): Global Control 0				
7	New back off enable	New Back-off algorithm designed for UNH 1 = Enable 0 = Disable	R/W	0
6	Global soft reset enable	Global Software Reset 1 = Enable to reset all FSM and data path (not configuration) $0=$ Disable reset Note: This reset will stop to receive packets if it is being in the traffic. All registers keep their configuration values.	RO	0
5	Flush dynamic MAC table	Flush the entire dynamic MAC table for RSTP. This bit is self-clear (SC). 1 = Trigger the flush dynamic MAC table operation. $0=$ Normal operation Note: All the entries associated with a Port that has its learning capability being turned off (Learning Disable) will be flushed. If you want to flush the entire Table, all Ports learning capability must be turned off.	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \text { (SC) } \end{aligned}$	0
4	Flush static MAC table	Flush the matched entries in static MAC table for RSTP 1 = Trigger the flush static MAC table operation. $0=$ Normal operation Note: The matched entry is defined as the entry whose Forwarding Ports field contains a single Port and MAC address with unicast. This Port, in turn, has its learning capability being turned off (Learning Disable). Per Port, multiple entries can be qualified as matched entries.	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & (\mathrm{SC}) \end{aligned}$	0
3	Reserved	N/A Don't change.	RO	1
2	Reserved	N/A Don't change.	RO	1
1	UNH Mode	```1 = The switch will drop packets with 0x8808 in the T/L filed, or DA = 01-80-C2-00-00-01. 0 = The switch will drop packets qualified as "flow control" packets.```	R/W	0
0	Link Change Age	1 = Link change from "link" to "no link" will cause fast aging $(<800 \mu \mathrm{~s})$ to age address table faster. After an age cycle is complete, the age logic will return to normal (300 ± 75 seconds). Note: If any port is unplugged, all addresses will be automatically aged out.	R/W	0

Global Registers (Continued)

Address	Name	Description	Mode	Default
Register 3 (0x03): Global Control 1				
7	Reserved	N/A Don't change.	RO	0
6	2K Byte packet support	1 = Enable 2K Byte packet support. 0 = Disable 2K Byte packet support.	R/W	0
5	IEEE 802.3x Transmit Flow Control Disable	$0=$ Enables transmit flow control based on AN result. 1 = Will not enable transmit flow control regardless of the AN result.	R/W	0
4	IEEE 802.3x Receive Flow Control Disable	$0=$ Enables receive flow control based on AN result. 1 = Will not enable receive flow control regardless of the AN result. Note: Bit [5] and bit [4] default values are controlled by the same pin, but they can be programmed independently.	R/W	0
3	Frame Length Field Check	1 = Check frame length field in the IEEE packets. If the actual length does not match, the packet will be dropped (for L/T <1500).	R/W	0
2	Aging Enable	1 = Enable Aging function in the chip. $0=$ Disable Aging function.	R/W	1
1	Fast age Enable	1 = Turn on Fast Aging ($800 \mu \mathrm{~s}$).	R/W	0
0	Aggressive Back Off Enable	1 = Enable more aggressive back-off algorithm in half duplex mode to enhance performance. This is not in the IEEE standard.	R/W	0

Global Registers (Continued)

Address	Name	Description	Mode	Default
Register 4 (0x04): Global Control 2				
7	Unicast Port-VLAN Mismatch Discard	This feature is used for port VLAN (described in Port Control 1 Register). 1 = All packets cannot cross VLAN boundary. $0=$ Unicast packets (excluding unknown/ multicast/broadcast) can cross VLAN boundary. Note: When mirroring is enabled, the single-destination packets will be dropped if it's mirrored to another port.	R/W	1
6	Multicast Storm Protection Disable	1 = "Broadcast Storm Protection" does not include multicast packets. Only DA = FFFFFFFFFFFFF packets will be regulated. $0=$ "Broadcast Storm Protection" includes DA $=$ FFFFFFFFFFFFF and DA[40] $=1$ packet.	R/W	1
5	Back Pressure Mode	1 = Carrier sense based backpressure is selected. $0=$ Collision based backpressure is selected.	R/W	1
4	Flow Control and Back Pressure fair Mode	1 = Fair mode is selected. In this mode, if a flow control port and a non-flow control port talk to the same destination port, then packets from the non-flow control port may be dropped. This is to prevent the flow control port from being flow controlled for an extended period of time. $0=\ln$ this mode, if a flow control port and a non-flow control port talk to the same destination port, the flow control port will be flow controlled. This may not be "fair" to the flow control port.	R/W	1
3	No Excessive Collision Drop	$1=$ The switch will not drop packets when 16 or more collisions occur. $0=$ The switch will drop packets when 16 or more collisions occur.	R/W	0
2	Reserved	N/A Don't change.	RO	0
1	Legal Maximum Packet Size Check Disable	1 = Enables acceptance of packet sizes up to 1536 bytes (inclusive). $0=1522$ bytes for tagged packets (not including packets with STPID from CPU to Ports 1-4), 1518 bytes for untagged packets. Any packets larger than the specified value will be dropped.	R/W	0
0	Reserved	N/A	RO	0

Global Registers (Continued)

Address	Name	Description	Mode	Default
Register 5 (0x05): Global Control 3				
7	802.1q VLAN Enable	$1=802.1 q$ VLAN mode is turned on. VLAN table needs to be set up before the operation. $0=802.1 q$ VLAN is disabled.	R/W	0
6	IGMP Snoop Enable on Switch Port 4 SW4RGMII/MII/RMII Interface	$\begin{aligned} & 1=\text { IGMP Snoop enabled. All the IGMP packets will be } \\ & \text { forwarded to the Switch Port } 4 \text { RGMII/MII/RMII I/F. } \\ & 0=\text { IGMP Snoop disabled. } \end{aligned}$	R/W	0
5-1	Reserved	N/A Don't change.	RO	00000
0	Sniff Mode Select	1 = Enables Rx AND Tx sniff (both source port and destination port need to match). $0=$ Enables Rx OR Tx sniff (Either source port or destination port need to match). Note: Default is used to implement Rx only sniff.	R/W	0
Register 6 (0x06): Global Control 4				
7	Switch SW4-MII/RMII Back Pressure Enable	$\begin{aligned} & 1=\text { Enable half-duplex back pressure on the switch } \\ & \text { MII/RMII interface. } \\ & 0=\text { Disable back pressure on the switch MII interface. } \end{aligned}$	R/W	0
6	Switch SW4-MII/RMII Half-Duplex Mode	1 = Enable MII/RMII interface half-duplex mode. 0 = Enable MII/RMII interface full-duplex mode.	R/W	0
5	Switch SW4-MII/RMII Flow Control Enable	1 = Enable full-duplex flow control on the switch MII/RMII interface. $0=$ Disable full-duplex flow control on the switch MII/RMII interface.	R/W	0
4	Switch SW4-MII/RMII Speed	$1=$ The switch SW4-MII/RMII is in 10 Mbps mode. $0=$ The switch SW4-MII/RMII is in 100Mbps mode.	R/W	0
3	Null VID Replacement	1 = Replace null VID with Port VID (12 bits). $0=$ No replacement for null VID.	R/W	0
2-0	Broadcast Storm Protection Rate Bit[10:8]	This register, along with the next register, determines how many " 64 byte blocks" of packet data are allowed on an input Port in a preset period. The period is 50 ms for 100 BT or 500 ms for 10 BT . The default is 1%.	R/W	000
Register 7 (0x07): Global Control 5				
7-0	Broadcast Storm Protection Rate Bits [7:0]	This register, along with the previous register, determines how many "64-byte blocks" of packet data are allowed on an input Port in a preset period. The period is 50 ms for 100BT or 500 ms for 10BT. The default is 1%.	R/W	$0 \times 4 \mathrm{~A}^{(3)}$

Note:
3. 148,800 frames $/ \mathrm{sec} \times 50 \mathrm{~ms} /$ interval $\times 1 \%=74$ frames/interval (approx.) $=0 \times 4 \mathrm{~A}$.

Global Registers (Continued)

Address	Name	Description	Mode	Default
Register 8 (0x08): Global Control 6 MIB Control				
7	Flush Counter	$1=$ All the MIB counter of enabled Port(s) will be reset to 0 . This bit is self-cleared after the operation finishes. $0=$ No reset of the MIB counter.	R/W (SC)	0
6	Freeze Counter	1 = Enabled Port(s) will stop counting. $0=$ Enabled Port(s) will not stop counted.	R/W	0
5	Reserved	N/A Don't change.	RO	0
4-0	Control Enable	1 = Enable flush and freeze for each Port. Bit [4] is for Port 4 Flush + Freeze. Bit [3] is reserved. Bit [2] is for Port 3 Flush + Freeze. Bit [1] is for Port 2 Flush + Freeze. Bit [0] is for Port 1 Flush + Freeze. 0 = Disable flush and freeze.	R/W	0
Register 9 (0x09): Global Control 7				
7-0	Factory Testing	N/A Don't change.	RO	0x40
Register 10 (0x0A): Global Control 8				
7-0	Factory Testing	N/A Don't change.	RO	0×00

Global Registers (Continued)

Global Registers (Continued)

Address	Name	Description	Mode	Default
Register 12 (0x0C): Global Control 10				
7-6	Reserved	Reserved	RO	0
5-2	Reserved	N/A Don't change.	RO	0001
1	Tail Tag Enable	Tail Tag feature is applied for Port 4 only. 1 = Insert 1 Byte of data right before FCS. $0=$ Do not insert.	R/W	0
0	Pass Flow Control Packet	1 = Switch will not filter 802.1x "flow control" packets. $0=$ Switch will filter 802.1x "flow control" packets.	R/W	0

Register 13 (0x0D): Global Control 11

$7-0$	Factory Testing	N/A Don't change.	RO	00000000
Register 14 (0x0E): Power Down Management Control 1	RO	00		
$7-6$	Reserved	N/A Don't change.	R/W	0
5	PLL Power Down	Pll Power Down Enable: $1=$ = Enable $0=$ Disable Note: It occurs in the Energy Detect mode (EDPD mode)	R/W	0
$4-3$	Power Management Mode Select	Power Management Mode : $00=$ Normal mode (D0) $01=$ Energy Detection mode (D2) $10=$ Soft Power Down mode (D3) $11=$ Reserved	00	
$2-0$	Reserved	N/A Don't change.	RO	

Register 15 (0x0F): Power Down Management Control 2

$7-0$	Go_Sleep_Time [7:0]	When the Energy Detect mode is on, this value is used to control the minimum period that the no energy event has to be detected consecutively before the device enters the low power state. The unit is 20ms. The default of go_sleep time is 1.6 seconds ($80 \mathrm{Dec} x$ 20ms).	R/W	01010000

Port Registers

The following registers are used to enable features that are assigned on a per port basis. The register bit assignments are the same for all Ports, but the address for each Port is different, as indicated.

Register 16 (0x10): Port 1 Control 0
Register 32 (0x20): Port 2 Control 0
Register 48 (0x30): Port 3 Control 0
Register 64 (0x40): Reserved
Register 80 (0x50): Port 4 Control 0

Address	Name	Description	Mode	Default
7	Broadcast Storm Protection Enable	1 = Enable broadcast storm protection for ingress packets on the Port. $0=$ Disable broadcast storm protection.	R/W	0
6	DiffServ Priority Classification Enable	1 = Enable DiffServ priority classification for ingress packets on Port. 0 = Disable DiffServ function.	R/W	0
5	802.1p Priority Classification Enable	1 = Enable 802.1p priority classification for ingress packets on Port. 0 = Disable 802.1p priority classification for ingress packets on Port.	R/W	0
4-3	Port-Based Priority Classification Enable	$00=$ Ingress packets on Port will be classified as priority 0 queue if "Diffserv" or " 802.1 p" classification is not enabled or fails to classify. 01 = Ingress packets on Port will be classified as priority 1 queue if "Diffserv" or " 802.1 p" classification is not enabled or fails to classify. $10=$ Ingress packets on Port will be classified as priority 2 queue if "Diffserv" or "802.1p" classification is not enabled or fails to classify. 11 = Ingress packets on Port will be classified as priority 3 queue if "Diffserv" or " 802.1 p" classification is not enabled or fails to classify. Note: "DiffServ", "802.1p" and Port priority can be enabled at the same time. The OR'ed result of 802.1p and DSCP overwrites the Port priority.	R/W	00
2	Tag insertion	$1=$ When packets are output on the Port, the switch will add 802.1 q tags to packets without $802.1 q$ tags when received. The switch will not add tags to packets already tagged. The tag inserted is the ingress Port's "Port VID." 0 = Disable tag insertion.	R/W	0
1	Tag Removal	$1=$ When packets are output on the Port, the switch will remove 802.1q tags from packets with 802.1q tags when received. The switch will not modify packets received without tags. 0 = Disable tag removal.	R/W	0

Port Registers (Continued)

Address	Name	Description	Mode	Default
		This bit [0] in Registers16/32/48/64/80 should be in combination with Registers177/193/209/225/241 bit [1] for Port 1-5. This will select the split of 1,2 and 4 queues:		
0	Two Queues Split Enable	For Port 1, Register 177 bit [1], Register 16 bit [0]: $11=$ Reserved $10=$ The Port output queue is split into four priority queues or if map 802.1p to priority 0-3 mode. $01=$ The Port output queue is split into two priority queues or if map 802.1p to priority 0-3 mode. 00 Single output queue on the Port. There is no priority differentiation even though packets are classified into high or low priority.	R/W	0

Register 17 (0x11): Port 1 Control 1

Register 33 (0x21): Port 2 Control 1
Register 49 (0x31): Port 3 Control 1
Register 65 (0x41): Reserved
Register 81 (0x51): Port 4 Control 1

Address	Name	Description	Mode	Default
7	Sniffer Port	1 = Port is designated as Sniffer port and will transmit packets that are monitored. $0=$ Port is a normal port.	R/W	0
6	Receive Sniff	1 = All the packets received on the port will be marked as "monitored packets" and forwarded to the designated "Sniffer port." $0=$ No receive monitoring.	R/W	0
5	Transmit Sniff	1 = All the packets transmitted on the port will be marked as "monitored packets" and forwarded to the designated "Sniffer port." $0=$ No transmit monitoring.	R/W	0
$4-0$	Port VLAN Membership	Defines the port's Port VLAN membership. Bit [4] stands for Port 4, Bit [3] Reserved, Bit [2] stands for Port 3, Bit [1] stands for Port 2, Bit [0] stands for Port 1. The Port can only communicate within the membership. A '1' includes a port in the membership, a '0' excludes a port in the membership.	R/W	0x1f

Port Registers (Continued)

Register 18 (0x12): Port 1 Control 2
Register 34 (0x22): Port 2 Control 2
Register 50 (0x32): Port 3 Control 2
Register 66 (0x42): Reserved
Register 82 (0x52): Port 4 Control 2

Address	Name	Description	Mode	Default
7	User Priority Ceiling	1 = If packet 's "user priority field" is greater than the "user priority field" in the port default tag register, replace the packet's "user priority field" with the "user priority field" in the port default tag Register Control 3. $0=$ No replace packet's priority filed with Port default tag priority filed of the Port Control 3 Register bits [7:5].	R/W	0
6	Ingress VLAN Filtering.	1 = The switch will discard packets whose VID port membership in VLAN table bits[11:7] does not include the ingress port. $0=$ No ingress VLAN filtering.	R/W	0
5	Discard Non-PVID packets	$\begin{aligned} & 1=\text { The switch will discard packets whose VID does } \\ & \text { not match ingress port default VID. } \\ & 0=\text { No packets will be discarded. } \end{aligned}$	R/W	0
4	Force Flow Control	1 = Enables Rx and Tx flow control on the port, regardless of the AN result. $0=$ Flow control is enabled based on the AN result (Default)	R/W	0
3	Back Pressure Enable	1 = Enable port half-duplex back pressure. 0 = Disable port half-duplex back pressure.	R/W	0
2	Transmit Enable	1 = Enable packet transmission on the port. 0 = Disable packet transmission on the port.	R/W	1
1	Receive Enable	1 = Enable packet reception on the port. 0 = Disable packet reception on the port.	R/W	1
0	Learning Disable	1 = Disable switch address learning capability. $0=$ Enable switch address learning.	R/W	0

Note: Bits [2:0] are used for spanning tree support. See "Spanning Tree Support" section.

Register 19 (0x13): Port 1 Control 3

Register 35 (0x23): Port 2 Control 3
Register 51 (0x33): Port 3 Control 3

Register 67 (0x43): Reserved

Register 83 (0x53): Port 4 Control 3

Address	Name	Description	Mode	Default
		Port's default tag, containing:		
$7-0$	Default Tag [15:8]	7-5: User priority bits 4: CFI bit 3-0: VID[11:8]	R/W	0

Port Registers (Continued)

Register 20 (0x14): Port 1 Control 4
Register 36 (0x24): Port 2 Control 4
Register 52 (0x34): Port 3 Control 4
Register 68 (0x44): Reserved
Register 84 (0x54): Port 4 Control 4

Address	Name	Description	Mode	Default
$7-0$	Default Tag [7:0]	Default Port 1's tag, containing: $7-0:$ VID[7:0]	R/W	1

Note:
Registers 19 and 20 (and those corresponding to other Ports) serve two purposes: (1) Associated with the ingress untagged packets, and used for egress tagging; (2) Default VID for the ingress untagged or null-VID-tagged packets, and used for address look up.

