Silicon Controlled RectifiersReverse Blocking Thyristors

Designed primarily for half-wave ac control applications, such as motor controls, heating controls and power supplies.

Features

- Glass Passivated Junctions with Center Gate Geometry for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Blocking Voltage to 800 V
- These are Pb-Free Devices

MAXIMUM RATINGS † (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (T _J = -40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open) 2N6394 2N6395 2N6397 2N6399	V _{DRM} , V _{RRM}	50 100 400 800	V
On-State RMS Current (180° Conduction Angles; T _C = 90°C)	I _{T(RMS)}	12	Α
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = 90°C)	I _{TSM}	100	Α
Circuit Fusing (t = 8.3 ms)	I ² t	40	A ² s
Forward Peak Gate Power (Pulse Width \leq 1.0 μ s, T _C = 90°C)	P _{GM}	20	W
Forward Average Gate Power (t = 8.3 ms, T _C = 90°C)	P _{G(AV)}	0.5	W
Forward Peak Gate Current (Pulse Width \leq 1.0 μ s, T _C = 90°C)	I _{GM}	2.0	Α
Operating Junction Temperature Range	T_J	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

MAXIMUM RATINGS \dagger (T_J = 25°C unless otherwise noted)

Rating	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.0	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

†Indicates JEDEC Registered Data

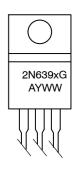
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

1

ON Semiconductor®

http://onsemi.com


SCRs 12 AMPERES RMS 50 thru 800 VOLTS

MARKING DIAGRAM

TO-220AB CASE 221A STYLE 3

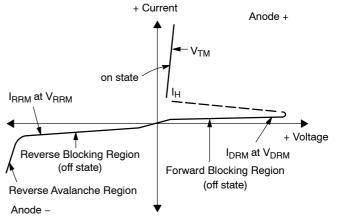
2N639x = Device Code x = 4, 5, 7, or 9 G = Pb-Free Package A = Assembly Location

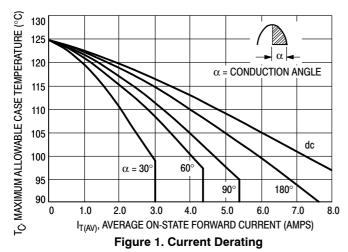
Y = Year WW = Work Week

PIN ASSIGNMENT				
1	Cathode			
2	Anode			
3	Gate			
4	Anode			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.


ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)


Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
†Peak Repetitive Forward or Reverse Blocking Current	T	I _{DRM} , I _{RRM}				
$(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM}, Gate Open)$	T _J = 25°C T _{.l} = 125°C		_	_	10	μΑ
	15 - 120 0		_	_	2.0	mA
ON CHARACTERISTICS						
†Peak Forward On-State Voltage (Note 2) (I _{TM} = 24 A Peak)		V_{TM}	-	1.7	2.2	V
†Gate Trigger Current (Continuous dc) (V _D = 12 Vdc, R _L = 100 Ohms)		I _{GT}	-	5.0	30	mA
†Gate Trigger Voltage (Continuous dc) (V _D = 12 Vdc, R _L = 100 Ohms)		V _{GT}	-	0.7	1.5	V
Gate Non-Trigger Voltage (V _D = 12 Vdc, R _L = 100 Ohms, T _J = 125°C)			0.2	-	_	V
† Holding Current (V _D = 12 Vdc, Initiating Current = 200 mA, Gate 0	Open)	I _H	-	6.0	50	mA
Turn-On Time (I_{TM} = 12 A, I_{GT} = 40 mAdc, V_D = Rated V_{DRM})	t _{gt}	-	1.0	2.0	μs	
Turn-Off Time (V_D = Rated V_{DRM}) (I_{TM}	= 12 A, I _R = 12 A)	tq	-	15	-	μs
$(I_{TM} = 12 A, I_R =$	12 A, $T_J = 125^{\circ}C$)		_	35	_	
DYNAMIC CHARACTERISTICS						
Critical Rate-of-Rise of Off-State Voltage Exponential		dv/dt	-	50	-	V/μs
(V _D = Rated V	T_{DRM} , $T_J = 125^{\circ}C$					

†Indicates JEDEC Registered Data

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak On State Voltage
I _H	Holding Current

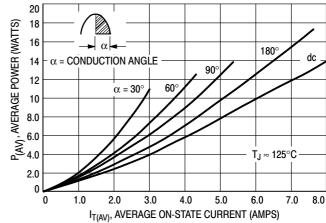


Figure 2. Maximum On-State Power Dissipation

^{2.} Pulse Test: Pulse Width \leq 300 μ sec, Duty Cycle \leq 2%.

