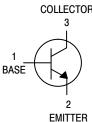
# BCW66GLT1G, SBCW66GLT1G

# **General Purpose Transistor NPN Silicon**

#### Features

- AEC-Q101 Qualified and PPAP Capable
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant\*




## **ON Semiconductor®**

http://onsemi.com



SOT-23 (TO-236) CASE 318-08 **STYLE 6** 

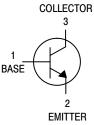


### **MAXIMUM RATINGS**

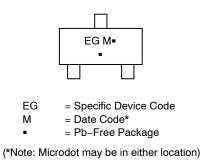
| Rating                         | Symbol           | Value | Unit |
|--------------------------------|------------------|-------|------|
| Collector – Emitter Voltage    | V <sub>CEO</sub> | 45    | Vdc  |
| Collector – Base Voltage       | V <sub>CBO</sub> | 75    | Vdc  |
| Emitter – Base Voltage         | V <sub>EBO</sub> | 5.0   | Vdc  |
| Collector Current – Continuous | Ι <sub>C</sub>   | 800   | mAdc |
| Collector Current – Pulsed     | Ι <sub>C</sub>   | 1200  | mAdc |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

#### THERMAL CHARACTERISTICS


| Characteristic                                                                                     | Symbol                            | Max         | Unit        |
|----------------------------------------------------------------------------------------------------|-----------------------------------|-------------|-------------|
| Total Device Dissipation FR-5 Board<br>(Note 1), $T_A = 25^{\circ}C$<br>Derate above 25°C          | P <sub>D</sub>                    | 225<br>1.8  | mW<br>mW/°C |
| Thermal Resistance,<br>Junction-to-Ambient                                                         | $R_{\theta JA}$                   | 556         | °C/W        |
| Total Device Dissipation Alumina<br>Substrate, (Note 2) T <sub>A</sub> = 25°C<br>Derate above 25°C | P <sub>D</sub>                    | 300<br>2.4  | mW<br>mW/°C |
| Thermal Resistance,<br>Junction-to-Ambient                                                         | $R_{\theta JA}$                   | 417         | °C/W        |
| Junction and Storage Temperature                                                                   | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150 | °C          |

\*For additional information on our Pb-Free strategy and soldering details, please


download the ON Semiconductor Soldering and Mounting Techniques

1. FR-5 =  $1.0 \times 0.75 \times 0.062$  in.

2. Alumina =  $0.4 \times 0.3 \times 0.024$  in 99.5% alumina.



### MARKING DIAGRAM

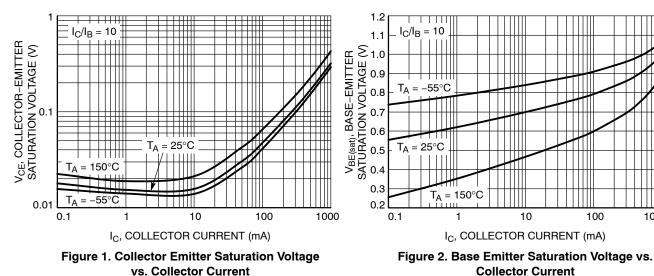


\*Date Code orientation and/or overbar may vary depending upon manufacturing location.

#### **ORDERING INFORMATION**

| Device      | Package             | Shipping <sup>†</sup> |
|-------------|---------------------|-----------------------|
| BCW66GLT1G  | SOT-23<br>(Pb-Free) | 3,000/Tape & Reel     |
| SBCW66GLT1G | SOT-23<br>(Pb-Free) | 3,000/Tape & Reel     |
| BCW66GLT3G  | SOT-23<br>(Pb-Free) | 10,000/Tape & Reel    |