Register 21 (0x15): Port 1 Control 5

Register 37 (0x25): Port 2 Control 5
Register 53 (0x35): Port 3 Control 5
Register 69 (0x45): Reserved
Register 85 (0x55): Port 4 Control 5

Address	Name	Description	Mode	Default
$7-3$	Reserved	N/A Don't change.	RO	00000
2	ACL Enable	1 = Enable ACL $0=$ Disable ACL	R/W	0
$1-0$	These bits control port-based authentication: (forced-authorized), if ACL is enabled, pass all traffic if ACL missed 01 Authentication enabled, all traffic is blocked, if ACL is enabled, traffic is blocked if ACL missed $11=$ Authentication enabled, all traffic is trapped to CPU Port, if ACL is enabled, traffic is trapped to port 5 CPU Port only if ACL missed.	R/W	00	

Register 22 (0x16): Reserved
Register 38 (0x26): Reserved
Register 54 (0x36): Reserved
Register 70 (0x46): Reserved

Port Registers (Continued)

Register 86 (0x56): Port 4 Interface Control 6

Address	Name	Description	Mode	Default
7	RMII_CLK_SEL	Port 4 SW4-RMII Mode Select 1 = RMII uses internal clock (clock mode) $0=$ RMII uses external clock (normal mode) Strap-in option for Port 4: LED2_1 PU = SW4-RMII is in the clock mode (Default) $P D=$ SW4-RMII is in the normal mode. Note: This pin has an internal pull-up	R/W	1
6	Is_1Gbps	$1=1 \mathrm{Gbps}$ is chosen for Port 4 in RGMII mode. $0=10 / 100 \mathrm{Mbps}$ is chosen for Port 4 in RGMII mode. Strap-in option: LED1_0 PU = 1Gbps in SW4- RGMII mode (Default) PD $=10 / 100 \mathrm{Mbps}$ in SW4-RGMII mode Note: This pin has an internal pull-up. Use bit [4] of the Register 6, Global Control 4 to set for 10 or 100 speed in 10/100Mbps mode.	R/W	1
5	Reserved	N/A Don't change.	RO	1
4	RGMII Internal Delay (ID) Ingress Enable	Enable Ingress RGMII-ID Mode 1 = Ingress RGMII-ID enabled. Min. 1.5ns delay is added to ingress clock input $0=$ No delay is added, only clock to data skew applied. Note: The egress delay of the connection partner should be set to opposite value to match this ingress delay or no delay.	R/W	0
3	RGMII Internal Delay (ID) Egress Enable	Enable Egress RGMII-ID Mode 1 = Egress RGMII-ID enabled. Min. 1.5 ns delay is added to egress clock output $0=$ No delay is added, only clock to data skew applied. Note: The ingress delay of the connection partner should be set to opposite value to match this egress delay or no delay.	R/W	1

Port Registers (Continued)

Address	Name	Description	Mode	Default
2	MII Mode Select	Port 4 SW4-MII Mode Select $1=\mathrm{MII}$ is in MAC mode. (Default) $0=\mathrm{MII}$ is in PHY mode. Strap-in option: LED2_1 $\mathrm{PU}=\mathrm{MII}$ is in MAC mode. (Default) PD = MII is in PHY mode. Note: When set SW4-MII to PHY mode, the CRS, COL, RXC and TXC pins will change from the input to output.	R/W	1
1-0	Interface Mode Select	These bits select the interface type and mode for Switch Port 4 (SW4). Port 4 Mode Select: $\begin{aligned} & 00=\text { MII } \\ & 01=\text { RMII } \\ & 10=\text { Reserved } \\ & 11=\text { RGMII. } \end{aligned}$ Strap-in option: LED3[1:0] $\begin{aligned} & 00=\text { MII } \\ & 01=\text { RMII } \\ & 10=\text { Reserved } \\ & 11=\text { RGMII (Default } \end{aligned}$ Note: These pins have internal pull-ups.	R/W	11

Register 23 (0x17): Port 1 Control 7
Register 39 (0x27): Port 2 Control 7
Register 55 (0x37): Port 3 Control 7
Register 71 (0x47): Reserved
Register 87 (0x57): Reserved

Port Registers (Continued)

Address	Name	Description	Mode	Default
7-6	Reserved	N/A Don't Change.	RO	0000
5-4	Advertised_Flow_Control _Capability	These bits indicate that the KSZ8794CNX has implemented both the optional MAC control sublayer and the PAUSE function as specified in IEEE Clause 31 and Annex 31B for full duplex operation independent of rate and medium. $00=$ No pause 01 = Symmetric PAUSE 10 = Asymmetric PAUSE toward link partner toward link partner 11 = Both Symmetric PAUSE and Asymmetric PAUSE toward local devices Bit [5] indicates that asymmetric PAUSE is supported. The value of bit [4] when bit [5] is set indicates the direction of the PAUSE frames that are supported for flow across the link. Asymmetric PAUSE configuration results in independent enabling of the PAUSE receive and PAUSE transmit functions as defined by IEEE Annex 31B.	R/W	11
3	Advertised 100BT FullDuplex Capability	1 = Advertise 100BT full-duplex capability. 0 = Suppress 100BT full-duplex capability from transmission to link partner.	R/W	1
2	Advertised 100BT HalfDuplex Capability	1 = Advertise 100BT half-duplex capability. 0 = Suppress 100BT half-duplex capability from transmission to link partner.	R/W	1
1	Advertised 10BT FullDuplex Capability	1 = Advertise 10BT full-duplex capability. 0 = Suppress 10BT full-duplex capability from transmission to link partner.	R/W	1
0	Advertised 10BT HalfDuplex Capability	1 = Advertise 10BT half-duplex capability. 0 = Suppress 10BT half-duplex capability from transmission to link partner.	R/W	1

Register 24 (0x18): Port 1 Status 0
Register 40 (0x28): Port 2 Status 0
Register 56 (0x38): Port 3 Status 0
Register 72 (0x48): Reserved
Register 87 (0x57): Reserved

Port Registers (Continued)

Address	Name	Description	Mode	Default
$7-6$	Reserved	N/A Don't Change.	These bits indicate the partner capability for both the optional MAC control sub-layer and the PAUSE function as specified in IEEE Clause 31 and Annex 31B for full duplex operation independent to rate and medium. $00=$ No pause $01=$ Symmetric PAUSE $10=$ Asymmetric PAUSE toward link partner toward link partner	0000
$5-4$	Partner_Flow_Control _Capable	RO		
3	Partner 100BT Full- Duplex Capability	$1=$ Link partner 100BT full-duplex capable. to Link partner not 100BT full-duplex capable.	00	
2	Partner 100BT Half- Duplex Capability	$1=$ Link partner 100BT half-duplex capable. $0=$ Link partner not 100BT half-duplex capable.	RO	
1	Partner 10BT Full-Duplex Capability	$1=$ Link partner 10BT full-duplex capable. $0=$ Link partner not 10BT full-duplex capable.	RO	0
0	Partner 10BT Half-Duplex Capability	$1=$ Link partner 10BT half-duplex capable. $0=$ Link partner not 10BT half-duplex capable.	RO	0

Register 25 (0x19): Port 1 Status 1

Register 41 (0x29): Port 2 Status 1

Register 57 (0x39): Port 3 Status 1
Register 73 (0x49): Reserved
Register 89 (0x59): Reserved

Address	Name	Description	Mode	Default
7	Hp_Mdix	$1=$ HP Auto MDI/MDI-X Mode $0=$ Micrel Auto MDI/MDI-X Mode	R / W	1
6	Factory Testing	N/A Don't Change.	$\mathrm{R}=$$1=$ Polarity is reversed $0=$ Polarity is not reversed	RO
5	Polrvs	Transmit Flow Control Enable	$1=$ Transmit flow control feature is active $0=$ Transmit flow control feature is inactive	0
3	Receive Flow Control Enable	$1=$ Receive flow control feature is active $0=$ Receive flow control feature is inactive	RO	0
2	Operation Speed	$1=$ Link speed is 100Mbps $0=$ Link speed is 10Mbps	RO	0
1	Operation Duplex	$1=$ Link duplex is full $0=$ Link duplex is half	RO	0
0	Reserved	N/A Don't Change.	RO	

Port Registers (Continued)

Register 26 ($0 \times 1 A$): Port 1 PHY Control 8

Register 42 (0x2A): Port 2 PHY Control 8

Register 58 (0x3A): Port 3 PHY Control 8
Register 74 (0x4A): Reserved
Register 90 (0x5A): Reserved

Address	Name	Description	Mode	Default
7	CDT 10M Short Note: CDT means Cable Diagnostic Test	1 = Less than 10 meter short	RO	0
6-5	CDT_Result	$00=$ Normal condition 01 = Open condition detected in cable $10=$ Short condition detected in cable $11=$ Cable diagnostic test has failed	RO	00
4	CDT_Enable	1 = Enable cable diagnostic test. After CDT test has completed, this bit will be self-cleared. $0=$ Indicates that the cable diagnostic test (if enabled) has Indicate cable diagnostic test.	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \text { (SC) } \end{aligned}$	0
3	Force_Link	$\begin{aligned} & 1=\text { Force link pass } \\ & 0=\text { Normal Operation } \end{aligned}$	R/W	0
2	Pwrsave	1 = Enable power saving 0 = Disable power saving	R/W	0
1	Remote Loopback	1 = Perform Remote loopback, loopback on Port 1 as follows: Port 1 (Reg. 26, bit [1] = '1') Start : RXP1/RXM1 (Port 1) Loopback: PMD/PMA of Port 1's PHY End: TXP1/TXM1 (Port 1) Setting Reg. 42, 58, 74 bit [1] = '1' will perform remote loopback on Port 2, 3, 4. $0=$ Normal Operation.	R/W	0
0	CDT_Fault_Count[8]	Bit[8] of CDT Fault Count Distance to the fault. It's approximately 0.4*CDT_Fault_Count[8:0].	RO	0

Port Registers (Continued)

Register 27 (0x1B): Port 1 LinkMD result
Register 43 (0x2B): Port 2 LinkMD result
Register 59 (0x3B): Port 3 LinkMD result
Register 75 (0x4B): Reserved
Register 91 (0x5B): Reserved

Address	Name	Description	Mode	Default
$7-0$	CDT_Fault_Count[7:0]	Bits[7:0] of CDT Fault Count Itstance to the fault.	RO approximately 0.4m*CDT_Fault_Count[8:0]	0

Register 28 (0x1C): Port 1 Control 9

Register 44 (0x2C): Port 2 Control 9
Register 60 (0x3C): Port 3 Control 9
Register 76 (0x4C): Reserved
Register 92 (0x5C): Reserved

Address	Name	Description	Mode	Default
7	Disable Auto-Negotiation	1 = Disable Auto-Negotiation. Speed and duplex are decided by bits [6:5] of the same register. $0=$ Auto-Negotiation is on. Note: The register bit value is the INVERT of the strap value at the pin.	R/W	0
6	Forced Speed	1 = Forced 100BT if Auto-Negotiation (AN) is disabled (bit [7]). $0=$ Forced 10BT if Auto-Negotiation (AN) is disabled (bit [7]).	R/W	1
5	Forced Duplex	$1=$ Forced full-duplex if (1) AN is disabled or (2) AN is enabled but failed. $0=$ Forced half-duplex if (1) AN is disabled or (2) AN is enabled but failed (Default).	R/W	0
$4-0$	Reserved	N/A Don't Change.	RO	

Port Registers (Continued)

Register 29 (0x1D): Port 1 Control 10
Register 45 (0x2D): Port 2 Control 10
Register 61 (0x3D): Port 3 Control 10
Register 77 (0x4D): Reserved
Register 93 (0x5D): Reserved

Address	Name	Description	Mode	Default
7	LED Off	$1=$Turn off all Port's LEDs (LEDx_2, LEDx_1, LEDx_0 Pins, where "x" is the Port number). These pins will be driven high if this bit is set to one. = Normal operation.	R/W	0
6	Txids	$1=$ Disable Port's transmitter. $0=$ Normal operation.	R/W	0
5	Restart AN	$1=$ Restart Auto-Negotiation. $0=$ Normal operation.	R/W	(SC)

Port Registers (Continued)

Register 30 (0x1E): Port 1 Status 2
Register 46 (0x2E): Port 2 Status 2
Register 62 (0x3E): Port 3 Status 2
Register 78 (0x4E): Reserved
Register 94 (0x5E): Reserved

Address	Name	Description	Mode	Default
7	MDIX Status	$1=$ MDI. $0=$ MDI-X.	RO	0
6	Auto-Negotiation Done	$1=$ Auto-Negotiation done. $0=$ Auto-Negotiation not done.	RO	0
5	Link Good	$1=$ Link good. $0=$ Link not good.	RO	0
$4-0$	Reserved	N/A Don't Change.	RO	00000

Register 31 (0x1F): Port 1 Control 11 and Status 3
Register 47 (0x2F): Port 2 Control 11 and Status 3
Register 63 (0x3F): Port 3 Control 11 and Status 3

Register 79 (0x4F): Reserved

Register 95 (0x5F): Reserved

Address	Name	Description	Mode	Default
7	PHY Loopback	1 = Perform PHY loopback. Loop back path is as follows: Example, Set Port 1 PHY Loopback (Reg. 31, bit [7] = '1') Use the Port 2 as monitor Port. The packets will transfer. Start: Port 2 receiving (also can start from Port 3, 4, 5). Loopback: PMD/PMA of Port 1's PHY End: Port 2 transmitting (also can end at Port 3, 4, 5 respectively). Setting Reg. 47, 63, 95, bit [7] = ' 1 ' will perform PHY loopback on Port 2, 3, 4, 5 respectively. 0 = Normal Operation.	R/W	0
6	Reserved	N/A Don't Change	RO	0
5	PHY Isolate	$\begin{aligned} & 1 \text { = Electrical isolation of PHY from MII/RMII and } \\ & \text { TX+/TX-. } \\ & 0=\text { Normal operation. } \end{aligned}$	R/W	0
4	Soft Reset	1 = PHY soft reset. This bit is self-clearing. $0=$ Normal operation.	$\begin{aligned} & \text { R/W } \\ & \text { (SC) } \end{aligned}$	0
3	Force Link	$\begin{aligned} & 1=\text { Force link in the PHY. } \\ & 0=\text { Normal operation } \end{aligned}$	R/W	0

Port Registers (Continued)

Address	Name	Description	Mode	Default
$2-0$		Indicate the current state of Port operation mode: $000=$ Reserved $001=$ Still in Auto-Negotiation $010=10 B A S E-T ~ h a l f ~ d u p l e x ~$		
		Port Operation Mode	Indication	$011=100 B A S E-T X$ half duplex
		$100=$ Reserved		
	RO	001		
		$110=100 B A S E-T X$ full duplex		

Note: Port Control 7-11 and Port Status 1-3 contents can be accessed by MDC/MDIO interface via the standard MIIM registers.

Advanced Control Registers

Registers 104 to 109 define the switching engine's MAC address. This 48 -bit address is used as the source address in MAC pause control frames.

Address	Name	Description	Mode	Default
Register 104 (0x68): MAC Address Register 0				
7-0	MACA[47:40]		R/W	0×00
Register 105 (0x69): MAC Address Register 1				
7-0	MACA[39:32]		R/W	0x10
Register 106 (0x6A): MAC Address Register 2				
7-0	MACA[31:24]		R/W	0xA1
Register 107 (0x6B): MAC Address Register 3				
7-0	MACA[23:16]		R/W	0xff
Register 108 (0x6C): MAC Address Register 4				
7-0	MACA[15:8]		R/W	0xff

Advanced Control Registers (Continued)

Use Registers 110 and 111 to read or write data to the static MAC address table, VLAN table, dynamic address table, PME registers, ACL tables, EEE registers and the MIB counters.

Address	Name	Description	Mode	Default
Register 110 (0x6E): Indirect Access Control 0				
7-5	EEE/ACL/PME Indirect Register Function Select	$000=$ Indirect mode is used for table select in bits [3:2] While these bits are not equal 000, bits [3:2] are used for 2 additional MSB address bits. $001=$ Global and Port base EEE registers are selected, Port count is specified in 4 MSB indirect address bits and 8 bits register pointer is specified in 8 LSB indirect address bits. $010=$ Port base ACL registers are selected, Port count is specified in 4 MSB indirect address bits and register pointer is specified in 8 LSB indirect address bits. 011 = Reserved $100=$ PME control registers are selected. 101 = LinkMD cable diagnosis used. (See example in LinkMD section).	R/W	000
4	Read High Write Low	$\begin{aligned} & 1=\text { Read cycle. } \\ & 0=\text { Write cycle. } \end{aligned}$	R/W	0
3-2	Table Select or Indirect Address [11:10]	If bits [6:5] $=00$, then $00=$ Static MAC Address Table selected. 01 = VLAN table selected. 10 = Dynamic Address Table selected. 11 = MIB Counter selected. If bits [6:5] not equal 00, then These are indirect address [11:10] that is MSB of indirect address, bits [11:8] of the indirect address may be served as Port address, and bits [7:0] as register address. Note: The Register 110 bits[3:0] are used for the indirect address bits [11:8] 4 MSB bits, the 4 bits are used for the port indirect registers as well. $0000=$ Global indirect registers 0001 = Port 1 indirect registers $0010=$ Port 2 indirect registers 0011 = Port 3 indirect registers 0100 = Reserved 0101= Port 4 indirect registers Note: The Register 111 bits[7:0] are used for the indirect address bits of 8 LSB for indirect register address spacing.	R/W	0
1-0	Indirect Address [9:8]	Bits [9:8] of indirect address.	R/W	00
Register 111 (0x6F): Indirect Access Control 1				
7-0	Indirect Address [7:0]	Bits [7:0] of indirect address.	R/W	00000000

Note: Write to Register 111 will actually trigger a command. Read or write access will be decided by bit [4] of Register 110.

Advanced Control Registers (Continued)

The following Indirect Data Registers 112-120 are used for table of static, VLAN, dynamic table, PME, EEE, ACL and MIB counter.

Address	Name	Description	Mode	Default
Register 112 (0x70): Indirect Data Register 8				
7-0	Indirect Data [68:64]	Bits [71:64] of indirect data.	R/W	00000000
Register 113 (0x71): Indirect Data Register 7				
7-0	Indirect Data [63:56]	Bits [63:56] of indirect data.	R/W	00000000
Register 114 (0x72): Indirect Data Register 6				
7-0	Indirect Data [55:48]	Bits [55:48] of indirect data.	R/W	00000000
Register 115 (0x73): Indirect Data Register 5				
47-40	Indirect Data [47:40]	Bits [47:40] of indirect data.	R/W	00000000
Register 116 (0x74): Indirect Data Register 4				
7-0	Indirect Data [39:32]	Bits [39:32] of indirect data.	R/W	00000000
Register 117 (0x75): Indirect Data Register 3				
7-0	Indirect Data [31:24]	Bits [31:24] of indirect data	R/W	00000000
Register 118 (0x76): Indirect Data Register 2				
7-0	Indirect Data [23:6]	Bits [23:16] of indirect data.	R/W	00000000
Register 119 (0x77): Indirect Data Register 1				
7-0	Indirect Data [15:8]	Bits [15:8] of indirect data.	R/W	00000000
Register 120 (0x78): Indirect Data Register 0				
7-0	Indirect Data [7:0]	Bits [7:0] of indirect data.	R/W	00000000

The named indirect byte registers is a direct register which is used for PME/ACL/EEE Indirect Register access only. The Indirect Byte Register 160 (0XA0) is used for read/write to all PME, EEE and ACL indirect registers.

Address	Name	Description	Mode	Default
Register $\mathbf{1 6 0 ~ (O X A 0) : ~ I n d i r e c t ~ B y t e ~ R e g i s t e r ~ (I t ~ i s ~ f o r ~ P M E , ~ E E E ~ a n d ~ A C L ~ R e g i s t e r s) ~}$				
$7-0$	Indirect Byte [7:0]	Byte data of indirect access.	R/W	00000000

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
Register 124 (0x7C): Interrupt Status Register				
7-5	Reserved	N/A Don't Change	RO	000
4	PME Interrupt Status	1 = PME interrupt request 0 = Normal Note: This bit reflects PME control registers, write to PME Control Register to clear. This bit is set when PME is asserted. Write a " 1 " to clear this bit (WC)	RO	0
3	Reserved	N/A Don't Change	RO	0
2	Port 3 Interrupt Status	1 = Port 3 interrupt request $0=$ Normal Note: This bit is set by a link change on Port 3. Write a " 1 " to clear this bit (WC)	R/WC	0
1	Port 2 Interrupt Status	$1=$ Port 2 interrupt request $0=$ Normal Note: This bit is set by a link change on Port 2. Write a " 1 " to clear this bit (WC)	R/WC	0
0	Port 1 Interrupt Status	1 = Port 1 interrupt request $0=$ Normal Note: This bit is set by link change on Port 1. Write a " 1 " to clear this bit (WC)	R/WC	0

Register 125 (0x7D): Interrupt Mask Register

$7-5$	Reserved	Don't Change.	RO	000
4	PME Interrupt Mask	$1=$ Enable PME interrupt. $0=$ Normal	R/W	0
3	Reserved	N/A Don't Change	RO	0
2	Port 3 Interrupt Mask	$1=$ Enable Port 3 interrupt. $0=$ Normal	R / W	0
1	Port 2 Interrupt Mask	$1=$ Enable Port 2 interrupt. $0=$ Normal	R / W	0
0	Port 1 Interrupt Mask	$1=$ Enable Port 1 interrupt. $0=$ Normal	R / W	0

Register 126 (0x7E): ACL Interrupt Status Register

$7-5$	Reserved	Don't Change.	RO	000
$4-0$	ACL_INT_STATUS	ACL Interrupt Status, one bit per port $1=$ ACL interrupt detected. $0=$ No ACL interrupt detected.	RO	00000

Register 127 (0x7F): ACL Interrupt Control Register

$7-5$	Reserved	Don't Change.	RO	000
$4-0$	ACL_INT_ENABLE	ACL Interrupt Enable, one bit per port $1=$ ACL interrupt enabled. $0=$ ACL interrupt disabled.	R/W	0

Advanced Control Registers (Continued)

The Registers 128,129 can be used to map from 802.1 p priority field $0-7$ to the switch's four priority queues $0-3$. 0×3 is the highest priority queues as priority 3 and 0×0 is the lowest priority queues as priority 0.

