BAV23CL, NSVBAV23CL

Dual High Voltage Common Cathode Switching Diode

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MARKING DIAGRAM

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Continuous Reverse Voltage	V_{R}	250	V
Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	250	V
Peak Forward Current	I_{F}	400	mA
Non-Repetitive Peak Forward Surge Current $@ \mathrm{t}=1.0 \mathrm{us}$ $@ t=100 \mu \mathrm{~s}$ @ $\mathrm{t}=10 \mathrm{~ms}$	$\mathrm{I}_{\text {FSM }}$	$\begin{aligned} & 9.0 \\ & 3.0 \\ & 1.7 \end{aligned}$	A
Peak Forward Surge Current	$\mathrm{I}_{\text {FM (surge) }}$	625	mAdc
Non-Repetitive Peak Per Human Body Model Per Machine Model	HBM MM	$\begin{aligned} & 4.0 \\ & 400 \end{aligned}$	$\begin{gathered} \mathrm{kV} \\ \mathrm{~V} \end{gathered}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

AA = Specific Device Code
M = Date Code

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
BAV23CLT1G	SOT-23 (Pb-Free)	 Reel
BAV23CLT3G	SOT-23 (Pb-Free)	 Reel
NSVBAV23CLT1G	SOT-23 (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
SINGLE HEATED			
Total Device Dissipation (Note 1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} \hline 265 \\ 2.1 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient (Note 1)	$\mathrm{R}_{\theta \mathrm{JA}}$	472	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Reference, Junction-to-Anode Lead (Note 1)	R_\%JL	263	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Reference, Junction-to-Case (Note 1)	R_YJc	289	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 345 \\ & 2.7 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient (Note 2)	$\mathrm{R}_{\text {өJA }}$	362	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Reference, Junction-to-Anode Lead (Note 2)	R_YJL	251	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Reference, Junction-to-Case (Note 2)	R_YJc	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DUAL HEATED (Note 3)

Total Device Dissipation (Note 1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 390 \\ 3.1 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient (Note 1)	$\mathrm{R}_{\theta \mathrm{JA}}$	321	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Reference, Junction-to-Anode Lead (Note 1)	R_\%JL	159	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Reference, Junction-to-Case (Note 1)	R_\% Jc	138	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 540 \\ 4.3 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient (Note 2)	$\mathrm{R}_{\text {өJA }}$	231	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Reference, Junction-to-Anode Lead (Note 2)	R_\%JL	148	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Reference, Junction-to-Case (Note 2)	R_\% \% ${ }_{\text {c }}$	119	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

1. FR-4 @ $100 \mathrm{~mm}^{2}, 1 \mathrm{oz}$. copper traces, still air.
2. FR-4 @ $500 \mathrm{~mm}^{2}, 2 \mathrm{oz}$. copper traces, still air.
3. Dual heated values assume total power is sum of two equally powered channels

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

Reverse Voltage Leakage Current $\begin{aligned} & \left(V_{R}=200 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{R}}=200 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right) \end{aligned}$	I_{R}	-	$\begin{aligned} & 0.1 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$
Reverse Breakdown Voltage $\left(I_{\mathrm{BR}}=100 \mu \mathrm{Adc}\right)$	$\mathrm{V}_{\text {(BR) }}$	250	-	Vdc
Forward Voltage ($\left.\mathrm{I}_{\mathrm{F}}=100 \mathrm{mAdc}\right)$ ($I_{F}=200 \mathrm{mAdc}$)	V_{F}	-	$\begin{aligned} & 1000 \\ & 1250 \end{aligned}$	mV
Diode Capacitance $\left(\mathrm{V}_{\mathrm{R}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {T }}$	-	5.0	pF
Reverse Recovery Time $\left(I_{F}=I_{R}=30 \mathrm{mAdc}, R_{L}=100 \Omega\right)$	t_{rr}	-	150	ns

BAV23CL, NSVBAV23CL

Figure 1. Forward Voltage

Figure 2. Reverse Current

Figure 3. Total Capacitance

Notes: 1. A $2.0 \mathrm{k} \Omega$ variable resistor adjusted for a Forward Current $\left(\mathrm{I}_{\mathrm{F}}\right)$ of 30 mA .
2. Input pulse is adjusted so $\mathrm{I}_{\mathrm{R} \text { (peak) }}$ is equal to 30 mA .
3. $t_{p} \geqslant t_{r r}$

Figure 4. Recovery Time Equivalent Test Circuit

BAV23CL, NSVBAV23CL

PACKAGE DIMENSIONS

SOT-23 (TO-236)
CASE 318-08
ISSUE AP

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
c	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
HE	2.10	2.40	2.64	0.083	0.094	0.104
$\boldsymbol{\theta}$	0°	---	10°	0°	---	10°

STYLE 9:
PIN 1. ANODE
2. ANODE
3. CATHODE

SOLDERING FOOTPRINT

ON Semiconductor and (UN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:

