Small Signal MOSFET

60 V, 380 mA, Single, N-Channel, SOT-23

Features

- ESD Protected
- Low R_{DS(on)}
- Surface Mount Package
- 2V Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

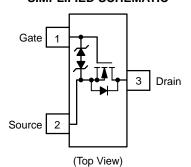
- Low Side Load Switch
- Level Shift Circuits
- DC-DC Converter
- Portable Applications i.e. DSC, PDA, Cell Phone, etc.

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	60	V
Gate-to-Source Voltage	V _{GS}	±20	V
	I _D	380 270	mA
	I _D	320 230	mA
Power Dissipation Steady State 1 sq in Pad Steady State Minimum Pad	P _D	420 300	mW
Pulsed Drain Current (t _p = 10 μs)	I _{DM}	5.0	Α
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C
Source Current (Body Diode)	IS	300	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	TL	260	°C
Gate–Source ESD Rating (HBM, Method 3015)	ESD	2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

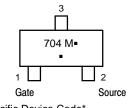
- 1. Surface-mounted on FR4 board using 1 sq in pad size with 1 oz Cu.
- 2. Surface-mounted on FR4 board using 0.08 sq in pad size with 1 oz Cu.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	V _{(BR)DSS} R _{DS(on)} MAX	
60 V	1.6 Ω @ 10 V	380 mA
	2.5 Ω @ 4.5 V	300 IIIA


SIMPLIFIED SCHEMATIC

MARKING DIAGRAM & PIN ASSIGNMENT Drain

2 SOT-23 CASE 318

STYLE 21

704 = Specific Device Code*
M = Date Code*
= Pb-Free Package

(Note: Microdot may be in either location)
*Specific Device Code, Date Code or overbar
orientation and/or location may vary depending upon manufacturing location. This is a
representation only and actual devices may
not match this drawing exactly.

ORDERING INFORMATION

Device	Package	Shipping [†]
2N7002KT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
2V7002KT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	300	°C/W
Junction–to–Ambient – t ≤ 5 s (Note 3)		92	
Junction-to-Ambient - Steady State (Note 4)		417	
Junction-to-Ambient - t ≤ 5 s (Note 4)		154	

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise specified})$

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V$,	I _D = 250 μA	60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				71		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$,	T _J = 25°C			1	μΑ
		V _{DS} = 60 V	T _J = 125°C			10	1
		V _{GS} = 0 V, V _{DS} = 50 V	T _J = 25°C			100	nA
Gate-to-Source Leakage Current	I _{GSS}	I_{GSS} $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$				±10	μΑ
		V _{DS} = 0 V,	V _{GS} = ±10 V			450	nA
		V _{DS} = 0 V, V	/ _{GS} = ±5.0 V			150	nA
ON CHARACTERISTICS (Note 5)	•						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I _D = 250 μA	1.0		2.3	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 500 \text{ mA}$			1.19	1.6	Ω
		$V_{GS} = 4.5 \text{ V}, I_D = 200 \text{ mA}$			1.33	2.5	
Forward Transconductance	9FS	$V_{DS} = 5 \text{ V}, I_{D} = 200 \text{ mA}$			530		mS
CHARGES AND CAPACITANCES				•	•	•	
Input Capacitance	C _{ISS}				24.5	45	pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,}$ $V_{DS} = 20 \text{ V}$			4.2	8.0	1
Reverse Transfer Capacitance	C _{RSS}	VDS	- 20 V		2.2	5.0	
Total Gate Charge	Q _{G(TOT)}				0.7		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V}$	', V _{DS} = 10 V;		0.1		•
Gate-to-Source Charge	Q _{GS}	I _D = 2	200 mA		0.3		
Gate-to-Drain Charge	Q_{GD}	1			0.1		1
SWITCHING CHARACTERISTICS, V _{GS}	= V (Note 6)			•	•	•	•
Turn-On Delay Time	t _{d(ON)}				12.2		ns
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{DD} = 25 \text{ V},$ $I_{D} = 500 \text{ mA}, R_{G} = 25 \Omega$			9.0		
Turn-Off Delay Time	t _{d(OFF)}				55.8		
Fall Time	t _f				29		
DRAIN-SOURCE DIODE CHARACTER	ISTICS	•		•	•	•	
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V$	T _J = 25°C		0.8	1.2	V
		I _S = 200 mA	T _J = 85°C		0.7		

^{5.} Pulse Test: pulse width $\leq 300~\mu s,~duty~cycle \leq 2\%$

Surface–mounted on FR4 board using 1 sq in pad size with 1 oz Cu.
 Surface–mounted on FR4 board using 0.08 sq in pad size with 1 oz Cu.