Address	Name	Description	Mode	Default
Register 128 (0x80): Global Control 12				
7-6	Tag_0x3	IEEE 802.1p mapping. The value in this field is used as the frame's priority when its IEEE 802.1p tag has a value of 0×3.	R/W	0x1
5-4	Tag_0x2	IEEE 802.1p mapping. The value in this field is used as the frame's priority when its IEEE 802.1p tag has a value of 0×2.	R/W	0x1
3-2	Tag_0x1	IEEE 802.1p mapping. The value in this field is used as the frame's priority when its IEEE 802.1p tag has a value of 0×1.	R/W	0x0
1-0	Tag_0x0	IEEE 802.1p mapping. The value in this field is used as the frame's priority when its IEEE 802.1p tag has a value of 0×0.	R/W	0x0

Register 129 (0x81): Global Control 13

7-6	Tag_0x7	IEEE 802.1p mapping. The value in this field is used as the frame's priority when its IEEE 802.1p tag has a value of 0×7.	R/W	0x3
5-4	Tag_0x6	IEEE 802.1p mapping. The value in this field is used as the frame's priority when its IEEE 802.1p tag has a value of 0×6.	R/W	0x3
3-2	Tag_0x5	IEEE 802.1p mapping. The value in this field is used as the frame's priority when its IEEE 802.1p tag has a value of 0×5.	R/W	0x2
1-0	Tag_0x4	IEEE 802.1p mapping. The value in this field is used as the frame's priority when its IEEE 802.1p tag has a value of 0×4.	R/W	0x2
Register 130 (0x82): Global Control 14				
7-6	Pri_2Q[1:0]	When the 2 Queues configuration is selected, these Pri_2Q[1:0] bits are used to map the 2-bit result of IEEE 802.1p from Register 128/129 or TOS/DiffServ from Register 144-159 mapping (for 4 Queues) into two queues low/high priorities. 2-bit result of IEEE 802.1p or TOS/DiffServ 00 (0) = Map to Low priority queue 01 (1) = Prio_2Q[0] map to Low/High priority queue 10 (2) = Prio_2Q[1] map to Low/High priority queue 11 (3) = Map to High priority queue Pri_2Q[1:0] : $00=$ Result $0,1,2$ are low priority. 3 is high priority. $01=$ Not supported and should be avoided $10=$ Result 0,1 are low priority. 2, 3 are high priority (default). $11=$ Result 0 is low priority. 1, 2, 3 are high priority.	R/W	10
5-0	Reserved	N/A Don't Change	RO	001000

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
Register 131 (0x83): Global Control 15				
7-6	Reserved	N/A Don't Change	RO	10
5	Unknown Unicast Packet Forward	```1 = Enable supporting unknown unicast packet forward 0 = Disable```	R/W	0
4-0	Unknown Unicast Packet Forward Port Pap	$00000=$ Filter unknown unicast packet 00001 = Forward unknown unicast packet to Port 1 00011 = Forward unknown unicast packet to Port 1, Port 2 00111 = Forward unknown unicast packet to Port 1, Port 2 and Port 3 11111 = Broadcast unknown unicast packet to all Ports Note: Bit 3 is reserved	R/W	00000

Register 132 (0x84): Global Control 16

7-6	Reserved	N/A Don't Change	RO	01
5	Unknown Multicast Packet Forward (not including IP multicast packet)	```1 = Enable supporting unknown multicast packet forward 0 = Disable```	R/W	0
4-0	Unknown Multicast Packet Forward Port Map	00000 = Filter unknown multicast packet 00001 = Forward unknown multicast packet to Port 1 00011 = Forward unknown multicast packet to Port 1, Port 2 00111 = Forward unknown multicast packet to Port 1, Port 2 and Port 3 11111 = Broadcast unknown multicast packet to all Ports Note: Bit 3 is reserved	R/W	00000
Register 133(0x85): Global Control 17				
7-6	Reserved	N/A Don't Change	RO	00
5	Unknown VID Packet Forward	1 = Enable supporting unknown VID packet forward 0 = Disable	R/W	0
4-0	Unknown VID Packet Forward Port Map	00000 = Filter unknown VID packet 00001 = Forward unknown VID packet to Port 1 00011 = Forward unknown VID packet to Port 1, Port 2 00111 = Forward unknown VID packet to Port 1, Port 2 and Port 3 11111 = Broadcast unknown VID packet to all Ports Note: Bit 3 is reserved	R/W	00000

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
Register 134 (0x86): Global Control 18				
7	Reserved	N/A Don't Change	RO	0
6	Self-Address Filter Enable	1 = Enable filtering of self-address unicast and multicast packet $0=$ Do not filter self-address packet Note: The self-address filtering will filter packets on the egress port, self MAC address is assigned in the Register 104-109.	R/W	0
5	Unknown IP Multicast Packet Forward	1 = Enable supporting unknown IP multicast packet forward 0 = Disable supporting unknown IP multicast packet forward	R/W	0
4-0	Unknown IP Multicast Packet Forward Port Map	00000 = Filter unknown IP multicast packet 00001 = Forward unknown IP multicast packet to Port 1 00011 = Forward unknown IP multicast packet to Port 1, Port 2 00111 = Forward unknown IP multicast packet to Port 1, Port 2 and Port 3 11111 = Broadcast unknown IP multicast packet to all Ports Note: Bit 3 is reserved	R/W	00000

Register 135 (0x87): Global Control 19

$7-6$	Reserved	N/A Don't Change	RO	00
$5-4$	Ingress Rate Limit Period	The unit period for calculating Ingress Rate Limit $00=16 \mathrm{~ms}$ $01=64 \mathrm{~ms}$ $1 x=256 \mathrm{~ms}$	R/W	01
3	Queue-based Egress Rate Limit Enabled	Enable Queue-based Egress Rate Limit $0=$ Port-base Egress Rate Limit (default) $1=$ Queue-based Egress Rate Limit	R/W	0
2	Insertion Source Port PVID Tag Selection Enable	$1=$ Enable source Port PVID tag insertion or non- insertion option on the egress Port for each source Port PVID based on the Ports control 8 Registers. $0=$ Disable, all packets from any ingress Port will be inserted PVID based on Port Control 0 Register bit [2].	R/W	0

Advanced Control Registers (Continued)

Register 145 (0x91): TOS Priority Control Register 1

$7-6$	DSCP[15:14]	Ipv4 and Ipv6 mapping_for value 0x07	R/W	00
$5-4$	DSCP[13:12]	Ipv4 and Ipv6 mapping_for value 0x06	R/W	00
$3-2$	DSCP[11:10]	Ipv4 and Ipv6 mapping_for value 0x05	R/W	00
$1-0$	DSCP[9:8]	Ipv4 and Ipv6 mapping_for value 0x04	R/W	00

Register 146 (0x92): TOS Priority Control Register 2

$7-6$	DSCP[23:22]	Ipv4 and Ipv6 mapping_for value 0x0B	R/W	00
$5-4$	DSCP[21:20]	Ipv4 and Ipv6 mapping_for value 0x0A	R/W	00
$3-2$	DSCP[19:18]	Ipv4 and Ipv6 mapping_for value 0x09	R/W	00
$1-0$	DSCP[17:16]	Ipv4 and Ipv6 mapping_for value 0x08	R/W	00

Register 147 (0x93): TOS Priority Control Register 3

$7-6$	DSCP[31:30]	Ipv4 and Ipv6 mapping_for value 0x0F	R/W	00
$5-4$	DSCP[29:28]	Ipv4 and Ipv6 mapping_for value 0x0E	R/W	00
$3-2$	DSCP[27:26]	Ipv4 and Ipv6 mapping_for value 0x0D	R/W	00
$1-0$	DSCP[25:24]	Ipv4 and Ipv6 mapping_for value 0x0C	R/W	00

Register 148 (0x94): TOS Priority Control Register 4

$7-6$	DSCP[39:38]	Ipv4 and Ipv6 mapping_for value 0x13	R/W	00
$5-4$	DSCP[37:36]	Ipv4 and Ipv6 mapping_for value 0x12	R/W	00
$3-2$	DSCP[35:34]	Ipv4 and Ipv6 mapping_for value 0x11	R/W	00
$1-0$	DSCP[33:32]	Ipv4 and Ipv6 mapping_for value 0x10	R/W	00

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
Register 149 (0x95): TOS Priority Control Register 5				
$7-6$	DSCP[47:46]	Ipv4 and Ipv6 mapping_for value 0x17	R/W	0
$5-4$	DSCP[45:44]	Ipv4 and Ipv6 mapping_for value 0x16	R/W	00
$3-2$	DSCP[43:42]	Ipv4 and Ipv6 mapping_for value 0x15	R/W	00
$1-0$	DSCP[41:40]	Ipv4 and Ipv6 mapping_for value 0x14	R/W	00

Register 150 (0x96): TOS Priority Control Register 6

$7-6$	DSCP[55:54]	Ipv4 and Ipv6 mapping_for value 0x1B	R/W	00
$5-4$	DSCP[53:52]	Ipv4 and Ipv6 mapping_for value 0x1A	R/W	00
$3-2$	DSCP[51:50]	Ipv4 and Ipv6 mapping_for value 0x19	R/W	00
$1-0$	DSCP[49:48]	Ipv4 and Ipv6 mapping_for value 0x18	R/W	00

Register 151 (0x97): TOS Priority Control Register 7

$7-6$	DSCP[63:62]	Ipv4 and Ipv6 mapping_for value 0x1F	R/W	00
$5-4$	DSCP[61:60]	Ipv4 and Ipv6 mapping_for value 0x1E	R/W	00
$3-2$	DSCP[59:58]	Ipv4 and Ipv6 mapping_for value 0x1D	R/W	00
$1-0$	DSCP[57:56]	Ipv4 and Ipv6 mapping_for value 0x1C	R/W	00

Register 152 (0x98): TOS Priority Control Register 8

$7-6$	DSCP[71:70]	Ipv4 and Ipv6 mapping_for value 0x23	R/W	00
$5-4$	DSCP[69:68]	Ipv4 and Ipv6 mapping_for value 0x22	R/W	00
$3-2$	DSCP[67:66]	Ipv4 and Ipv6 mapping_for value 0x21	R/W	00
$1-0$	DSCP[65:64]	Ipv4 and Ipv6 mapping_for value 0x20	R/W	00
\mathbf{R} Register 153 (0x99): TOS Priority Control Register 9				
$7-6$	DSCP[79:78]	Ipv4 and Ipv6 mapping_for value 0x27	R/W	00
$5-4$	DSCP[77:76]	Ipv4 and Ipv6 mapping_for value 0x26	R/W	00
$3-2$	DSCP[75:74]	Ipv4 and Ipv6 mapping_for value 0x25	R/W	00
$1-0$	DSCP[73:72]	Ipv4 and Ipv6 mapping_for value 0x24	R/W	00

Register 154 (0x9A): TOS Priority Control Register 10

$7-6$	DSCP[87:86]	Ipv4 and Ipv6 mapping_for value 0x2B	R/W	00
$5-4$	DSCP[85:84]	Ipv4 and Ipv6 mapping_for value 0x2A	R/W	00
$3-2$	DSCP[83:82]	Ipv4 and Ipv6 mapping_for value 0x29	R/W	00
$1-0$	DSCP[81:80]	Ipv4 and Ipv6 mapping_for value 0x28	R/W	00

Register 155 (0x9B): TOS Priority Control Register 11

$7-6$	DSCP[95:94]	Ipv4 and Ipv6 mapping_for value 0x2F	R/W	00
$5-4$	DSCP[93:92]	Ipv4 and Ipv6 mapping_for value 0x2E	R/W	00
$3-2$	DSCP[91:90]	Ipv4 and Ipv6 mapping_for value 0x2D	R/W	00
$1-0$	DSCP[89:88]	Ipv4 and Ipv6 mapping_for value 0x2C	R/W	00

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
Register 156 (0x9C): TOS Priority Control Register 12				
$7-6$	DSCP[103:102]	Ipv4 and Ipv6 mapping_for value 0x33	R/W	00
$5-4$	DSCP[101:100]	Ipv4 and Ipv6 mapping_for value 0x32	R/W	00
$3-2$	DSCP[99:98]	Ipv4 and Ipv6 mapping_for value 0x31	R/W	00
$1-0$	DSCP[97:96]	Ipv4 and lpv6 mapping_for value 0x30	R/W	00

Register 157 (0x9D): TOS Priority Control Register 13

$7-6$	DSCP[111:110]	Ipv4 and Ipv6 mapping_for value 0x37	R/W	00
$5-4$	DSCP[109:108]	Ipv4 and Ipv6 mapping_for value 0x36	R/W	00
$3-2$	DSCP[107:106]	Ipv4 and Ipv6 mapping_for value 0x35	R/W	00
$1-0$	DSCP[105:104]	Ipv4 and Ipv6 mapping_for value 0x34	R/W	00

Register 158 (0x9E): TOS Priority Control Register 14

$7-6$	DSCP[119:118]	Ipv4 and Ipv6 mapping_for value 0x3B	R/W	00
$5-4$	DSCP[117:116]	Ipv4 and Ipv6 mapping_for value 0x3A	R/W	00
$3-2$	DSCP[115:114]	Ipv4 and Ipv6 mapping_for value 0x39	R/W	00
$1-0$	DSCP[113:112]	Ipv4 and Ipv6 mapping_for value 0x38	R/W	00

Register 159 (0x9F): TOS Priority Control Register 15

$7-6$	DSCP[127:126]	Ipv4 and Ipv6 mapping_for value 0x3F	R/W	00
$5-4$	DSCP[125:124]	Ipv4 and Ipv6 mapping_for value 0x3E	R/W	00
$3-2$	DSCP[123:122]	Ipv4 and Ipv6 mapping_for value 0x3D	R/W	00
$1-0$	DSCP[121:120]	Ipv4 and Ipv6 mapping_for value 0x3C	R/W	00

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
Register 163 (0XA3): Global Control 20				
7	Reserved	N/A Don't Change	RO	0
6-4	GMII/RGMI High Speed Drive Strength	High Speed Interfaces Drive Strength for GMII \& RGMI $\begin{aligned} & 000=2 \mathrm{~mA} \\ & 001=4 \mathrm{~mA} \\ & 010=8 \mathrm{~mA} \\ & 011=12 \mathrm{~mA} \\ & 100=16 \mathrm{~mA} \\ & 101=20 \mathrm{~mA} \\ & 110=24 \mathrm{~mA} \text { (default) } \\ & 111=28 \mathrm{~mA} \end{aligned}$	R/W	110
3	Reserved	N/A Don't Change	RO	0
$2-0$	MII/RMII Low Speed Drive Strength	High Speed Interfaces Drive Strength for MII \& RMII $\begin{aligned} & 000=2 \mathrm{~mA} \\ & 001=4 \mathrm{~mA} \\ & 010=8 \mathrm{~mA}(\text { default }) \\ & 011=12 \mathrm{~mA} \\ & 100=16 \mathrm{~mA} \\ & 101=20 \mathrm{~mA} \\ & 110=24 \mathrm{~mA} \\ & 111=28 \mathrm{~mA} \end{aligned}$	R/W	010

Register 164 (OXA4): Global Control 21

$7-4$	Reserved	N/A Don't Change	RO	0×2
3	IPv6 MLD Snooping Option	IPv6 MLD Snooping Option $1=$ Enable $0=$ Disable	R/W	0
2	IPv6 MLD Snooping Enable	IPv6 MLD Snooping Enable $1=$ Enable $0=$ Disable	R/W	0
$1-0$	Reserved	N/A Don't Change	RO	

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
Register 176 (0xB0): Port 1 Control 12 Register 192 (0xC0): Port 2 Control 12 Register 208 (0xD0): Port 3 Control 12 Register 224 (0xE0): Reserved Register 240 (0xF0): Port 4 Control 12				
7	Reserved		RO	1
6	Pass All Frames	Port based enable to pass all frames 1 = Enable 0 = Disable Note: This is used in the port mirroring with RX sniff only.	R/W	0
5-4	Reserved	Reserved	RO	0000
3	Insert Source Port PVID for Untagged Packet Destination to Highest Egress Port	Register 176: Insert source Port 1 PVID for untagged frame at egress Port 4 Register 192: Insert source Port 2 PVID for untagged frame at egress Port 4 Register 208: Insert source Port 3 PVID for untagged frame at egress Port 4 Register 224: Reserved Register 240: Reserved Note: Enabled by the Register 135 bit [2].	R/W	0
2	Insert Source Port PVID for Untagged Packet Destination to Second Highest Egress Port	Register 176: Reserved Register 192: Reserved Register 208: Reserved Register 224: Reserved Register 240: Insert source Port 4 PVID for untagged frame at egress Port 3 Note: Enabled by the Register 135 bit [2].	R/W	0
1	Insert Source Port PVID for Untagged Packet Destination to Second Lowest Egress Port	Register 176: Insert source Port 1 PVID for untagged frame at egress Port 3 Register 192: Insert source Port 2 PVID for untagged frame at egress Port 3 Register 208: Insert source Port 3 PVID for untagged frame at egress Port 2 Register 224: Reserved Register 240: Insert source Port 4 PVID for untagged frame at egress Port 2 Note: Enabled by the Register 135 bit [2].	R/W	0
0	Insert Source Port PVID for Untagged Packet Destination to Lowest Egress Port	Register 176: Insert source Port 1 PVID for untagged frame at egress Port 2 Register 192: Insert source Port 2 PVID for untagged frame at egress Port 1 Register 208: Insert source Port 3 PVID for untagged frame at egress Port 1 Register 224: Reserved Register 240: Insert source Port 4 PVID for untagged frame at egress Port 1 Note: Enabled by the Register 135 bit [2].	R/W	0

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
Register 177 (0xB1): Port 1 Control 13 Register 193 (0xC1): Port 2 Control 13 Register 209 (0xD1): Port 3 Control 13 Register 225 (0xE1): Reserved Register 241 (0xF1): Port 4 Control 13				
7-2	Reserved		RO	0000000
1	4 Queue Split Enable	This bit, in combination with Register16/32/48/64/80 bit [0], will select the split of 1,2 and 4 queues: $\{$ Register 177 bit [1], Register 16 bit [0] = \}: 11 = Reserved. $10=$ The port output queue is split into four priority queues or if map 802.1p to priority 0-3 mode. $01=$ The port output queue is split into two priority queues or if map 802.1p to priority 0-3 mode. $00=$ Single output queue on the port. There is no priority differentiation even though packets are classified into high and low priority.	R/W	0
0	Enable Dropping Tag	$0=$ Disable tagged packets drop 1 = Enable tagged packets drop	R/W	0

Register 178 (0xB2): Port 1 Control 14

Register 194 (0xC2): Port 2 Control 14
Register 210 (0xD2): Port 3 Control 14
Register 226 (0xE2): Reserved
Register 242 (0xF2): Port 4 Control 14

7	Enable Port Transmit Queue 3 Ratio	$0=$ Strict priority. Will transmit all the packets from this priority queue 3 before transmit lower priority queue. $1=$Bits [6:0] reflect the packet number allow to transmit from this priority queue 3 within a certain time.	R/W	1
$6-0$	Port Transmit Queue 3 Ratio[6:0]	Packet number for Transmit Queue 3 for highest priority packets in four queues mode.	R/W	0001000

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
Register 179 (0xB3): Port 1 Control 15 Register 195 (0xC3): Port 2 Control 15 Register 211 (0xD3): Port 3 Control 15 Register 227 (0xE3): Reserved Register 243 (0xF3): Port 4 Control 15				
7	Enable Port Transmit Queue 2 Ratio	$0=$ Strict priority. Will transmit all the packets from this priority queue 2 before transmit lower priority queue. $1=$ Bits [6:0] reflect the packet number allow to transmit from this priority queue 1 within a certain time.	R/W	1
6-0	Port Transmit Queue 2 Ratio[6:0]	Packet number for Transmit Queue 2 for high/low priority packets in high/low priority packets in four queues mode.	R/W	0000100

Register 180 (0xB4): Port 1 Control 16
Register 196 (0xC4): Port 2 Control 16
Register 212 (0xD4): Port 3 Control 16
Register 228 (0xE4): Reserved
Register 244 (0xF4): Port 4 Control 16

7	Enable Port Transmit Queue 1 Rate	$0=$ Strict priority. Will transmit all the packets from this priority queue 1 before transmit lower priority queue. $1=$Bits [6:0] reflect the packet number allow to transmit from this priority queue 1 within a certain time.	R/W	1
$6-0$	Port Transmit Queue 1 Ratio[6:0]	Packet number for Transmit Queue 1 for low/high priority packets in four queues mode and high priority packets in two queues mode.	R/W	0000010