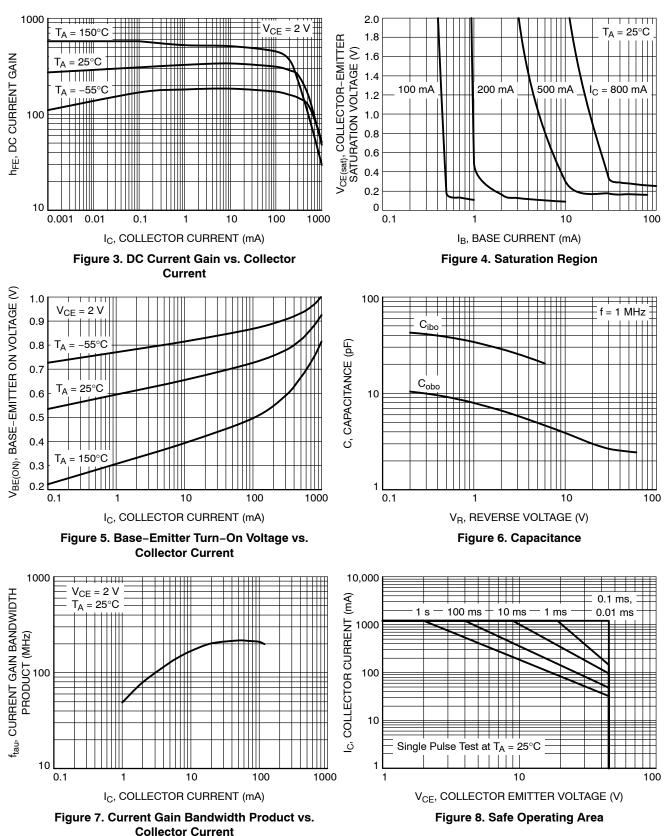
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


Reference Manual, SOLDERRM/D.

## BCW66GLT1G, SBCW66GLT1G

#### **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise noted)

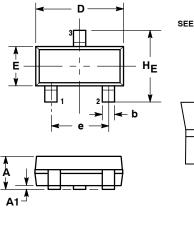
| Characteristic                                                                                                                                                                                           | Symbol               | Min                    | Тур         | Max                | Unit         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|-------------|--------------------|--------------|
| OFF CHARACTERISTICS                                                                                                                                                                                      |                      | •                      | •           |                    | •            |
| Collector – Emitter Breakdown Voltage ( $I_C = 10 \text{ mAdc}, I_B = 0$ )                                                                                                                               | V <sub>(BR)CEO</sub> | 45                     | -           | -                  | Vdc          |
| Collector – Emitter Breakdown Voltage (I <sub>C</sub> = 10 $\mu$ Adc, V <sub>EB</sub> = 0)                                                                                                               | V <sub>(BR)CES</sub> | 75                     | -           | -                  | Vdc          |
| Emitter – Base Breakdown Voltage ( $I_E = 10 \ \mu Adc, I_C = 0$ )                                                                                                                                       | V <sub>(BR)EBO</sub> | 5.0                    | -           | -                  | Vdc          |
| Collector Cutoff Current<br>(V <sub>CE</sub> = 45 Vdc, I <sub>E</sub> = 0)<br>(V <sub>CE</sub> = 45 Vdc, I <sub>E</sub> = 0, T <sub>A</sub> = 150°C)                                                     | I <sub>CES</sub>     |                        |             | 20<br>20           | nAdc<br>µAdc |
| Emitter Cutoff Current ( $V_{EB}$ = 4.0 Vdc, $I_C$ = 0)                                                                                                                                                  | I <sub>EBO</sub>     | -                      | -           | 20                 | nAdc         |
| ON CHARACTERISTICS                                                                                                                                                                                       |                      |                        |             |                    |              |
| DC Current Gain<br>( $I_C = 100 \ \mu Adc, V_{CE} = 10 \ Vdc$ )<br>( $I_C = 10 \ mAdc, V_{CE} = 1.0 \ Vdc$ )<br>( $I_C = 100 \ mAdc, V_{CE} = 1.0 \ Vdc$ )<br>( $I_C = 500 \ mAdc, V_{CE} = 2.0 \ Vdc$ ) | h <sub>FE</sub>      | 50<br>110<br>160<br>60 | -<br>-<br>- | -<br>-<br>400<br>- | _            |
| Collector – Emitter Saturation Voltage<br>( $I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$ )<br>( $I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc}$ )                                                     | V <sub>CE(sat)</sub> |                        |             | 0.7<br>0.3         | Vdc          |
| Base – Emitter Saturation Voltage<br>(I <sub>C</sub> = 500 mAdc, I <sub>B</sub> = 50 mAdc)                                                                                                               | V <sub>BE(sat)</sub> | _                      | _           | 2.0                | Vdc          |
| SMALL-SIGNAL CHARACTERISTICS                                                                                                                                                                             | ·                    |                        |             | •                  | •            |
| Current – Gain — Bandwidth Product<br>(I <sub>C</sub> = 20 mAdc, V <sub>CE</sub> = 10 Vdc, f = 100 MHz)                                                                                                  | f <sub>T</sub>       | 100                    | -           | -                  | MHz          |
| Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$                                                                                                                             | C <sub>obo</sub>     | -                      | -           | 12                 | pF           |
| Input Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$                                                                                                                             | C <sub>ibo</sub>     | -                      | -           | 80                 | pF           |
| Noise Figure (V <sub>CE</sub> = 5.0 Vdc, I <sub>C</sub> = 0.2 mAdc, R <sub>S</sub> = 1.0 k $\Omega$ , f = 1.0 kHz, BW = 200 Hz)                                                                          | NF                   | -                      | -           | 10                 | dB           |
| SWITCHING CHARACTERISTICS                                                                                                                                                                                |                      | ·                      | •           | •                  | •            |
| Turn–On Time (I <sub>B1</sub> = I <sub>B2</sub> = 15 mAdc)                                                                                                                                               | t <sub>on</sub>      | -                      | -           | 100                | ns           |