^{6.} Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

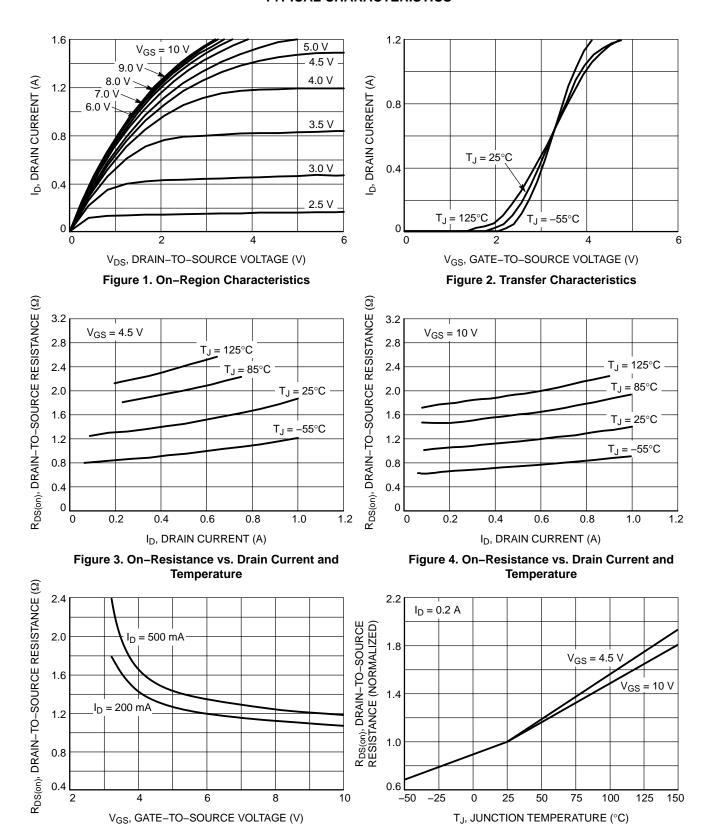


Figure 6. On-Resistance Variation with

Temperature

Figure 5. On-Resistance vs. Gate-to-Source

Voltage

TYPICAL CHARACTERISTICS

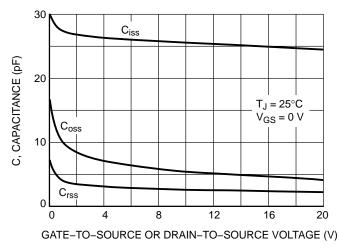


Figure 7. Capacitance Variation

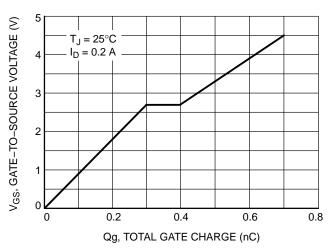


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

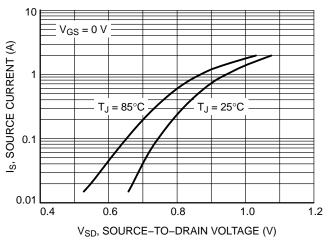


Figure 9. Diode Forward Voltage vs. Current

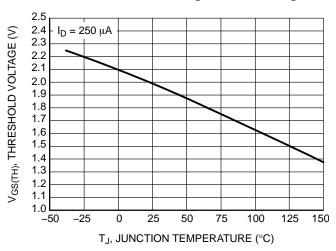


Figure 10. Threshold Voltage with Temperature

TYPICAL CHARACTERISTICS

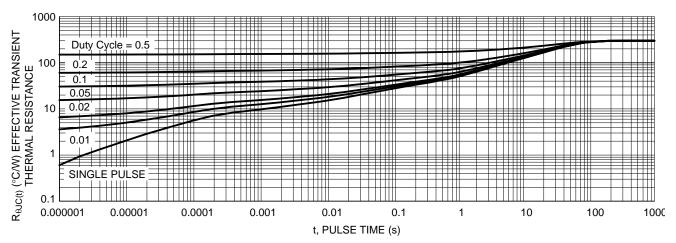


Figure 11. Thermal Response - 1 sq in pad

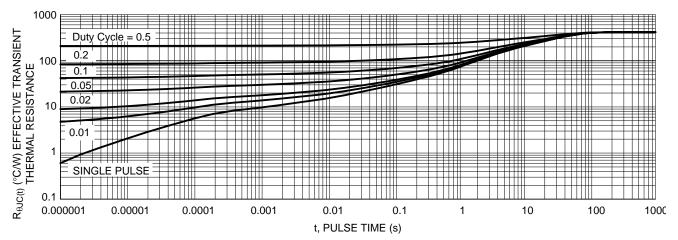
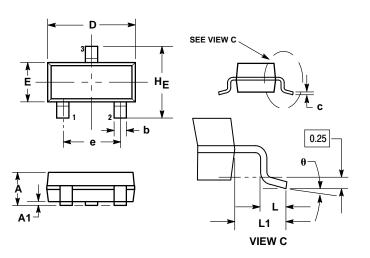
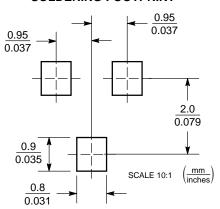



Figure 12. Thermal Response - minimum pad

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AP**


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- DIMENSIONING AND TOLERANCING FER AND 114-3W, 196
 CONTROLLING DIMENSION: INCH.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM
 THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.040	0.044	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.018	0.020	
С	0.09	0.13	0.18	0.003	0.005	0.007	
D	2.80	2.90	3.04	0.110	0.114	0.120	
E	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.081	
L	0.10	0.20	0.30	0.004	0.008	0.012	
L1	0.35	0.54	0.69	0.014	0.021	0.029	
HE	2.10	2.40	2.64	0.083	0.094	0.104	
A	O°		10°	0°		10°	

STYLE 21:

- PIN 1. GATE
 - 2. 3. SOURCE DRAIN

SOLDERING FOOTPRINT

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

2N7002KT1G 2N7002KT3G 2V7002KT1G