Register 181 (0xB5): Port 1 Control 17
Register 197 (0xC5): Port 2 Control 17
Register 213 (0xD5): Port 3 Control 17
Register 229 (0xE5): Reserved
Register 245 (0xF5): Port 4 Control 17

7	Enable Port Transmit Queue 0 Rate	$0=$ Strict priority. Will transmit all the packets from this priority queue 0 before transmit lower priority queue. $1=$Bits [6:0] reflect the packet number allow to transmit from this priority queue 0 within a certain time.	R/W	1
$6-0$	Port Transmit Queue 0 Ratio[6:0]	Packet number for Transmit Queue 0 for lowest priority packets in four queues mode and low priority packets in two queues mode.	R/W	0000001

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
Register 182 (0xB6): Port 1 Rate Limit Control Register 198 (0xC6): Port 2 Rate Limit Control Register 214 (0xD6): Port 3 Rate Limit Control Register 230 (0xE6): Reserved Register 246 (0xF6): Port 4 Rate Limit Control				
7	Reserved		RO	0
6	Ingress Limit Port/Priority Based Select	1 = Ingress rate limit is Port based $0=$ Ingress rate limit is priority based	R/W	0
5	Ingress Limit Bit/Packets Mode Select	1 = Rate limit is counted based on number of packet. $0=$ rate limit is counted based on number of bit.	R/W	0
4	Ingress Rate Limit Flow Control Enable	1 = Flow Control is asserted if the Port's receive rate is exceeded. $0=$ Flow Control is not asserted if the Port's receive rate is exceeded.	R/W	0
3-2	Limit Mode	Ingress Limit Mode These bits determine what type of frames are limited and counted against ingress rate limiting. $00=$ Limit and count all frames. $01=$ Limit and count Broadcast, Multicast, and flooded unicast frames. $10=$ Limit and count Broadcast and Multicast frames only. 11 = Limit and count Broadcast frames only.	R/W	00
1	Count IFG	Count IFG Bytes 1 = Each frame's minimum inter-frame gap. (IFG) bytes (12 per frame) are included in Ingress and Egress rate limiting calculations. $0=$ IFG bytes are not counted.	R/W	0
0	Count Pre	Count Preamble Bytes 1 = Each frame's preamble bytes (8 per frame) are included in Ingress and Egress rate limiting calculations. $0=$ Preamble bytes are not counted.	R/W	0

Register 183 (0xB7): Port 1 Priority 0 Ingress Limit Control $1^{(4)}$
Register 199 (0xC7): Port 2 Priority 0 Ingress Limit Control 1
Register 215 (0xD7): Port 3 Priority 0 Ingress Limit Control 1
Register 231 (0xE7): Reserved
Register 247 (0xF7): Port 4 Priority 0 Ingress Limit Control 1

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
7	Reserved	Port Based Prority 0 Ingress Limit	Ingress Data Rate Limit For Priority 0 Frames Ingress traffic from this Port is shaped according to the Rate Selection Table in Rate Limit Support section.	R/W

Register 184 (0xB8): Port 1 Priority 1 Ingress Limit Control $2^{(4)}$				
Register 200 (0xC8): Port 2 Priority 1 Ingress Limit Control 2				
Register 216 (0xD8): Port 3 Priority 1 Ingress Limit Control 2				
Register 232 (0xE8): Reserved				
Register 248 (0xF8): Port 4 Priority 1 Ingress Limit Control 2				
7	Reserved		RO	
$6-0$	Port Based Priority 1 Ingress Limit	Ingress Data Rate Limit For Priority 1 Frames Ingress traffic from this Port is shaped according to the Rate Selection Table in Rate Limit Support section.	R/W	

Register 185 (0xB9): Port 1 Priority 2 Ingress Limit Control 3 ${ }^{(4)}$
Register 201 (0xC9): Port 2 Priority 2 Ingress Limit Control 3
Register 217 (0xD9): Port 3 Priority 2 Ingress Limit Control 3
Register 233 (0xE9): Reserved
Register 249 (0xF9): Port 4 Priority 2 Ingress Limit Control 3

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
7	Reserved		RO	0
6-0	Port Based Priority 2 Ingress Limit	Ingress Data Rate Limit For Priority 2 Frames Ingress traffic from this Port is shaped according to the Rate Selection Table in Rate Limit Support section.	R/W	0000000
Register 186 (0xBA): Port 1 Priority 3 Ingress Limit Control $4^{(4)}$ Register 202 (0xCA): Port 2 Priority 3 Ingress Limit Control 4 Register 218 (0xDA): Port 3 Priority 3 Ingress Limit Control 4 Register 234 (0xEA): Reserved Register 250 (0xFA): Port 4 Priority 3 Ingress Limit Control 4				
7	Port Based Ingress Rate Limit Enable	Ingress Data Rate Limit For Priorities Setting Valid Trigger port ingress rate limit engine to take effect for all the priority queues according to priority ingress limit control. Note: Any write to this register will trigger port ingress rate limit engine to take effect for all the priority queues according to priority ingress limit control. For the port priority 0-3 ingress rate limit control to take effect, bit [7] of in Register 186, 202, 218, 234 and 250 for Ports 1, 2, 3, 4 and 5 , respectively will need to set last after configured bits [6:0] of Port Ingress Limit Control 1-4 registers.	R/W	0
6-0	Port Based Priority 3 Ingress Limit	Ingress Data Rate Limit For Priority 3 Frames Ingress traffic from this Port is shaped according to the Rate Selection Table in Rate Limit Support section.	R/W	0000000

Note:
4. In the port priority 0-3 ingress rate limit mode, will need to set all related egress ports to two queues or four queues mode.

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
Register 187 (0xBB): Port 1 Queue 0 Egress Limit Control $1^{(5)}$ Register 203 (0xCB): Port 2 Queue 0 Egress Limit Control 1 Register 219 (0xDB): Port 3 Queue 0 Egress Limit Control 1 Register 235 (0xEB): Reserved Register 251 (0xFB): Port 4 Queue 0 Egress Limit Control 1				
7	7	7	7	7
6-0	6-0	6-0	6-0	6-0
Register 188 (0xBC) : Port 1 Queue 1 Egress Limit Control $2^{(5)}$ Register 204 (0xCC) : Port 2 Queue 1 Egress Limit Control 2 Register 220 (0xDC) : Port 3 Queue 1 Egress Limit Control 2 Register 236 (0xEC) : Reserved Register 252 (0xFC) : Port 4 Queue 1 Egress Limit Control 2				
7	Reserved		RO	0
6-0	Port Queue 1 Egress Limit	Egress Data Rate Limit For Priority 1 Frames Egress traffic from this priority queue is shaped according to the Rate Selection Table in Rate Limit Support section. In four queues mode, it is low/high priority. In two queues mode, it is high priority.	R/W	0000000
Register 189 (0xBD): Port 1 Queue 2 Egress Limit Control $3^{(5)}$ Register 205 (0xCD): Port 2 Queue 2 Egress Limit Control 3 Register 221 (0xDD): Port 3 Queue 2 Egress Limit Control 3 Register 237 (0xED): Reserved Register 253 (0xFD): Port 4 Queue 2 Egress Limit Control 3				
7	Reserved		RO	0
6-0	Port Queue 2 Egress Limit	Egress Data Rate Limit For Priority 2 Frames Egress traffic from this priority queue is shaped according to the Rate Selection Table in Rate Limit Support section. In four queues mode, it is high/low priority.	R/W	0000000
Register 190 (0xBE) : Port 1 Queue 3 Egress Limit Control $4^{(5)}$ Register 206 (0xCE) : Port 2 Queue 3 Egress Limit Control 4 Register 222 (0xDE) : Port 3 Queue 3 Egress Limit Control 4 Register 238 (0xEE): Reserved Register 254 (0xFE): Port 4 Queue 3 Egress Limit Control 4				

Advanced Control Registers (Continued)

Address	Name	Description	Mode	Default
7	Reserved		RO	0
6-0	Port Queue 3 Egress Limit	Egress Data Rate Limit For Priority 3 Frames Egress traffic from this priority queue is shaped according to the Rate Selection Table in Rate Limit Support section. In four queues mode, it is highest priority.	R/W	0000000
Register 191(0xBF): Testing Register				
7-0	Reserved	N/A Don't Change.	RO	0x80
Register 207(0xCF): Reserved Control Register				
7-0	Reserved	N/A Don't Change.	RO	0×15
Register 223(0xDF): Test Register 2				
7-0	Reserved	N/A Don't Change.	RO	0x0C
Register 239(0xEF): Test Register 3				
7-0	Reserved	N/A Don't Change.	RO	0x32
Register 255(0xFF): Test Register 4				
7-0	Reserved	N/A Don't Change.	RO	0x00

Note:
5. In the port queue 0-3 egress rate limit mode, the highest priority get exact rate limit based on the rate select table, other priorities packets rate are based upon the ratio of the Port Control 14/15/16/17 Registers when use more than one egress queue per port.

Indirect Register Description

Control	Indirect Address	Contents
Direct Address 0x6E, Function Select bits [7-5] $=000$ Table_select bits [3-2] $=00$	$0 \times 000-0 \times 01 F$	Static MAC address table entry $0-31$

Static MAC Address Table

The KSZ8794CNX incorporates a static and a dynamic address table. When a DA look-up is requested, both tables will be searched to make a packet forwarding decision. When an SA look-up is requested, only the dynamic table is searched for aging, migration, and learning purposes. The static DA look-up result will have precedence over the dynamic DA lookup result. If there are DA matches in both tables, the result from the static table will be used. The static table can only be accessed and controlled by an external SPI master (usually a processor). The entries in the static table will not be aged out by KSZ8794CNX. An external device does all addition, modification and deletion.

Note:

Register bit assignments are different for static MAC table reads and static MAC table write, as shown in the two tables below.

Table 16. Static MAC Address Table

Address	Name	Description	Mode	Default
Format of Static MAC Table for Reads (32 entries)				
63-57	FID	Filter VLAN ID, representing one of the 128 active VLANs.	RO	0000000
56	Use FID	1 = Use (FID+MAC) to look-up in static table. 0 = Use MAC only to look-up in static table.	RO	0
55	Reserved	Reserved.	RO	N/A
54	Override	1 = Override spanning tree "transmit enable =0" or "receive enable $=0$ * setting. This bit is used for spanning tree implementation. $0=$ No override.	RO	0
53	Valid	1 = This entry is valid, the look-up result will be used. $0=$ This entry is not valid.	RO	0
52-48	Forwarding Ports	These 5 bits control the forward Ports. For example, 00001 = Forward to Port 1 $00010=$ Forward to Port 2 $00100=$ Forward to Port 3 $01000=$ Reserved $10000=$ Forward to Port 4 $00110=$ Forward to Port 2 and Port 3 11111 = Broadcasting (excluding the ingress port)	RO	00000
47-0	MAC Address (DA)	48-bit MAC address.	RO	0x0

Table 16. Static MAC Address Table (continued)

Address	Name	Description	Mode	Default
Format of Static MAC Table for Writes (32 entries)				
62-56	FID	Filter VLAN ID, representing one of the 128 active VLANs.	W	0000000
55	Use FID	1 = Use (FID+MAC) to look-up in static table. 0 = Use MAC only to look-up in static table.	W	0
54	Override	1 = Override spanning tree "transmit enable $=0$ " or "receive enable $=0$ " setting. This bit is used for spanning tree implementation. $0=$ No override.	W	0
53	Valid	1 = This entry is valid, the look-up result will be used. $0=$ This entry is not valid.	W	0
52-48	Forwarding Ports	These 5 bits control the forward ports. For example, 00001 = Forward to Port 1 00010 = Forward to Port 2 $00100=$ Forward to Port 3 $01000=$ Reserved $10000=$ Forward to Port 4 $00110=$ Forward to Port 2 and Port 3 11111 = Broadcasting (excluding the ingress port)	W	00000
47-0	MAC Address (DA)	48-bit MAC address.	W	0x0

Examples:

(1) Static Address Table Read (read the $2^{\text {nd }}$ entry)

Write to Register 110 with 0×10 (read static table selected)
Write to Register 111 with 0×1 (trigger the read operation)
Then
Read Register 113 (63:56)
Read Register 114 (55:48)
Read Register 115 (47:40)
Read Register 116 (39:32)
Read Register 117 (31:24)
Read Register 118 (23:16)
Read Register 119 (15:8)
Read Register 120 (7:0)
(2) Static Address Table Write (write the $8^{\text {th }}$ entry)

Write Register 113 (62:56)
Write Register 114 (55:48)
Write Register 115 (47:40)
Write Register 116 (39:32)
Write Register 117 (31:24)
Write Register 118 (23:16)
Write Register 119 (15:8)
Write Register 120 (7:0)
Write to Register 110 with 0×00 (write static table selected)
Write to Register 111 with 0×7 (trigger the write operation)

VLAN Table

The VLAN table is used for VLAN table look-up. If 802.1 V VLAN mode is enabled (Register 5 bit [7] = 1), this table is used to retrieve VLAN information that is associated with the ingress packet. There are three fields for FID (filter ID), Valid, and VLAN membership in the VLAN table. The three fields must be initialized before the table is used. There is no VID field because 4096 VIDs are used as a dedicated memory address index into a 1024×52-bit memory space. Each entry has four VLANs. Each VLAN has 13 bits. Four VLANs need 52 bits. There are a total of 1024 entries to support a total of 4096 VLAN IDs by using dedicated memory address and data bits. Refer to Table 17 for details. FID has 7 bits to support 128 active VLANs.

Table 17. VLAN Table

Address	Name	Description	Mode	Initial Value suggestion
Format of Static VLAN Table (Support Max 4096 VLAN ID entries and 128 Active VLANs)				
12	Valid	$1=$ The entry is valid. $0=$ Entry is invalid.	R/W	0
11-7	Membership	Specifies which Ports are members of the VLAN. If a DA look-up fails (no match in both static and dynamic tables), the packet associated with this VLAN will be forwarded to Ports specified in this field. E.g., 1×001 means Ports 4 and 1 are in this VLAN, x is bit 10 which is reserved in the KSZ8794CNX.	R/W	11111
6-0	FID	Filter ID. The KSZ8794CNX supports 128 active VLANs represented by these seven bit fields. FID is the mapped ID. If $802.1 q$ VLAN is enabled, the look-up will be based on FID+DA and FID+SA.	R/W	0

If $802.1 q$ VLAN mode is enabled, the KSZ8794CNX assigns a VID to every ingress packet when the packet is untagged or tagged with a null VID, the packet is assigned with the default Port VID of the ingress Port. If the packet is tagged with non-null VID, the VID in the tag is used. The look-up process starts from the VLAN table look-up based on VID number with its dedicated memory address and data bits. If the entry is not valid in the VLAN table, the packet is dropped and no address learning occurs. If the entry is valid, the FID is retrieved. The FID+DA and FID+SA lookups in MAC tables are performed. The FID+DA look-up determines the forwarding Ports. If FID+DA fails for look-up in the MAC table, the packet is broadcast to all the members or specified members (excluding the ingress Port) based on the VLAN table. If FID+SA fails, the FID+SA is learned. To communicate between different active VLANs, set the same FID; otherwise set a different FID.

The VLAN table configuration is organized as 1024 VLAN sets, each VLAN set consists of four VLAN entries, to support up to 4096 VLAN entries. Each VLAN set has total 60 bits and 3 reversed bits are inserted between entries, actually 52 bits are used for VLAN set which should be read or written at the same time specified by the indirect address.
The VLAN entries in the VLAN set are mapped to indirect data registers as follow:

- EntryO[12:0] maps to the VLAN set bits [12:0] \{Register 119[4:0], Register 120[7:0]\}
- Entry1[12:0] maps to the VLAN set bits[28:16] \{Register 117[4:0], Register 118[7:0]\}
- Entry2[12:0] maps to the VLAN set bits[44:32] \{Register 115[4:0], Register 116[7:0]\}
- Entry3[12:0] maps to the VLAN set bits[60:48] \{Register 113[4:0], Register 114[7:0]\}

In order to read one VLAN entry, the VLAN set is read first and the specific VLAN entry information can be extracted. To update any VLAN entry, the VLAN set is read first then only the desired VLAN entry is updated and the whole VLAN set is written back. The FID in the VLAN table is 7 bits, so the VLAN table supports unique 128 flow VLAN groups. Each VLAN set address is 10 bits long (Maximum is 1024) in the Indirect Address Register 110 and 111, the bits [9:8] of VLAN set address is at bits [1:0] of Register 110, and the bits [7:0] of VLAN set address is at bits [7:0] of Register 111. Each Write and Read can access up to four consecutive VLAN entries.

Examples:

1. VLAN Table Read (read the VID $=2$ entry)

Write the indirect control and address registers first
Write to Register 110 (0x6E) with 0x14 (read VLAN table selected)
Write to Register 111 (0x6F) with 0×0 (trigger the read operation for VID $=0,1,2,3$ entries)
Then read the Indirect Data Registers bits [38:26] for VID $=2$ entry
Read Register 115 (0x73), (Register 115 [4:0] are bits [12:8] of VLAN VID $=2$ entry)
Read Register 116 (0×74), (Register 116 [7:0] are bits [7:0] of VLAN VID $=2$ entry)
2. VLAN Table Write (write the VID $=10$ entry)

Read the VLAN set that contains VID $=8,9,10,11$.
Write to Register 110 ($0 \times 6 \mathrm{E}$) with 0×14 (read VLAN table selected)
Write to Register 111 (0×6 F) with 0×02 (trigger the read operation and VID $=8,9,10,11$ indirect address) Read the VLAN set first by the Indirect Data Registers 113, 114, 115, 116, 117, 118, 119, 120.