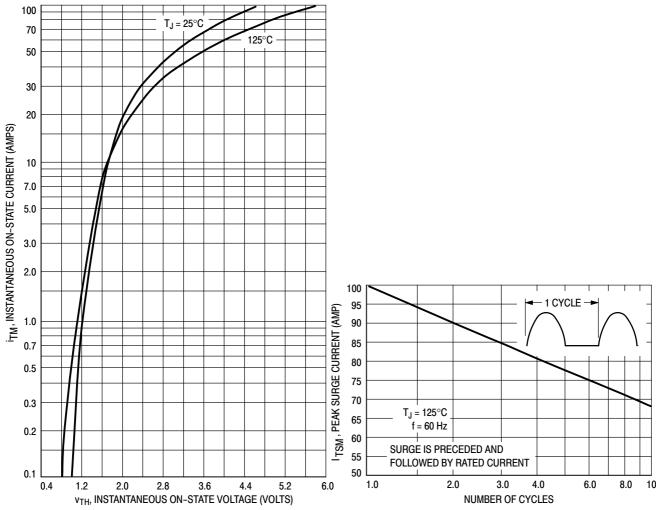


Figure 3. On-State Characteristics Figure 4. Maximum Non-Repetitive Surge Current

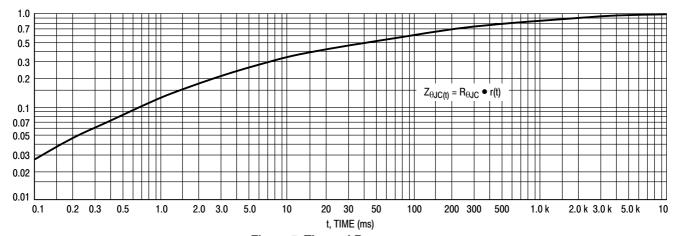
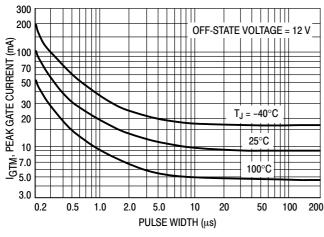
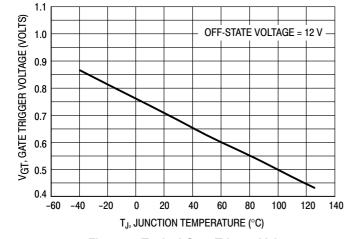



Figure 5. Thermal Response

TYPICAL CHARACTERISTICS

3.0 OFF-STATE VOLTAGE = 12 V

1.0 OFF-STATE VOLTAGE = 12 V


0.5 O.3

-40 -20 0 20 40 60 80 100 120 140 160

T_J, JUNCTION TEMPERATURE (°C)

Figure 6. Typical Gate Trigger Current versus Pulse Width

Figure 7. Typical Gate Trigger Current versus Temperature

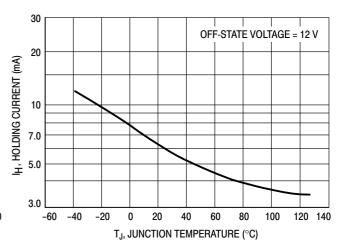
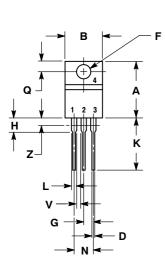


Figure 8. Typical Gate Trigger Voltage versus Temperature

Figure 9. Typical Holding Current versus Temperature


ORDERING INFORMATION

Device	Package	Shipping**
2N6394G	TO-220AB (Pb-Free)	500 Units / Bulk
2N6394TG		50 Units / Rail
2N6395G		500 Units / Bulk
2N6397G		500 Units / Bulk
2N6397TG		50 Units / Rail
2N6399G		500 Units / Bulk
2N6399TG		50 Units / Rail

^{**}For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TO-220AB CASE 221A-07 **ISSUE AA**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL **BODY AND LEAD IRREGULARITIES ARE** ALLOWED

	INC	HES	ES MILLIMETE	
DIM	MIN	MAX	MIN MAX	
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

- STYLE 3: PIN 1. CATHODE
 - 2. ANODE
 - 3. GATE ANODE

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for support of the scillar of the SCILLC product could create a situation where surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

N. American Technical Support: 800-282-9855 Toll Free

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

<u>2N6394</u> <u>2N6394G</u> <u>2N6395</u> <u>2N6397</u> <u>2N6397T</u> <u>2N6397TG</u> <u>2N6399G</u> <u>2N6399G</u> <u>2N6395G</u> <u>2N6397G</u> <u>2N6399TG</u> 2N6394TG