Modify the Indirect Data Registers bits [44:32] by the Register 115 bit[4-0] and Register 116 bits [7:0] as follows:
Write to Register 115 (0x73), (Register115 [4:0] are bits [12:8\} of VLAN VID = 10 entry)
Write to Register 116 (0×74), (Register116 [7:0] are bits [7:0] of VLAN VID $=10$ entry)
Then write the indirect control and address Registers
Write to Register 110 ($0 \times 6 \mathrm{E}$) with 0x04 (write VLAN table selected)
Write to Register 111 (0×6F) with 0×02 (trigger the write operation and VID $=8,9,10,11$ indirect address)
The following table shows the relationship of the indirect address/data registers and VLAN ID.
Table 18. VLAN ID and Indirect Registers

Indirect Address high/low bit[9-0] for VLAN sets	Indirect Data Registers Bits for each VLAN entry	VID Numbers	VID bit[12-2] in VLAN Tag	VID bit[1-0] in VLAN Tag
0	Bits [12:0]	0	0	0
0	Bits [28:16]	1	0	1
0	Bits [44:32]	2	0	2
0	Bits [60:48]	3	0	3
1	Bits [12:0]	4	1	0
1	Bits [28:16]	5	1	1
1	Bits [44:32]	6	1	2
1	Bits [60:48]	7	1	3
2	Bits [12:0]	8	2	0
2	Bits [28:16]	9	2	1
2	Bits [44:32]	10	2	2
2	Bits [60:48]	11	2	3
:	:	:	:	:
:	:	:	:	:
:	:	:	:	:
1023	Bits [12:0]	4092	1023	0
1023	Bits [28:16]	4093	1023	1
1023	Bits [44:32]	4094	1023	2
1023	Bits [60:48]	4095	1023	3

Dynamic MAC Address Table

This table is read only.
Table 19. Dynamic MAC Address Table

Address	Name	Description	Mode	Default
Format of Dynamic MAC Address Table (1K entries)				
71	MAC Empty	$1=$ There is no valid entry in the table. $0=$ There are valid entries in the table.	RO	1
70-61	No of Valid Entries	Indicates how many valid entries in the table. $0 \times 3 \mathrm{ff}$ means 1 K entries 0×1 and bit [71] = 0 : means 2 entries 0×0 and bit [71]=0: means 1 entry 0×0 and bit [71] = 1: means 0 entry	RO	0
60-59	Time Stamp	2-bit counters for internal aging	RO	
58-56	Source Port	The source Port where FID+MAC is learned. $\begin{aligned} & 000=\text { Port } 1 \\ & 001=\text { Port } 2 \\ & 010=\text { Port } 3 \\ & 011=\text { Reserved } \\ & 100=\text { Port } 4 \end{aligned}$	RO	0x0
55	Data Ready	$1=$ The entry is not ready, retry until this bit is set to 0 . $0=$ The entry is ready.	RO	
54-48	FID	Filter ID.	RO	0×0
47-0	MAC Address	48-bit MAC address.	RO	0x0

Examples:

(1) Dynamic MAC Address Table Read (read the $1^{\text {st }}$ entry), and retrieve the MAC table size

Write to Register 110 with 0×18 (read dynamic table selected)
Write to Register 111 with 0x0 (trigger the read operation) and then
Read Register 112 (71:64)
Read Register 113 (63:56); // the above two registers show \# of entries
Read Register 114 (55:48) // if bit [55] is 1, restart (reread) from this register
Read Register 115 (47:40)
Read Register 116 (39:32)
Read Register 117 (31:24)
Read Register 118 (23:16)
Read Register 119 (15:8)
Read Register 120 (7:0)
(2) Dynamic MAC Address Table Read (read the $257^{\text {th }}$ entry), without retrieving \# of entries information

Write to Register 110 with 0x19 (read dynamic table selected)
Write to Register 111 with 0x1 (trigger the read operation) and then
Read Register 112 (71:64)
Read Register 113 (63:56)
Read Register 114 (55:48) // if bit [55] is 1, restart (reread) from this register
Read Register 115 (47:40)
Read Register 116 (39:32)
Read Register 117 (31:24)
Read Register 118 (23:16)
Read Register 119 (15:8)
Read Register 120 (7:0)

PME Indirect Registers

The EEE registers are provided on global and per port basis. These registers are read/write using indirect memory access as below:

Table 20. PME Indirect Registers

Address	Name	Description	Mode	Default
Global PME Control Register Reg. 110 (0x6E) bits [7:5]=100 for PME, Reg. 110 bits [3:0]=0x0 for the indirect global register, Reg. 111 (0x6F) bits [7:0]= Offset to access the Indirect Byte Register 0xA0. Offset: 0×00 (bits [31:24]), 0×01 (bits [23:16]), 0×02 (bit [15:8]), 0×03 (bits [7:0]). Location: (100 PME) -> \{0x0, offset\} ->0xA0 holds the data.				
31-2	Reserved		RO	All '0'
1	PME Output Enable	1= PME output pin is enabled. $0=$ PME output pin is disabled.	R/W	0
0	PME Output Polarity	$1=$ PME output pin is active high. $0=$ PME output pin is active low.	R/W	0

Port PME Control Status Register

Reg. 110 (0x6E) bits [7:5]=100 for PME, Reg. 110 bits [3:0]=0xn for the Indirect Port Register ($n=1,2$ and 3).
Reg. 111 (0x6F) bits [7:0]= Offset to access the Indirect Byte Register 0xA0.
Offset: 0×00 (bits [31:24]), 0×01 (bits [23:16]), 0x02 (bits [5:8]), 0x03 (bits [7:0]).
Location: (100 PME) -> \{0xn, offset\} ->0xA0 holds the data.

$31-3$	Reserved		RO	All '0'
2	Magic Packet Detect	$1=$Magic packet is detected at any port (write 1 to clear). $0=$ No magic packet is detected. 1 Link Up Detect	$1=$ Link up is detected at any port (write 1 to clear). $0=$ No link-up is detected.	R/W W1C

Port PME Control Mask Register
Reg. 110 (0x6E) bits [7:5]=100 for PME, Reg. 110 bits [3:0]=0xn for port (n=1, 2 and 3).
Reg. 111 (0x6F) bits [7:0]= Offset to access the Indirect Byte Register 0xA0.
Offset: 0×04 (bits [31:24]), 0x05 (bits [23:16]), 0x06 (bits [15:8]), 0x07 (bits [7:0]).
Location: (100 PME) -> \{0xn, offset\} ->0xA0 holds the data.

$31-3$	Reserved	Magic Packet Detect Enable	1 = The PME pin will be asserted when a magic packet is detected at host QMU. $0=$ The PME pin will not be asserted by the magic packet detection.	R/W
2	Link Up Detect Enable	$1=$The PME pin will be asserted when a linkup is detected at any port. $0=$The PME pin will not be asserted by the linkup detection. 1 0 Energy Detect Enable	$1=$The PME pin will be asserted when energy on line is detected at any port. $0=$ The PME pin will not be asserted by the energy detection.	R/W

Programming Examples:

Read Operation

1. Use the Indirect Access Control Register to select register to be read, to read Global PME Control Register. Write 0×90 to the Register 110 (0x6E) // PME selected and read operation, and 4 MSBs of Port number (Register 110 bits [3:0]) $=0$ for the Global PME Register.
2. Write 0×03 to the Register 111 (0x6F) // trigger the read operation for bits [7:0] of the Global PME Control Register.
3. Read the Indirect Byte Register 160 (0xA0) // Get the value of the Global PME Control Register.

Write Operation

1. Write 0×80 to the Register 110 (0x6E) //PME selected and write operation, and 4 MSBs of Port number $=0$ for the Global PME Register.
2. Write 0×03 to the Register 111 (0x6F) // select write the bits [7:0] of the Global PME Control Address Register.
3. Write new value to the Indirect Byte Register 160 bits [7:0] (0xA0) //Write value to the Global PME Control Register of the Indirect PME Data Register by the assigned the indirect data register address.

ACL Rule Table and ACL Indirect Registers

ACL Register and Programming Model

The ACL registers are accessible by the microcontroller through a serial interface. The per-port register set is accessed through indirect addressing mechanism. The ACL entries are stored in the format shown in the following figure. Each ACL rule list table can input up to 16 entries per port, total 4 ACL rule list tables can be set for 4 ports.

Figure 13. ACL Table Access
To update any port-based ACL registers, it is suggested to execute a read modify write sequence for each 128 -bit (112 are used) entry addressed by the Indirect Address Register to ensure the integrity of control content. Minimum two indirect control writes and two indirect control reads are needed for each ACL entry read access (indirect data read shall follow), and minimum one indirect control read and three indirect control writes are required for each ACL entry write access. Each 112-bit Port-based ACL word entry (ACL Word) is accomplished through a sequence of the Indirect Access Control 0 Registers 110 ($0 \times 6 \mathrm{E}$) accesses by specifying the bits[3:0] 4-bit Port number (Indirect address [11:8]) and 8-bit indirect register address (indirect address[7:0]) in the Indirect Access Control 1 Register 111 ($0 \times 6 \mathrm{~F}$). The address numbers 0x00$0 \times 0 d$ are used to specify the byte location of each entry (see above figure), address 0×00 indicates the byte 15 (MSB) of each 128 -bit entry, address 0×01 indicates the byte 14 etc., bytes at address $0 \times 0 \mathrm{E}$ and $0 \times 0 \mathrm{~F}$ are reserved for the future. Address 0×10 \& 0×11 hold bit-wise Byte Enable for each entry. Address 0×12 is used as control and status register. The format of these registers is defined in the following section.

ACL Indirect Registers

This table is used to implement ACL mode selection and filtering per port.
Table 21. ACL Indirect Registers for 14 Bytes ACL Rules

Address	Name	Description	Mode	Default
Port_ACL_0 ACL Port Register 0 (0×00) Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4. Reg. 111 (0x6F) bits [7:0] = Offset 0x00 to access the Indirect Byte Register 0xA0. Location: (010 ACL) -> $\{0 \mathrm{xn}$, offset $\}$->0xA0 holds the data. Processing Field				
7-4	Reserved		RO	0x0
3-0	FRN[3:0]	First Rule Number This is for the first rule number of the Rule Set. There are total 16 entries per port in ACL rule table. Each single rule can be set with other rule for a rule set by the ACL port Register 12 (0x0c) and Register 13 (0x0d). Regardless single rule or rule set, have to assign an entry for using which Action Field by FRN[3:0].	R/W	0000
Port_ACL_1 ACL Port Register 1 (0x01) Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4. Reg. 111(0x6F) bits [7:0] = Offset 0x01 to access the Indirect Byte Register 0xA0. Location: (010 ACL) -> $\{0 \times \mathrm{x}$, offset $\}$->0xA0 holds the data. Matching Fields				
7-6	Reserved		RO	00
5-4	MD[1:0]	MODE $00=$ Disable the current rule list, no action taken 01 = Qualify rules for layer 2 MAC header filtering $10=$ Is used for layer 3 IP address filtering 11 = Performs layer 4 TCP port number/protocol filtering	R/W	00

Table 21. ACL Indirect Registers for 14 Bytes ACL Rules (continued

Address	Name	Description	Mode	Default
3-2	ENB[1:0]	ENABLE When MD=01: $00=$ The 11 bits from PM, P, REP, MM in action field specify a count value for packets matching MAC Address and TYPE in Matching Field. The count unit is defined in FORWARD field bit [4]; Bit $[4]=0$, usec will be used. Bit $[4]=1, \mathbf{m s e c}$ will apply. The FORWAED field bit [3] determines the algorithm used to generate interrupt when counter terminated. Bit $[3]=0$, an 11 -bit counter will be loaded with the count value from the list and start counting down every unit time. An interrupt will be generated when expires, i.e., next qualified packet has not been received within the period specified by the value. Bit $[3]=1$, the counter is incremented every matched packet received and the interrupt is generated while terminal count reached, the count resets thereafter. $01=$ MAC address bit field is participating in test. $10=$ MAC TYPE bit field is used for test. $11=$ Both MAC address and TYPE are tested against these bit fields in the list. When MD=10: $00=$ Reserved. $01=$ IP address and mask or IP protocol is enabled to be tested accordingly. $10=$ SA and DA are compared; the drop/forward decision is based on the E/Q bit setting. 11 = Reserved When MD=11: $00=$ Protocol comparison is enabled. $01=$ TCP/UDP address comparison is selected. 10 It is same with ' 01 ' 11 = The sequence number of TCP is compared.	R/W	00
1	S_D	Source/Destination Address $0=D A$ is used to compare. $1=$ SA is used to compare	R/W	0
0	EQ	Compare Equal $0=$ Match if they are not equal. 1 = Match if they are equal.	R/W	0

Port_ACL_2
ACL Port Register 2 (0x02)
Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits[3:0] = 0xn for Port 1, 2, 3 and 4.
Reg. 111 (0x6F) bits [7:0] = Offset 0x02 to access the Indirect Byte Register 0xA0.
Location: (010 ACL) -> $\{0 \times \mathrm{n}$, offset $\}$->0xA0 holds the data.
Matching Fields for Layer 2

Table 21. ACL Indirect Registers for 14 Bytes ACL Rules (continued)

Address	Name	Description	Mode	Default
$7-0$	MAC_ADDR[47:40]	MAC Address	R/W	00000000

Port_ACL_3
ACL Port Register 3 (0x03)
Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4.
Reg. 111 (0x6F) bits [7:0] = Offset 0x03 to access the Indirect Byte Register 0xA0.
Location: (010 ACL) -> $\{0 \times \mathrm{n}$, offset $\}$->0xA0 holds the data.
Matching Fields for Layer 2

7-0	MAC_ADDR[39:32]	MAC Address	R/W	00000000
Port_ACL_4 ACL Port Register 4 (0x04) Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4. Reg. 111 (0x6F) bits [7:0] = Offset 0x04 to access the Indirect Byte Register 0xA0. Location: (010 ACL) -> $\{0 \mathrm{xn}$, offset $\}$->0xA0 holds the data. Matching Fields for Layer 2				
7-0	MAC_ADDR[31:24]	MAC Address	R/W	00000000

ACL Port Register 5 (0x05)
Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4.
Reg. 111 (0x6F) bits [7:0] = Offset 0x05 to access the Indirect Byte Register 0xA0.
Location: (010 ACL) -> $\{0 \mathrm{xn}$, offset $\}$->0xA0 holds the data.

7-0	MAC_ADDR[23:16]	MAC Address	R/W	00000000
Port_ACL_6 ACL Port Register 6 (0x06) Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4. Reg. 111 (0x6F) bits [7:0] = Offset 0x06 to access the Indirect Byte Register 0xA0. Location: (010 ACL) -> \{0xn, offset\} ->0xA0 holds the data. Matching Fields for Layer 2				
7-0	MAC_ADDR[15:8]	MAC Address	R/W	00000000
Port_ACL_7 ACL Port Register 7 (0x07) Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4. Reg. 111 (0x6F) bits [7:0] = Offset 0x07 to access the Indirect Byte Register 0xA0. Location: (010 ACL) -> \{0xn, offset\} ->0xA0 holds the data. Matching Fields for Layer 4				
7-0	MAC_ADDR[7:0]	MAC Address	R/W	00000000
Port_ACL_8 ACL Port Register 8 (0x08) Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4. Reg. 111 (0x6F) bits [7:0] = Offset 0x08 to access the Indirect Byte Register 0xA0. Location: (010 ACL) -> \{0xn, offset\} ->0xA0 holds the data.				
7-0	TYPE[15:8]	Ether Type	R/W	00000000

Table 21. ACL Indirect Registers for 14 Bytes ACL Rules (continued)

Address	Name	Description	Mode	Default
Port_ACL_9 ACL Port Register 9 (0x09) Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4. Reg. 111 (0x6F) bits [7:0] = Offset 0x09 to access the Indirect Byte Register 0xA0. Location: (010 ACL) -> $\{0 \times \mathrm{n}$, offset $\}$->0xA0 holds the data.				
7-0	FLAG[7:0]	TCP FLAG	R/W	00000000

Note: Layer 2, layer 3 and layer 4 in matching field should be in different entries. Same layer should be in same entry. See ACL Format figure for the detail.

Port_ACL_A

ACL Port Register 10 ($0 \times 0 \mathrm{~A}$)

Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4.
Reg. 111 (0x6F) bits [7:0] = Offset 0x0A to access the Indirect Byte Register 0xA0.
Location: (010 ACL) -> \{0xn, offset\} ->0xA0 holds the data.
Action Field

7-6	PM[1:0]	Priority Mode $00=$ No priority is selected; the priority determined by QoS/Classification is used in the tagged packets. $01=$ Priority in P [2:0] bits field is used if it is greater than QoS result in the 3-bit priority field of the tagged packets received. $10=$ Priority in P [2:0] bits field is used if it is smaller than QoS result in the 3-bit priority field of the tagged packets received. $11=\mathrm{P}$ [2:0] bits field will replace the 3-bit priority field of the tagged packets received.	R/W	00
5-3	P [2:0]	Priority Note: The 3-bit priority value to be used depends on PM [1:0] setting in bits [7:6].	R/W	000
2	RPE	Remark Priority Enable $0=$ No remarking is necessary. $1=$ VLAN priority bits in the packets are replaced by RP [2:1] bits field below in the list.	R/W	0
1-0	RP [2:1]	Remark Priority $00=$ Priority 0 01 = Priority 1 10 = Priority 2 11 = Priority 3	R/W	00

Port_ACL_B
ACL Port Register 11 (0x0B)
Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4.
Reg. 111 (0x6F) bits [7:0] = Offset 0x0B to access the Indirect Byte Register 0xA0.
Location: (010 ACL) -> \{0xn, offset\} ->0xA0 holds the data.
Action Field

Table 21. ACL Indirect Registers for 14 Bytes ACL Rules (continued)

Address	Name	Description	Mode	Default
7	RP[0]	Remark Priority	R/W	0
6-5	MM[1:0]	Map Mode $00=$ No forwarding remapping is necessary. Don't use the forwarding map in FORWARD field, use the forwarding map from the look-up table only. 01 = The forwarding map in FORWARD field is OR'ed with the forwarding map from the look-up table. $10=$ The forwarding map in FORWARD field is AND'ed with the forwarding map from the look-up table. 11 = The forwarding map in FORWARD field replaces the forwarding map from the look-up table.	R/W	00
4-0	FORWARD[4:0]	Port Map Each bit indicates forwarding decision of one port. Bit [0] = Port 1 Bit [1] = Port 2 Bit [2] = Port 3 Bit [3] = Reserved Bit [4] = Port 4 When MD=01 and $E N B=00$, Bit [4] is used as count unit. $\begin{aligned} & 0=\text { us. } \\ & 1=\mathrm{ms} . \end{aligned}$ Bit [3] is used to select count modes: $0=$ count down in the 11-bit counter from an assigned. value in the Action field PM, P, RPE, RP and MM, an interrupt will be generated when expired. 1= count up in the 11-bit counter for every matched packet received up to reach an assigned value in the Action field PM, P, RPE, RP and MM, and then an interrupt will be generated.	R/W	

Port_ACL_C

ACL Port Register 12 (0x0C)

Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] $=0 x n$ for Port 1, 2, 3 and 4.
Reg. 111 (0x6F) bits [7:0] = Offset 0x0C to access the Indirect Byte Register 0xA0.
Location: (010 ACL) -> \{0xn, offset\} ->0xA0 holds the data.
Processing Field

$7-0$	RULESET[15:8]	Rule Set Each bit indicates this entry in bits 0-15 16 entries of the rule list to be assigned for the rule set to be used in the rules cascade per port.	R/W	00000000

Table 21. ACL Indirect Registers for 14 Bytes ACL Rules (continued)

Address	Name	Description	Mode	Default
Port_ACL_D ACL Port Register 13 (0x0D) Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4. Reg. 111 (0x6F) bits [7:0] = Offset 0x0D to access the Indirect Byte Register 0xA0. Location: (010 ACL) -> \{0xn, offset\} ->0xA0 holds the data. Processing Field				
7-0	RULESET[7:0]	Rule Set Each bit indicates this entry in bits 0 to 15, total 16 entries of the rule list can be assigned for the rule set to be used in the rules cascade per port.	R/W	00000000

Table 22. Temporal storage for 14 Bytes ACL Rules

Address	Name	Description	Mode	Default
Port_ACL_BYTE_ENB_MSB ACL Port Register 14 (0x10) Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2,3 and 4 . Reg. 111 (0x6F) bits [7:0] = Offset 0x10 to access the Indirect Byte Register 0xA0. Location: (010 ACL) -> $\{0 x n$, offset $\}$->0xA0 holds the data.				
7-6	Reserved		RO	00
5-0	BYTE_ENB[13:8]	Byte Enable in ACL table; 14-Byte per entry 1 = Byte is selected for read/write $0=$ Byte is not selected Bit [0] of BYTE_ENB[13:0] is for byte address 0x0D in ACL table entry, Bit [1] of BYTE_ENB[13:0] is for byte address 0x0C in ACL table entry, etc. Bit [13] of BYTE_ENB[13:0] is for byte address 0×00 in ACL table entry.	R/W	0
Port_ACL_ BYTE_ENB_LSB ACL Port Register 15 (0x11) Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4. Reg. 111 (0x6F) bits [7:0] = Offset 0x11 to access the Indirect Byte Register 0xA0. Location: (010 ACL) -> \{0xn, offset\} ->0xA0 holds the data.				
7-0	BYTE_ENB[7:0]	Byte Enable in ACL table; 14-Byte per entry $1=$ Byte is selected for read/write $0=$ Byte is not selected Bit [0] of BYTE_ENB[13:0] is for byte address 0x0D in ACL table entry, Bit [1] of BYTE_ENB[13:0] is for byte address $0 \times 0 \mathrm{C}$ in ACL table entry, etc. Bit [13] of BYTE_ENB[13:0] is for byte address 0×00 in ACL table entry.	R/W	0×00

Table 23. ACL Read and Write Control

Address	Name	Description	Mode	Default
Port_ACL_ACCESS_CONTROL1 ACL Port Register 16 (0x12) Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] = 0xn for Port 1, 2, 3 and 4. Reg. 111 (0x6F) bits [7:0] = Offset 0x12 to access the Indirect Byte Register 0xA0. Location: (010 ACL) -> \{0xn, offset\} ->0xA0 holds the data.				
7	Reserved	N/A Don't Change	RO	0
6	WRITE_STATUS	Write Operation Status 1 = Write completed $0=$ Write is in progress	RO	1
5	READ_STATUS	Read Operation Status 1 = Read completed $0=$ Read is in progress	RO	1
4	WRITE_READ	$\begin{aligned} & \text { Request Type } \\ & 1=\text { Write } \\ & 0=\text { Read } \end{aligned}$	R/W	0
3-0	ACL_ENTRY_ADDRESS	ACL Entry Address 0000= entry 0. 0001= entry 1. 1111= entry 15.	R/W	0000

Port_ACL_ACCESS_CONTROL2
ACL Port Register 17 (0x13)
Reg. 110 (0x6E) bits [7:5] = 010 for ACL, Reg. 110 bits [3:0] $=0 \times x$ for Port 1, 2, 3 and 4.
Reg. 111 (0x6F) bits [7:0] = Offset 0×13 to access the Indirect Byte Register 0xA0.
Location: (010 ACL) -> \{0xn, offset\} ->0xA0 holds the data.

$7-1$	Reserved	N/A Don't Change	RO	0000000
0	Force DLR Miss	$1=$ DLR filtering uses single ACL entry. DLR packet matching the ACL entry will be considered as MISS. $0=$ DLR filtering uses multiple ACL entries. DLR packet matching the rule set for DLR packet will be considered as HIT. Note: DLR means Device Level Redundancy.	R/W	0

The ACL registers can be programmed using the read/write examples below.

Read Operation

Use the Indirect Access Control Register to select register to be read. To read Entry0 that is 1st entry of Port 1:
Write 0×41 to Register 110 ($0 \times 6 \mathrm{E}$) // select ACL and write to Port 1 (Port 2, 3 and 4 are $0 \times 42,0 \times 43$ and 0×45)
Write 0×10 to Register 111 (0x6F) // trigger the write operation for Port 1 in the ACL Port Register 14 (Byte Enable MSB register) address.

Write 0x3F into the Indirect Byte Register 160 (0xA0) for MSB of Byte Enable word.
Write 0x41 to Register 110 (0x6E) // select write to Port 1.
Write 0×11 to Register 111 (0x6F) // trigger the write operation for Port 1 in the ACL Port Register 15 (Byte Enable LSB Register) address. (The above 2 may be part of burst).

Write 0xFF into the Indirect Byte Register 160 (0xA0) for LSB of Byte Enable word. (The above steps set Byte Enable Register to select all bytes in ACL word from 0x00-0x0d in ACL table entry)

Write 0×41 to Register 110 ($0 \times 6 \mathrm{E}$) //select ACL and write operations to Port 1.
Write 0×12 to Register 111 (0x6F) //Write ACL read/write control register address 0×12 to the indirect address in Register 111 to trigger the read operation for Port 1 in the ACL Port Register 16 (ACL Access Control Register) to read entry 0.
Write 0×00 into the Indirect Byte Register 160 ($0 \times A 0$)//ACL Port Register 16 (0×12) bit [4] $=0$ to read ACL and bits [3:0] = 0×0 for entry 0 .(The above steps set ACL control register to read ACL entry word 0).

Write 0×51 to Register 110 ($0 \times 6 \mathrm{E}$) //select ACL and read to Port 1 (Port 2, 3 and 4 are 0×52, 0×53 and 0×55).
Write 0×12 to Register 111 (0x6F) //trigger the read operation for Port 1 in the ACL Port Register16 (ACL Access Control 1).

Read the Indirect Byte Register 160 (0xA0) to get data (If bit [5] is set, the read completes in the ACL port Register 16 (0x12) and go to next step. Otherwise, repeat the above polling step).

Write 0x51 to Register 110 (0x6E) // select read to Port 1.
Write 0×00 to Register 111 (0x6F) // trigger the read/burst read operation(s) based on the Byte Enable Register setting by the Port 1 ACL access Register 0 (0x00).Read/Burst read the Indirect Byte Register 160 (0xA0) // to get data of ACL entry word 0, write 0×00 to 0x0D indirect address and read Register 160 (0xA0) after each byte address write to Register 111 (0x6F).

Write Operation

Use the Indirect Access Control Register to select register to be written. To write even byte number of 15th entry of Port 4:
Write 0×55 to Register 110 ($0 \times 6 \mathrm{E}$) // select ACL and read to Port 4.
Write 0×12 to Register 111 (0x6F) // trigger the read operation for Port 4 ACL Access Control Register read.
Read the Indirect Byte Register 160 (0xA0) to get data (If bit [6] is set, the previous write completes and go to next step. Otherwise, repeat the above polling step).

Write 0×45 to Register 110 ($0 \times 6 \mathrm{E}$) // select ACL and write to Port 4.
Write 0x00 to Register 111 (0x6F) //set offset address for Port 4 ACL Port Register 0.
Write/Burst write the Indirect Byte Register 160 (0xA0) for ACL Port Register 0, 1, 2, $\ldots, 13$ from $0 x 00$ to 0x0D) (Write or Burst write even bytes of Port 4 ACL access Registers $0,1, \ldots, 13$ to holding buffer).

Write 0×45 to Register 110 ($0 \times 6 \mathrm{E}$) // select ACL and write to Port 4.
Write 0×10 to Register 111 (0x6F) // trigger the write operation for Port 4 in the ACL Port Register 14 (Byte Enable MSB register).
Write 0×15 into the Indirect Byte Register 160 ($0 \times A 0$) for MSB of Byte Enable word to enable odd bytes address 0×01, 0×03 and 0×05.

Write 0×45 to Register 110 (0x6E) // select write to Port 4.

Write 0×11 to Register 111 (0x6F) // trigger the write operation for Port 4 in the ACL Port Register 15 (Byte Enable LSB register).
Write 0×55 into the Indirect Byte Register 160 ($0 \times A 0$) for LSB of Byte Enable word to enable odd bytes address 0×07, 0x09, 0x0B and 0x0D.(The above steps set Byte Enable Register to select odd address bytes in ACL word.)
Write 0×45 to Register 110 ($0 \times 6 \mathrm{E}$) // select write to Port 4.
Write 0x12 to Register 111 (0x6F) // write the port ACL access control register address (0x12) to the Indirect Address Register 111 for setting the write operation to Port 4 in the ACL Port Register 16 to write entry 15 bytes 1, 3, $5 \ldots, 13$.

Write 0x1F into the Indirect Byte Register 160 (0xA0) // for the write operation to $15^{\text {th }}$ entry in the ACL Port Register 16 (0x12) bit4=1 to write ACL, bits [3:0] = 0xF to write entry 15.
(The above steps set ACL Control Register to write ACL entry word 15 from holding buffer.)
The bit arrangement of above example assumes layer 2 rule of MODE $=01$ in ACL Port Register 1 ($0 x 01$), refer to ACL format for MODE = 10 and 11.

EEE Indirect Registers

The EEE function is for the copper ports only. The EEE registers are provided on global and per port basis. These registers are read/write using indirect memory access as below: LPI means Low Power Idle.

EEE Global Registers

Address	Name	Description	Mode	Default
EEE Global Register 0 Global EEE QM Buffer Control Register Reg. 110 (0x6E) bits [7:5] = 001 for EEE, Reg. 110 bits [3:0] $=0 \times 0$ for the indirect global register. Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0×30 (bits [15:8]), 0x31 (bits [7:0]). Location: (001 EEE) -> \{0x0, offset\} ->0xA0 holds the data.				
15-8	Reserved	N/A Don't Change	RO	0×40
7	LPI Terminated By Input Traffic Enable	$1=\mathrm{LPI}$ request will be stopped if input traffic is detected. $0=$ LPI request won't be stopped by input traffic.	R/W	0
6-0	Reserved	N/A Don't Change	RO	0×10
EEE Global Register 1 Global Empty TXQ to LPI wait time control Register Reg. 110 (0x6E) bits [7:5] = 001 for EEE, Reg. 110 bits [3:0] $=0 \times 0$ for the indirect global register, Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0x32 (bits [15:8]), 0x33 (bits [7:0]) Location: (001 EEE) -> \{0x0, offset\} ->0xA0 holds the data.				
15-0	Empty TXQ to LPI Wait Time	This register specifies the time that the LPI request will be generated after a TXQ has been empty exceeds this configured time. This is only valid when EEE 100BT is enabled. This setting will apply to all the Ports. The unit is 1.3 ms . The default value is 1.3 sec . (range from 1.3 ms to 86 second)	R/W	0×10
EEE Global Register 2 Global EEE PCS DIAGNOSTIC Register Reg. 110 (0x6E) bits [7:5] = 001 for EEE, Reg. 110 bits [3:0] $=0 \times 0$ for the indirect global register. Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0x34(bits [15:8]), 0x35 (bits [7:0]). Location: (001 EEE) -> \{0x0, offset\} ->0xA0 holds the data.				
15-12	Reserved	N/A Don't Change	RO	0×6
11-8	Reserved	N/A Don't Change	RO	0x8
7-4	Reserved	N/A Don't Change	RO	0x0
3	Port 4 Next Page Enable	$\begin{aligned} & 1=\text { Enable next page exchange during Auto- } \\ & \quad \text { Negotiation. } \\ & 0=\text { Skip next page exchange during Auto-Negotiation. } \end{aligned}$	R/W	1
2	Port 3 Next Page Enable	$\begin{aligned} 1= & \text { Enable next page exchange during Auto- } \\ & \text { Negotiation. } \\ 0= & \text { Skip next page exchange during Auto-Negotiation. }\end{aligned}$	R/W	1
1	Port 2 Next Page Enable	1 = Enable next page exchange during Auto- Negotiation. $0=$ Skip next page exchange during Auto-Negotiation.	R/W	1
0	Port 1 Next Page Enable	$\begin{aligned} & 1=\text { Enable next page exchange during Auto } \\ & \quad \text { Negotiation. } \\ & 0=\text { Skip next page exchange during Auto-Negotiation. } \end{aligned}$	R/W	1

EEE Global Registers (Continued)

Address	Name	Description	Mode	Default
EEE Global Register 3 Global EEE Minimum LPI cycles before back to Idle Control Register Reg. 110 (0x6E) bits $[7: 5]=001$ for EEE, Reg. 110 bits [3:0] $=0 \times 0$ for the indirect global register, Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0x36 (bits [15:8], 0x37 (bits [7:0]). Location: (001 EEE) -> \{0x0, offset\} ->0xA0 holds the data.				
15-0	Reserved	N/A Don't Change	RO	0x0000
EEE Global Register 4 Global EEE Wakeup Error Threshold Control Register Reg. 110 (0x6E) bits [7:5] = 001 for EEE, Reg. 110 bits [3:0] = 0x0 for the indirect global register, Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0x38 (bits [15:8]), 0x39 (bits [7:0]). Location: (001 EEE) -> \{0x0, offset\} ->0xA0 holds the data.				
15-0	EEE Wakeup Threshold	This value specifies the maximum time allowed for PHY to wake up. If wakeup time is longer than this, EEE wakeup error count will be incremented. Note: This is EEE standard, don't change.	RO	0x0201
EEE Global Register 5 Global EEE PCS Diagnostic Control Register Reg. 110 (0x6E) bits [7:5] $=001$ for EEE, Reg. 110 bits [3:0] $=0 \times 0$ for the indirect global register, Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0x3A (bits [15:8]), 0x3B (bits [7:0]). Location: (001 EEE) -> \{0x0, offset\} ->0xA0 holds the data.				
15-0	Reserved	N/A Don't Change.	RO	0x0001

EEE Port Registers (Continued)

Address	Name	Description	Mode	Default
EEE Port Register 0 Port Auto-Negotiation Expansion Status Register Reg. $110(0 \times 6 E)$ bits $[7: 5]=001$ for EEE, Reg. 110 bits [3:0] $=0 \times n, n=1-3$ for the Indirect Port Register , Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0x0C (bits [15:8]), 0x0D (bits [7:0]). Location: (001 EEE) -> \{0xn, offset\} ->0xA0 holds the data.				
15-7	Reserved	N/A Don't Change	RO	9h000
6	Receive Next Page Location Able	1 = Received Next Page storage location is specified by bits [6:5]. $0=$ Received Next Page storage location is not specified by bits [6:5].	RO	1
5	Received Next Page Storage Location	```1 = Link Partner Next Pages are stored in MIIM Register 8h (Additional next page). 0 = Link Partner Next Pages are stored in MIIM Register 5h```	RO	1
4	Parallel Detection Fault	1 =A fault has been detected via the Parallel Detection function. $0=A$ fault has not been detected via the Parallel Detection function. This bit is cleared after reading.	R/LH	0
3	Link Partner Next Page Able	$\begin{aligned} & 1=\text { Link Partner is Next Page abled } \\ & 0=\text { Link Partner is not Next Page abled } \end{aligned}$	RO	0
2	Next Page Able	1 = Local Device is Next Page abled $0=$ Local Device is not Next Page abled	RO	1
1	Page Received	1 = A New Page has been received $0=$ A New Page has not been received	R/LH	0
0	Link Partner AutoNegotiation Able	1 = Link Partner is Auto-Negotiation abled $0=$ Link Partner is not Auto-Negotiation abled	RO	0

EEE Port Registers (Continued)

Address	Name	Description	Mode	Default
EEE Port Register 1 Port Auto-Negotiation Next Page Transmit Register Reg. 110 (0x6E) bits [7:5] = 001 for EEE, Reg. 110 bits [3:0] = 0xn, n=1-3 for the Indirect Port Register , Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0x0E (bits [15:8]), 0x0F (bits [7:0]). Location: (001 EEE) -> \{0xn, offset\} ->0xA0 holds the data. This register doesn't need to be set if EEE Port Register 5 bit[7]=1 default for Automatically perform EEE capability				
15	Next Page	Next Page (NP) is used by the Next Page function to indicate whether or not this is the last Next Page to be transmitted. NP shall be set as follows: 1 = Additional Next Page(s) will follow. $0=$ Last page.	R/W	0
14	Reserved	Reserved	RO	0
13	Message Page	Message Page (MP) is used by the Next Page function to differentiate a Message Page from an Unformatted Page. MP shall be set as follows: 1 = Message Page. 0 = Unformatted Page.	R/W	1
12	Acknowledge 2	Acknowledge 2 (Ack2) is used by the Next Page function to indicate that a device has the ability to comply with the message. Ack2 shall be set as follows: 1 = Will comply with message. $0=$ Cannot comply with message.	R/W	0
11	Toggle	Toggle (T) is used by the Arbitration function to ensure synchronization with the Link Partner during Next Page exchange. This bit shall always take the opposite value of the Toggle bit in the previously exchanged Link Codeword. The initial value of the Toggle bit in the first Next Page transmitted is the inverse of bit [11] in the base Link Codeword and, therefore, may assume a value of logic one or zero. The Toggle bit shall be set as follows: 1 = Previous value of the transmitted Link Codeword equal to logic zero. $0=$ Previous value of the transmitted Link Codeword equal to logic one.	RO	0
10-0	Message/Unformatted Code field	Message/Unformatted Code field bits [10:0]	R/W	1

EEE Port Registers (Continued)

Address	Name	Description	Mode	Default

EEE Port Register 2

Port Auto-Negotiation Link Partner Next Page Receive Register
Reg. 110 (0x6E) bits [7:5] = 001 for EEE, Reg. 110 bits [3:0] $=0 \times n, n=1-3$ for the indirect port register.
Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0.
Offset: 0x10 (bits [15:8]), 0x11 (bits [7:0].
Location: (001 EEE) -> \{0xn, offset\} ->0xA0 holds the data.

15	Next page	Next Page (NP) is used by the Next Page function to indicate whether or not this is the last Next Page to be transmitted. NP shall be set as follows: 1 = Additional Next Page(s) will follow. 0 = Last page.	RO	0
14	Acknowledge	Acknowledge (Ack) is used by the Auto-Negotiation function to indicate that a device has successfully received its Link Partner's Link Codeword. The Acknowledge Bit is encoded in bit D14 regardless of the value of the Selector Field or Link Codeword encoding. If no Next Page information is to be sent, this bit shall be set to logic one in the Link Codeword after the reception of at least three consecutive and consistent FLP Bursts (ignoring the Acknowledge bit value).	RO	0
13	Message Page	Message Page (MP) is used by the Next Page function to differentiate a Message Page from an Unformatted Page. MP shall be set as follows: 1 = Message Page $0=$ Unformatted Page	RO	0
12	Acknowledge 2	Acknowledge 2 (Ack2) is used by the Next Page function to indicate that a device has the ability to comply with the message. Ack2 shall be set as follows: 1 = Will comply with message. $0=$ Cannot comply with message.	RO	0
11	Toggle	Toggle (T) is used by the Arbitration function to ensure synchronization with the Link Partner during Next Page exchange. This bit shall always take the opposite value of the Toggle bit in the previously exchanged Link Codeword. The initial value of the Toggle bit in the first Next Page transmitted is the inverse of bit [11] In the base Link Codeword and, therefore, may assume a value of logic one or zero. The Toggle bit shall be set as follows: 1 = Previous value of the transmitted Link Codeword equal to logic zero. $0=$ Previous value of the transmitted Link Codeword equal to logic one.	RO	0
10-0	Message/Unformatted Code field	Message/Unformatted Code field bits [10:0]	RO	0

EEE Port Registers (Continued)

Address	Name	Description	Mode	Default
EEE Port Register 3 Link Partner EEE Capability Status and Local Device EEE Capability Advisement Register Reg. 110 (0x6E) bits [7:5] = 001 for EEE, Reg. 110 bits [3:0] $=0 \times n, n=1-3$ for the Indirect Port Register. Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0x28 (bits [15:8]), 0x29 (bits [7:0]). Location: (001 EEE) -> \{0xn, offset\} ->0xA0 holds the data.				
15	Reserved	N/A Don't Change	RO	0
14	LP 10GBASE-KR EEE Note: LP is Link Partner	1 = EEE is supported for 10GBASE-KR $0=$ EEE is not supported for 10GBASE-KR Note: LP is Link Partner	RO	0
13	LP 10GBASE-KX4 EEE	1 = EEE is supported for 10GBASE-KX4 $0=\mathrm{EEE}$ is not supported for 10GBASE-KX4	RO	0
12	LP 1000BASE-KX EEE	1 = EEE is supported for 1000BASE-KX $0=$ EEE is not supported for 1000BASE-KX	RO	0
11	LP 10GBASE-T EEE	1 = EEE is supported for 10GBASE-T $0=$ EEE is not supported for 10GBASE-T	RO	0
10	LP 1000BASE-T EEE	1 = EEE is supported for 1000BASE-T $0=$ EEE is not supported for 1000BASE-T	RO	0
9	LP 100BASE-TX EEE	1 = EEE is supported for 100BASE-TX $0=$ EEE is not supported for 100BASE-TX	RO	0
8-2	Reserved	Reserved	RO	7h'0
1	Local 100BASE-TX EEE Note: This is for local port to support EEE capability	1 = EEE is supported for 100BASE-TX $0=$ EEE is not supported for 100BASE-TX	R/W	1
0	Reserved	N/A Don't Change	RO	0
EEE Port Register 4 Port EEE Wake Up Error Count Register Reg. 110 (0x6E) bits [7:5] = 001 for EEE, Reg. 110 bits [3:0] = 0xn, n=1-3 for the Indirect Port Register. Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0x2A (bits [15:8]), 0x2B (bits [7:0]). Location: (001 EEE) -> \{0xn, offset\} ->0xA0 holds the data.				
15-0	EEE Wakeup Error Counter	This count is incremented by one whenever a wakeup from LPI to Idle state is longer than the Wake-Up error threshold time specified in EEE Global Register 4. The default of Wake-Up error threshold time is $20.5 \mu \mathrm{~s}$. This register is read-cleared	RO	0x0000

EEE Port Registers (Continued)

Address	Name	Description	Mode	Default
EEE Port Register 5 Port EEE Control Register Reg. 110 (0x6E) bits [7:5]=001 for EEE, Reg. 110 bits [3:0] = 0xn, n=1-3 for the Indirect Port Register. Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0x2C (bits [15:8]), 0x2D (bits [7:0]). Location: (001 EEE) -> \{0xn, offset $\}$->0xA0 holds the data.				
15	10BT EEE Disable	$1=10 B T$ EEE mode is disabled $0=10 B T$ EEE mode is enabled Note: 10BT EEE mode save power by reducing signal amplitude only.	R/W	1
14-8	Reserved	N/A Don't Change	RO	7h'0
7	H/W Based EEE NP Auto-Negotiation Enable	$1=\mathrm{H} / \mathrm{W}$ will automatically perform EEE capability exchange with Link Partner through next page exchange. EEE 100BT enable (bit [0] of this register). Will be set by h/w if EEE capability is matched. $0=\mathrm{H} / \mathrm{W}$ based EEE capability exchange is off. EEE capability exchange is done by software.	R/W	1
6	H/W 100BT EEE Enable Status	$1=100 B T$ EEE is enabled by H/W based np exchange $0=100 B T$ EEE is disabled	R	0
5	TX LPI Received	1 = Indicates that the transmit PCS has received low power idle signaling one or more times since the register was last read. $0=$ Indicates that the PCS has not received low power idle signaling. This bit is cleared after reading.	R/RC	0
4	TX LPI Indication	1 = Indicates that the transmit PCS is currently receiving low power idle signals. $0=$ Indicates that the PCS is not currently receiving low power idle signals.	R	0
3	RX LPI Received	1 = Indicates that the receive PCS has received low power idle signaling one or more times since the register was last read. $0=$ Indicates that the PCS has not received low power idle signaling. This bit is cleared after reading.	R/RC	0
2	RX LPI Indication	1 = Indicates that the receive PCS is currently receiving low power idle signals. $0=$ Indicates that the PCS is not currently receiving low power idle signals.	R	0
1	EEE SW Mode Enable	1 = EEE is enabled through S/W setting bit [0] of this register. $0=$ EEE is enabled through H/W Auto-Negotiation	R/W	0
0	EEE SW 100BT Enable	$1=$ EEE 100BT is enabled $0=$ EEE 100BT is disabled Note: This bit could be set by S/W or H/W if H/W based EEE Next Page Auto-Negotiation enable is on.	R/W	0

EEE Port Registers (Continued)

Address	Name	Description	Mode	Default
EEE Port Register 6 Port EEE LPI Recovery Time Register Reg. 110 (0x6E) bits [7:5] = 001 for EEE, Reg. 110bits [3:0] = 0xn, n=1-3 for the Indirect Port Register. Reg. 111 (0x6F) bits [7:0] = Offset to access the Indirect Byte Register 0xA0. Offset: 0x2E (bits [15:8]), 0x2F (bits [7:0]). Location: (001 EEE) -> \{0xn, offset\} ->0xA0 holds the data.				
15-8	Reserved	Reserved	RO	1
7-0	LPI Recovery Counter	This register specifies the time that the MAC device has to wait before it can start to send out packets. This value should be the maximum of the LPI recovery time between local device and remote device. The unit is 640ns. The default is about 25us = 39 (0×27) $\times 640$ ns Note: This value can be adjust if PHY recovery time is less than the standard 20.5us for the packets to be sent out quickly from EEE LPI mode.	R/W	0x27

Programming Examples:

Read Operation

1. Use the Indirect Access Control Register to select register to be read, to read the EEE Global Register 0 (Global EEE QM Buffer Control Register).
2. Write 0×30 to the Register 110 ($0 \times 6 \mathrm{E}$) // EEE selected and read operation, and 4 MSBs of Port number $=0$ for the global register.
3. Write 0×30 to the indirect Register 111 (0x6F) // trigger the read operation and ready to read the EEE Global Register 0 bits [15:8].
4. Read the Indirect Byte Register 160 ($0 \times A 0$) //Get the bits [15:8] value of the EEE Global Register 0 .

Write Operation

1. Write 0×20 to Register 110 ($0 \times 6 \mathrm{E}$) // EEE selected and write operation, 4 MSBs of Port number $=0$ is for global register.
2. Write 0×31 to Register 111 ($0 \times 6 \mathrm{~F}$) // select the offset address, ready to write the EEE Global Register 0 bits [7:0].
3. Write new value to the Indirect Byte Register 160 (0xA0) bits [7:0].

Management Information Base (MIB) Counters

The MIB counters are provided on per port basis. These counters are read using indirect memory access as below:
Table 24. Port 1 MIB Counter Indirect Memory Offerts

Offset	Counter Name	Description
0x0	RxHiPriorityByte	Rx hi-priority octet count including bad packets.
0x1	RxUndersizePkt	Rx undersize packets w/good CRC.
0x2	RxFragments	Rx fragment packets w/bad CRC, symbol errors or alignment errors.
0x3	RxOversize	Rx oversize packets w/good CRC (max: 1536 or 1522 bytes).
0x4	RxJabbers	Rx packets longer than 1522 bytes w/either CRC errors, alignment errors, or symbol errors (depends on max packet size setting) or Rx packets longer than 1916 bytes only.
0x5	RxSymbolError	Rx packets w/ invalid data symbol and legal preamble, packet size.
0x6	RxCRCerror	Rx packets within $(64,1522)$ bytes w/an integral number of bytes and a bad CRC (upper limit depends on max packet size setting).
0x7	RxAlignmentError	Rx packets within $(64,1522)$ bytes w/a non-integral number of bytes and a bad CRC (upper limit depends on max packet size setting).
0x8	RxControl8808Pkts	The number of MAC control frames received by a Port with 88-08h in EtherType field.
0x9	RxPausePkts	The number of PAUSE frames received by a Port. PAUSE frame is qualified with EtherType (88-08h), DA, control opcode (00-01), data length (64 byte min), and a valid CRC.
0xA	RxBroadcast	Rx good broadcast packets (not including errored broadcast packets or valid multicast packets).
0xB	RxMulticast	Rx good multicast packets (not including MAC control frames, errored multicast packets or valid broadcast packets).
0xC	RxUnicast	Rx good unicast packets.
0xD	Rx64Octets	Total Rx packets (bad packets included) that were 64 octets in length.
0xE	Rx65to127Octets	Total Rx packets (bad packets included) that are between 65 and 127 octets in length.
0xF	Rx128to255Octets	Total Rx packets (bad packets included) that are between 128 and 255 octets in length.
0x10	Rx256to511Octets	Total Rx packets (bad packets included) that are between 256 and 511 octets in length.
0x11	Rx512to1023Octets	Total Rx packets (bad packets included) that are between 512 and 1023 octets in length.
0x12	Rx1024to1522Octets	Total Rx packets (bad packets included) that are between 1024 and 1522 octets in length.
0x13	Rx1523to20000ctets	Total Rx packets (bad packets included) that are between 1523 and 2000 octets in length.
0x14	Rx2001toMax1Octets	Total Rx packets (bad packets included) that are between 2001 and Max-1 octets in length (upper limit depends on max packet size -1).
0x15	TxHiPriorityByte	Tx hi-priority good octet count, including PAUSE packets.
0x16	TxLateCollision	The number of times a collision is detected later than 512 bit-times into the Tx of a packet.
0x17	TxPausePkts	The number of PAUSE frames transmitted by a Port.
0x18	TxBroadcastPkts	Tx good broadcast packets (not including errored broadcast or valid multicast packets).
0x19	TxMulticastPkts	Tx good multicast packets (not including errored multicast packets or valid broadcast packets).
0x1A	TxUnicastPkts	Tx good unicast packets.
0x1B	TxDeferred	Tx packets by a Port for which the $1^{\text {st }} \mathrm{Tx}$ attempt is delayed due to the busy medium.
0x1C	TxTotalCollision	Tx total collision, half-duplex only.
0x1D	TxExcessiveCollision	A count of frames for which Tx fails due to excessive collisions.
0x1E	TxSingleCollision	Successfully Tx frames on a Port for which Tx is inhibited by exactly one collision.
0x1F	TxMultipleCollision	Successfully Tx frames on a Port for which Tx is inhibited by more than one collision.

For Port 2, the base is 0×20, same offset definition ($0 \times 20-0 \times 3 f$)

For Port 3, the base is 0×40, same offset definition ($0 \times 40-0 \times 5 f$)
Reserved, the base is 0×60, same offset definition ($0 \times 60-0 \times 7 \mathrm{f}$)
For Port 4, the base is 0×80, same offset definition ($0 \times 80-0 \times 9 f$)

Table 25. Format of "Per Port" MIB Counter

Address	Name	Description	Mode	Default
Format of Per Port MIB Counters		RO	0	
38	Overflow	$1=$ Counter overflow. $0=$ No Counter overflow.	RO	0
37	Count Valid	$1=$ Counter value is valid. $0=$ Counter value is not valid.	RO	All '0'
$36-30$	Reserved	N/A No Change	RO	0
$29-0$	Counter Values	Counter value.	0	

Table 26. All Port Dropped Packet MIB Counters

Offset	Counter Name	Description
0×100	Port1 Rx Total Bytes	Port 1 Rx total octet count, including bad packets.
0×101	Port1 Tx Total Bytes	Port 1 Tx total good octet count, including PAUSE packets.
0×102	Port1 Rx Drop Packets	Port 1 Rx packets dropped due to lack of resources.
0×103	Port1 Tx Drop Packets	Port 1 Tx packets dropped due to lack of resources.
0×104	Port2 Rx Total Bytes	Port 2 Rx total octet count, including bad packets.
0×105	Port2 Tx Total Bytes	Port 2 Tx total good octet count, including PAUSE packets.
0×106	Port2 Rx Drop Packets	Port 2 Rx packets dropped due to lack of resources.
0×107	Port2 Tx Drop Packets	Port 2 Tx packets dropped due to lack of resources.
0×108	Port3 Rx Total Bytes	Port 3 Rx total octet count, including bad packets.
0×109	Port3 Tx Total Bytes	Port 3 Tx total good octet count, including PAUSE packets.
0×10 A	Port3 Rx Drop Packets	Port 3 Rx packets dropped due to lack of resources.
$0 \times 10 B$	Port3 Tx Drop Packets	Port 3 Tx packets dropped due to lack of resources.
$0 \times 10 \mathrm{C}$	Port4 Rx Total Bytes	Port 4 Rx total octet count, including bad packets.
$0 \times 10 \mathrm{D}$	Port4 Tx Total Bytes	Port 4 Tx total good octet count, including PAUSE packets.
$0 \times 10 E$	Port4 Rx Drop Packets	Port 4 Rx packets dropped due to lack of resources.
$0 \times 10 F$	Port4 Tx Drop Packets	Port 4 Tx packets dropped due to lack of resources.
0×110	Port5 Rx Total Bytes	Port 4 Rx total octet count, including bad packets.
0×111	Port5 Tx Total Bytes	Port 4 Tx total good octet count, including PAUSE packets.
0×112	Port5 Rx Drop Packets	Port 4 Rx packets dropped due to lack of resources.
0×113	Port5 Tx Drop Packets	Port 4 Tx packets dropped due to lack of resources.

Table 27. Format of Per Port RXITX Total Bytes MIB Counter

Address	Name	Description	Mode	Default
Format of Per Port Total Byte MIB Counters	RO	0		
38	Overflow	$1=$ Counter overflow. $0=$ No Counter overflow.	RO	0
37	Count Valid	$1=$ Counter value is valid. $0=$ Counter value is not valid.	RO	0
36	Reserved	N/A No Change	RO	0
$35-0$	Counter Values	Counter value.	0	

Table 28. Format of "All Dropped Packet" MIB Counter

Address	Name	Description	Mode	Default
Format of All Port Dropped Packet MIB Counters	RO	0		
38	Overflow	$1=$ Counter overflow. $0=$ No Counter overflow.	RO	0
37	Count Valid	$1=$ Counter value is valid. $0=$ Counter value is not valid.	RO	All '0'
$36-16$	Reserved	N/A No Change	RO	0
$15-0$	Counter Values	Counter value.		

Note: All MIB counter per port are read clear.

The KSZ8794CNX provides a total of 36 MIB counters per port. These counters are used to monitor the port activity for network management and maintenance. These MIB counters are read using indirect memory access, per the following examples.

Programming Examples:

(1) MIB counter read (read Port 1 Rx64Octets counter) Write to Register 110 with 0x1c (read MIB counters selected)
Write to Register 111 with 0xd (trigger the read operation)
Then
Read Register 116 (counter value [39:32])
// If bit [38] = 1, there was a counter overflow
Read Register 117 (counter value [31:24])
Read Register 118 (counter value [23:16])
Read Register 119 (counter value [15:8])
Read Register 120 (counter value [7:0])
(2) MIB counter read (read Port 2 Rx64Octets counter)

Write to Register 110 with 0x1c (read MIB counter selected)
Write to Register 111 with 0x2d (trigger the read operation)
Then
Read Register 116 (counter value [39:32])
// If bit [38] = 1, there was a counter overflow
Read Register 117 (counter value [31:24])
Read Register 118 (counter value [23:16])
Read Register 119 (counter value [15:8])
Read Register 120 (counter value [7:0])
(3) MIB counter read (read Port 1 TX drop packets)

Write to Register 110 with 0x1d
Write to Register 111 with 0x03
Then
Read Register 116 (counter value [39:32])
// If bit [38] = 1, there was a counter overflow
Read Register 119 (counter value [15:8])
Read Register 120 (counter value [7:0])

Note:

To read out all the counters, the best performance over the SPI bus is $(160+3) \times 8 \times 20=26$ us, where there are 160 registers, 3 overhead, 8 clocks per access, at 50 MHz . In the heaviest condition, the byte counter will overflow in 2 minutes. It is recommended that the software read all the counters at least every 30 seconds. The all Port MIB counters are designed as "read clear."

MIIM Registers

All the registers defined in this section can be also accessed via the SPI interface. Note: different mapping mechanisms are used for MIIM and SPI. The "PHYAD" defined in IEEE is assigned as " 0×1 " for Port 1, " 0×2 " for Port 2 and " 0×3 " for Port 3. The "REGAD" supported are 0x0-0x5 (0h-5h), 0x1D (1dh) and 0x1F (1fh).

Address	Name	Description	Mode	Default
Register Oh: Basic Control				
15	Soft Reset	$\begin{aligned} & 1=\text { PHY soft reset. } \\ & 0=\text { Normal operation. } \end{aligned}$	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \text { (SC) } \end{aligned}$	0
14	Loop Back	1 = Perform MAC loopback, loop back path as follows: Assume the loop-back is at Port 1 MAC, Port 2 is the monitor port. Port 1 MAC Loopback (Port 1 Reg. 0, bit [14] = 1') Start: RXP2/RXM2 (Port 2). Can also start from Ports 3, 4. Loopback: MAC/PHY interface of Port 1's MAC End: TXP2/TXM2 (Port 2). Can also end at Ports 3, 4 respectively. Setting address 0×3, 4 Reg. 0, bit [14] = ' 1 ' will perform MAC loopback on Ports 3, 4, respectively. $0=$ Normal Operation.	R/W	0
13	Force 100	$\begin{aligned} & 1=100 \mathrm{Mbps} . \\ & 0=10 \mathrm{Mbps} . \end{aligned}$	R/W	1
12	AN Enable	1 = Auto-Negotiation enabled. $0=$ Auto-Negotiation disabled.	R/W	1
11	Power Down	$\begin{aligned} & 1=\text { Power down. } \\ & 0=\text { Normal operation. } \end{aligned}$	R/W	0
10	PHY Isolate	$\begin{aligned} & 1=\text { Electrical PHY isolation of PHY from Tx+/Tx-. } \\ & 0=\text { Normal operation. } \end{aligned}$	R/W	0
9	Restart AN	1 = Restart Auto-Negotiation. $0=$ Normal operation.	R/W	0
8	Force Full Duplex	1 = Full duplex. $0=$ Half duplex.	R/W	1
7	Reserved	Reserved	RO	0
6	Reserved	Reserved	RO	0
5	Hp_mdix	$\begin{aligned} & 1=\text { HP Auto-MDI/MDIX mode } \\ & 0=\text { Micrel Auto-MDI/MDIX mode } \end{aligned}$	R/W	1
4	Force MDI	$\begin{aligned} & 1=\text { MDI mode when disable Auto-MDI/MDIX. } \\ & 0=\text { MDIX mode when disable Auto-MDI/MDIX. } \end{aligned}$	R/W	0
3	Disable Auto MDI/MDI-X	$\begin{aligned} & 1=\text { Disable Auto-MDI/MDIX. } \\ & 0=\text { Enable Auto-MDI/MDIX. } \end{aligned}$	R/W	0
2	Disable far End fault	1 = Disable far end fault detection. $0=$ Normal operation.	R/W	0
1	Disable Transmit	$\begin{aligned} & 1=\text { Disable transmit. } \\ & 0=\text { Normal operation. } \end{aligned}$	R/W	0
0	Disable LED	$\begin{aligned} & 1=\text { Disable LED. } \\ & 0=\text { Normal operation. } \end{aligned}$	R/W	0

MIIM Registers (Continued)

Address	Name	Description	Mode	Default
Register 1h: Basic Status				
15	T4 Capable	0 = Not 100 BASET4 capable.	RO	0
14	100 Full Capable	1 = 100BASE-TX full-duplex capable. $0=$ Not capable of 100BASE-TX full-duplex.	RO	1
13	100 Half Capable	$1=100 B A S E-T X$ half-duplex capable. $0=$ Not 100BASE-TX half-duplex capable.	RO	1
12	10 Full Capable	1 = 10BASE-T full-duplex capable. $0=$ Not 10BASE-T full-duplex capable.	RO	1
11	10 Half Capable	$1=10 B A S E-T$ half-duplex capable. $0=10 B A S E-T$ half-duplex capable.	RO	1
10-7	Reserved	Reserved	RO	0
6	Reserved	Reserved	RO	0
5	AN Complete	1 = Auto-Negotiation complete. 0 = Auto-Negotiation not completed.	RO	0
4	Far End fault	1 = far end fault detected. $0=$ No far end fault detected.	RO	0
3	AN Capable	1 = Auto-Negotiation capable. $0=$ Not Auto-Negotiation capable.	RO	1
2	Link Status	1 = Link is up. $0=$ Link is down.	RO	0
1	Reserved	Reserved	RO	0
0	Extended Capable	$0=$ Not extended register capable.	RO	0
Register 2h: PHYID HIGH				
15-0	Phyid High	High order PHYID bits.	RO	0x0022
Register 3h: PHYID LOW				
15-0	Phyid Low	Low order PHYID bits.	RO	0x1550
Register 4h: Advertisement Ability				
15	Reserved	Reserved	RO	0
14	Reserved	Reserved	RO	0
13	Reserved	Reserved	RO	0
12	Reserved	Reserved	RO	0
11	Reserved	Reserved	RO	1
10	Pause	1 = Advertise pause ability. 0 = Do not advertise pause ability.	R/W	1
9	Reserved	Reserved	R/W	0
8	Adv 100 Full	1 = Advertise 100 full-duplex ability. $0=$ Do not advertise 100 full-duplex ability.	R/W	1
7	Adv 100 Half	1 = Advertise 100 half-duplex ability. $0=$ Do not advertise 100 half-duplex ability.	R/W	1

MIIM Registers (Continued)

Address	Name	Description	Mode	Default
6	Adv 10 Full	$1=$ Advertise 10 full-duplex ability. $0=$ Do not advertise 10 full-duplex ability.	R/W	1
5	Adv 10 Half	$1=$ Advertise 10 half-duplex ability. $0=$ Do not advertise 10 half-duplex ability.	R/W	1
$4-0$	Selector Field	802.3	RO	00001

Register 5h: Link Partner Ability

15	Reserved	Reserved	RO	0
14	Reserved	Reserved	RO	0
13	Reserved	Reserved	RO	0
$12-11$	Reserved	Reserved	$1=$ Link partner flow control capable. $0=$ Link partner not flow control capable.	0
10	Pause	Reserved	RO	0
9	Reserved	$1=$ Link partner 100BT full-duplex capable. $0=$ Link partner not 100BT full-duplex capable.	RO	0
7	Adv 100 Full 100 Half	$1=$ Link partner 100BT half-duplex capable. $0=$ Link partner not 100BT half-duplex capable.	0	
6	Adv 10 Full	$1=$ Link partner 10BT full-duplex capable. $0=$ Link partner not 10BT full-duplex capable.	RO	0
5	Adv 10 Half	$1=$ Link partner 10BT half-duplex capable. $0=$ Link partner not 10BT half-duplex capable.	RO	0
$4-0$	Reserved	Reserved	RO	00001

Register 1dh: LinkMD Control/Status

15	CDT_Enable Note: CDT means Cable Diagnostic Test	$1=$ Enable cable diagnostic. After CDT test has completed, this bit will be self-cleared. $0=$ Indicates cable diagnostic test (if enabled) has completed and the status information is valid for reading.	R/W (SC)	0
$14-13$	CDT_Result	$00=$ Normal condition $01=$ Open condition detected in cable $10=$ Short condition detected in cable $11=$ Cable diagnostic test has failed	RO	00
12	CDT 10M Short	$1=$ Less than 10 meter short	RO	0
$11-9$	Reserved	Reserved	RO	0
$8-0$	CDT_Fault_Count	Distance to the fault. It's approximately $0.4 m * C D T _F a u l t _C o u n t[8: 0] ~$	000000000	

MIIM Registers (Continued)

Address	Name	Description	Mode	Default
Register 1fh: PHY Special Control/Status				
15-11	Reserved		RO	0000000000
10-8	Port Operation Mode Indication	Indicate the current state of port operation mode: $000=$ Reserved $001=$ still in auto-negotiation $010=10 B A S E-T$ half duplex $011=100 B A S E-T X$ half duplex 100 = Reserved $101=$ 10BASE-T full duplex $110=100 B A S E-T X$ full duplex 111 = PHY/MII isolate	RO	001
7-6	Reserved	N/A, don't change	R/W	00
5	Polrvs	1 = Polarity is reversed $0=$ Polarity is not reversed	RO	0
4	MDI-X status	$\begin{aligned} & 1=\mathrm{MDI} \\ & 0=\mathrm{MDI}-\mathrm{X} \end{aligned}$	RO	0
3	Force_Ink	$\begin{aligned} & 1=\text { Force link pass } \\ & 0=\text { Normal operation } \end{aligned}$	R/W	0
2	Pwrsave	1 = Enable power save 0 = Disable power save	R/W	0
1	Remote Loopback	1 = Perform Remote loopback, loop back path as follows: Port 1 (PHY ID address 0x1 Reg. 1fh, bit [1] = '1') Start: RXP1/RXM1 (Port 1) Loopback: PMD/PMA of Port 1's PHY End: TXP1/TXM1 (Port 1) Setting PHY ID address 0x2, 3, 4 Reg. 1fh bit [1] = ' 1 ', will perform remote loopback on Port 2, 3, 4. $0=$ Normal Operation.	R/W	0
0	Reserved	Reserved	RO	0

Absolute Maximum Ratings ${ }^{(6)}$

Supply Voltage
($\left.V_{\text {DD12A }}, V_{\text {DD12D }}\right)$ -0.5 V to +1.8 V
($\mathrm{V}_{\text {DDAT }}, \mathrm{V}_{\text {DDII }}$) -0.5 V to +4.0 V
Input Voltage ... -0.5 V to +4.0 V
Output Voltage .. -0.5 V to +4.0 V
Lead Temperature (soldering, 10 sec.)...................... $260^{\circ} \mathrm{C}$
Storage Temperature $\left(\mathrm{T}_{\mathrm{s}}\right)$. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Max Junction Temperature (T_{J}).................................. $125^{\circ} \mathrm{C}$
HBM ESD Rating .. 5KV

Operating Ratings ${ }^{(7)}$

Supply Voltage
($\mathrm{V}_{\mathrm{DD12A}}, \mathrm{~V}_{\mathrm{DD12D}}$) 1.140V to 1.260 V
($\mathrm{V}_{\text {DDAT }}$)... 3.135V to 3.465 V
($\mathrm{V}_{\text {DIIO }} @ 3.3 \mathrm{~V}$)3.135V to 3.465V
($\mathrm{V}_{\text {DIIo }} @ 2.5 \mathrm{~V}$) 2.375V to 2.625 V
($\mathrm{V}_{\text {DIIO }}$ @ 1.8V) 1.710V to 1.890 V
Ambient Temperature (T_{A})
Commercial.. $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance ${ }^{(8)}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$
$31.96^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (θ_{Jc}) $13.54^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ${ }^{(9,10)}$

$\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V} / 3.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition	Min	Typ	Max	Units
100BASE-TX Operation—All Ports 100\% Utilization						
I_{DX}	100BASE-TX (Transmitter) 3.3V Analog	$\mathrm{V}_{\text {DDAT }}$		107		mA
$\mathrm{I}_{\mathrm{D} 12}$	100BASE-TX 1.2V	$\mathrm{V}_{\mathrm{DD12A}}+\mathrm{V}_{\mathrm{DD12D}}$		35		mA
$\mathrm{I}_{\text {DDIO }}$	100BASE-TX (Digital IO) 3.3V Digital	$V_{\text {DDIO }}$		11		mA
10BASE-T Operation -All Ports 100\% Utilization						
I_{DX}	10BASE-T (Transmitter) 3.3V Analog	$V_{\text {DDAT }}$		110		mA
$\mathrm{I}_{\mathrm{D} 2}$	10BASE-T 1.2V	$\mathrm{V}_{\mathrm{DD12A}}+\mathrm{V}_{\text {DD12D }}$		29		mA
I DDIo	10BASE-T (Digital IO) 3.3V Digital	$V_{\text {DDIO }}$		11		mA
Auto-Negotiation Mode						
I_{DX}	3.3V Analog	$\mathrm{V}_{\text {DDAT }}$		51		mA
$\mathrm{I}_{\mathrm{D} 12}$	1.2V Analog/Digital	$V_{\text {DD12A }}+V_{\text {DD12 }}$		34		mA
IdDIo	3.3V Digital	$V_{\text {DDIO }}$		11		mA
Power Management Mode						
ISPDM1	Soft Power Down Mode 3.3V	$\mathrm{V}_{\text {DDAT }}+\mathrm{V}_{\text {DDIO }}$		0.23		mA
ISPDM2	Soft Power Down Mode 1.2V	$V_{\text {DD12A }}+$ VDD12D		0.17		mA
$\mathrm{I}_{\text {EDM1 }}$	Energy Detect Mode (EDPD) 3.3V	$\mathrm{V}_{\text {DDAT }}+\mathrm{V}_{\text {DDIO }}$		20		mA
$\mathrm{I}_{\text {EDM2 }}$	Energy Detect Mode (EDPD) 1.2V	$V_{\text {DD12A }}+$ VDD12D		27		mA
$\mathrm{I}_{\text {EEE1 }}$	100BT EEE Mode at Idle 3.3V	$V_{\text {DDAT }}+V_{\text {DDIO }}$		20		mA
$\mathrm{I}_{\text {EEE2 }}$	100BT EEE Mode at Idle 1.2V	$V_{\text {DD12A }}+\mathrm{VDD12D}$		27		mA
CMOS Inputs						
V_{IH}	Input High Voltage	VDDIO $=3.3 \mathrm{~V}$	2.0			V
		VDDIO $=2.5 \mathrm{~V}$	1.8			V
		VDDIO $=1.8 \mathrm{~V}$	1.3			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	VDDIO $=3.3 \mathrm{~V}$			0.8	V
		VDDIO $=2.5 \mathrm{~V}$			0.7	V
		VDDIO $=1.8 \mathrm{~V}$			0.5	V
I_{IN}	Input Current (Excluding Pull-up/Pull-down)	$\mathrm{V}_{\text {IN }}=\mathrm{GND} \sim \mathrm{V}_{\text {DDIO }}$			10	$\mu \mathrm{A}$

Electrical Characteristics (Continued)

$\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V} / 3.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Condition	Min	Typ	Max	Units
CMOS Outputs						
V_{OH}	Output High Voltage	VDDIO $=3.3 \mathrm{~V}$	2.4			V
		VDDIO $=2.5 \mathrm{~V}$	2.0			V
		VDDIO $=1.8 \mathrm{~V}$	1.5			V
VoL	Output Low Voltage	VDDIO $=3.3 \mathrm{~V}$			0.4	V
		VDDIO $=2.5 \mathrm{~V}$			0.4	V
		VDDIO $=1.8 \mathrm{~V}$			0.3	V
loz	Output Tri-State Leakage	$\mathrm{V}_{\text {IN }}=\mathrm{GND} \sim \mathrm{V}_{\text {DDIO }}$			10	$\mu \mathrm{A}$

100BASE-TX Transmit (measured differentially after 1:1 transformer)

Vo	Peak Differential Output Voltage	100Ω termination on the differential output	0.95		1.05	V
VImв	Output Voltage Imbalance	100Ω termination on the differential output			2	\%
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{t}}$	Rise/fall Time		3		5	ns
	Rise/fall Time Imbalance		0		0.5	ns
	Duty Cycle Distortion				± 0.5	ns
	Overshoot				5	\%
	Output Jitters	Peak-to-peak	0	0.75	1.4	ns
10BASE-T Receive						
V_{SQ}	Squelch Threshold	5 MHz square wave	300	400	585	mV

10BASE-T Transmit (measured differentially after 1:1 transformer) $\mathrm{V}_{\text {DDAT }}=3.3 \mathrm{~V}$

V_{P}	Peak Differential Output Voltage	100Ω termination on the differential output	2.2	2.5	2.8	V
	Output Jitters	Peak-to-peak		1.4	3.5	ns
	Rise/fall Times			28	30	ns

I/O Pin Internal Pull-Up and Pull-Down Resistance

R1.8PU	I/O Pin Effective Pull-Up Resistance	VDDIO $=1.8 \mathrm{~V}$	75	95	135	$\mathrm{k} \Omega$
R1.8PD	I/O Pin Effective Pull-Down Resistance	VDDIO $=1.8 \mathrm{~V}$	53	68	120	$\mathrm{k} \Omega$
R2.5PU	I/O Pin Effective Pull-Up Resistance	VDDIO $=2.5 \mathrm{~V}$	46	60	93	$\mathrm{k} \Omega$
R2.5PD	I/O Pin Effective Pull-Down Resistance	VDDIO $=2.5 \mathrm{~V}$	46	59	103	$\mathrm{k} \Omega$
R3.3PU	I/O Pin Effective Pull-Up Resistance	VDDIO $=3.3 \mathrm{~V}$	35	45	65	$\mathrm{k} \Omega$
R3.3PD	I/O Pin Effective Pull-Down Resistance	VDDIO $=3.3 \mathrm{~V}$	37	46	74	$\mathrm{k} \Omega$

Notes:

6. Exceeding the absolute maximum rating may damage the device.
7. The device is not guaranteed to function outside its operating rating. Unused inputs must always be tied to an appropriate logic voltage level (ground or VDD).
8. No heat spreader in package. The thermal junction to ambient $\left(\theta_{\mathrm{JA}}\right)$ and the thermal junction to case $\left(\theta_{\mathrm{Jc}}\right)$ are under air velocity $0 \mathrm{~m} / \mathrm{s}$.
9. Specification for packaged product only. There is no an additional transformer consumption due to use on chip termination technology with internal biasing for 10Base-T and 100Base-TX. The test condition is in port 4 RGMII mode (default).
10. Measurements were taken with operating ratings.

Timing Diagrams

RGMII Timing

The RGMII timing conforms to the timing requirements in the RGMII Version 2.0 Specification.

Figure 14. RGMII v2.0 Specification (Figure3-Multiplexing and Timing Diagram)

Table 29. RGMII v2.0 Specification (Timing Specifics from Table 2)

Symbol	Parameter	Min	Typ	Max	Units
TskewT	Data to clock output skew (at transmitter) *NOTE 11	-500	0	500	ps
TskewR	Data to clock input skew (at receiver) *NOTE 11	1		2.6	ns
Tcyc	Clock Cycle Duration	*NOTE 12	7.2	8	8.8
Duty_G	Duty Cycle for Gigabit	45	50	55	$\%$
Duty_T	Duty Cycle for 10/100T	40	50	60	$\%$
Tr / Tf	Rise / Fall Time (20-80\%)			0.75	ns

Note:
11. RGMII V2.0 add internal delay (RGMII-ID) option to match the clocks timing for the transmit and the receiving.
12. For 10 Mbps and 100 Mbps , Tcyc will scale to $400 \mathrm{~ns}+/-40 \mathrm{~ns}$ and $40 \mathrm{~ns}+/-4 \mathrm{~ns}$.

MII Timing

Figure 15. MAC Mode MII Timing - Data Received from MII

Figure 16. MAC Mode MII Timing - Data Transmitted from MII

Table 30. MAC Mode MII Timing Parameters

		10Base-T/100Base-TX			
Symbol	Parameter	Min	Typ	Max	Units
tCYC3	Clock Cycle		$400 / 40$		ns
tS3	Set-Up Time	2			ns
tH3	Hold Time	2			ns
tOV3	Output Valid	3	8	10	ns

Figure 17. PHY Mode MII Timing - Data Received from MII

Figure 18. PHY Mode MII Timing - Data Transmitted from MII

Table 31. PHY Mode MII Timing Parameters

		10BaseT/100BaseT			
Symbol	Parameter	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{cY} 4}$	Clock Cycle		$400 / 40$		ns
$\mathrm{t}_{\mathrm{s} 4}$	Set-Up Time	10		ns	
$\mathrm{t}_{\mathrm{H} 4}$	Hold Time	0		ns	
$\mathrm{t}_{\mathrm{ov} 4}$	Output Valid	16	20	ns	

RMII Timing

Figure 19. RMII Timing - Data Received from RMII

Figure 20. RMII Timing - Data Transmitted to RMII

Table 32. RMII Timing Parameters

Timing Parameter	Description	Min	Typ	Max	Unit
$\mathrm{t}_{\text {cyc }}$	Clock cycle		20		ns
t_{1}	Setup time	4			ns
t_{2}	Hold time	2			ns
t_{od}	Output delay	3		10	ns

SPI Timing

Figure 21. SPI Input Timing

Table 33. SPI Input Timing Parameters

Symbol	Parameter	Min	Typ	Max
f_{C}	Clock Frequency			50
$\mathrm{t}_{\text {CHSL }}$	SPIS_N Inactive Hold Time	2		
$\mathrm{t}_{\text {SLCH }}$	SPIS_N Active Set-Up Time	4		ns
$\mathrm{t}_{\text {CHSH }}$	SPIS_N Active Hold Time	2		ns
$\mathrm{t}_{\text {SHCH }}$	SPIS_N Inactive Set-Up Time	4		ns
$\mathrm{t}_{\text {SHSL }}$	SPIS_N Deselect Time	10		
$\mathrm{t}_{\text {DVCH }}$	Data Input Set-Up Time	4		ns
$\mathrm{t}_{\text {CHDX }}$	Data Input Hold Time	2		ns
$\mathrm{t}_{\text {CLCH }}$	Clock Rise Time		ns	
$\mathrm{t}_{\text {CHCL }}$	Clock fall Time		1	us
$\mathrm{t}_{\text {DLDH }}$	Data Input Rise Time		1	us
$\mathrm{t}_{\text {DHDL }}$	Data Input fall Time		1	us

Auto-Negotiation Timing

Figure 22. Auto-Negotiation Timing

Table 34. Auto-Negotiation Timing Parameters

Symbols	Parameters	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{BTB}}$	FLP burst to FLP burst	8	16	24	ms
$\mathrm{t}_{\text {FLPW }}$	FLP burst width		2		ms
t_{PW}	Clock/Data pulse width		100		ns
$\mathrm{t}_{\mathrm{CTD}}$	Clock pulse to Data pulse	55.5	64	69.5	$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{CTC}}$	Clock pulse to Clock pulse	111	128	139	$\mu \mathrm{~s}$
	Number of Clock/Data pulse per burst	17		33	

MDC/MDIO Timing

Figure 23. MDC/MDIO Timing
Table 35. MDCIMDIO Typical Timing Parameters

Timing Parameter	Description	Min	Typ	Max	Unit
f_{C}	Clock Frequency		2.5	25	MHz
t_{P}	MDC period		400		ns
$\mathrm{t}_{1 \text { MD1 }}$	MDIO (PHY input) setup to rising edge of MDC	10			ns
$t_{\text {MD2 }}$	MDIO (PHY input) hold from rising edge of MDC	4			ns
$t_{\text {MD3 }}$	MDIO (PHY output) delay from rising edge of MDC	5			ns

Power-down/Power-up and Reset Timing

Figure 24. Reset Timing

Table 36. Reset Timing Parameters

Symbol	Parameter	Min	Typ	Max
Units				
t_{SR}	Stable Supply Voltages to Reset High	10		
t_{CS}	Configuration Set-Up Time	5		ms
t_{CH}	Configuration Hold Time	5		ns
t_{RC}	Reset to Strap-In Pin Output	6		ns
tvr	$3.3 V$ rise time	200		ns

Reset Circuit Diagram

Micrel recommends the following discrete reset circuit as shown in Figure 28 when powering up the KS8795 device. For the application where the reset circuit signal comes from another device (e.g., CPU, FPGA, etc), we recommend the reset circuit as shown in Figure 29.

Figure 25. Recommended Reset Circuit

Figure 26. Recommended Circuit for Interfacing with CPU/FPGA Reset

At power-on-reset, R, C, and D1 provide the necessary ramp rise time to reset the Micrel device. The reset out RST_OUT_n from CPU/FPGA provides the warm reset after power up.

Selection of Isolation Transformer ${ }^{(13)}$

One simple 1:1 isolation transformer is needed at the line interface. An isolation transformer with integrated commonmode choke is recommended for exceeding FCC requirements at line side. Request to separate the center taps of RX/TX at chip side. The following table gives recommended transformer characteristics.
Table 37. Transformer Selection Criteria

Characteristics Name	Value	Test Condition
Turns Ratio	1 CT : 1 CT	
Open-Circuit Inductance (min.)	$350 \mu \mathrm{H}$	$100 \mathrm{mV}, 100 \mathrm{kHz}, 8 \mathrm{~mA}$
Insertion Loss (max.)	1.1 dB	0.1 MHz to 100 MHz
HIPOT (min.)	1500 Vrms	

Note:
13. The IEEE 802.3 u standard for 100BASE-TX assumes a transformer loss of 0.5 dB . For the transmit line transformer, insertion loss of up to 1.3 dB can be compensated by increasing the line drive current by means of reducing the ISET resistor value.
14. The center taps of $R X$ and $T X$ should be isolated for the low power consumption.

The following transformer vendors provide compatible magnetic parts for Micrel's device:
Table 38. Qualified Magnetic Vendors

Vendors and Parts		Auto MDIX	Number of Ports	Vendors and Parts		Auto MDIX	Number of Ports
Pulse	H1164NL	Yes	4	Pulse	H1102	Yes	1
YCL	PH406082	Yes	4	Bel Fuse	S558-5999-U7	Yes	1
TDK	TLA-6T718A	Yes	1	YCL	PT163020	Yes	1
LanKom	LF-H41S	Yes	1	Transpower	HB726	Yes	1
Datatronic	NT79075	Yes	1	Delta	LF8505	Yes	1

Selection of Reference Crystal

Table 39. Typical Reference Crystal Characteristics

Characteristics	Value	Units
Frequency	25.00000	MHz
Frequency tolerance (max)	$<= \pm 50$	ppm
Load capacitance (max) Note: Typical value varies per specific crystal spec.	27	pF
Series resistance (max ESR)	40	Ω

Package Information

TOP VIEW

BOTTOM VIEW

SYMBCL	DIMENSIDN (MM)		
	MIN.	NDM.	MAX.
	0.80	0.85	0.90
A1	0	0.02	0.95
A3	0.203 REF		
b	0.15	0.20	0.25
D	7.90	8.00	8.10
D2	4.10	4.20	4.30
E	7.90	8.00	8.10
E?	4.10	4.20	4.30
Q	0.40 BSC		
L	0.35	0.40	0.45

Figure 27. 64-Pin (8mm x 8mm) QFN Package

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2014 Micrel, Incorporated.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Micrel:
KSZ8794CNX-EVAL KSZ8794CNXCC KSZ8794CNXIC