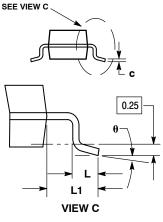

| Turn–On Time (I <sub>B1</sub> = I <sub>B2</sub> = 15 mAdc)                | t <sub>on</sub>  | - | - | 100 | ns       |
|---------------------------------------------------------------------------|------------------|---|---|-----|----------|
| Turn–Off Time (I <sub>C</sub> = 150 mAdc, R <sub>L</sub> = 150 $\Omega$ ) | t <sub>off</sub> | - | - | 400 | ns       |
|                                                                           |                  |   |   |     | <u> </u> |



## **TYPICAL CHARACTERISTICS**

1000


## BCW66GLT1G, SBCW66GLT1G




### **TYPICAL CHARACTERISTICS**

#### PACKAGE DIMENSIONS

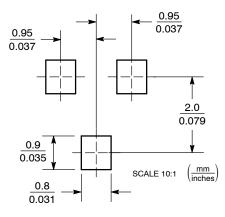
**SOT-23 (TO-236)** CASE 318-08 ISSUE AP





NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  CONTROLLING DIMENSION: INCH.
- 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS MINIMUM LEAD THICKNESS IS THE MINIMUM
- THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,


|     | MILLIMETERS |      |      | INCHES |       |       |  |
|-----|-------------|------|------|--------|-------|-------|--|
| DIM | MIN         | NOM  | MAX  | MIN    | NOM   | MAX   |  |
| Α   | 0.89        | 1.00 | 1.11 | 0.035  | 0.040 | 0.044 |  |
| A1  | 0.01        | 0.06 | 0.10 | 0.001  | 0.002 | 0.004 |  |
| b   | 0.37        | 0.44 | 0.50 | 0.015  | 0.018 | 0.020 |  |
| С   | 0.09        | 0.13 | 0.18 | 0.003  | 0.005 | 0.007 |  |
| D   | 2.80        | 2.90 | 3.04 | 0.110  | 0.114 | 0.120 |  |
| E   | 1.20        | 1.30 | 1.40 | 0.047  | 0.051 | 0.055 |  |
| е   | 1.78        | 1.90 | 2.04 | 0.070  | 0.075 | 0.081 |  |
| L   | 0.10        | 0.20 | 0.30 | 0.004  | 0.008 | 0.012 |  |
| L1  | 0.35        | 0.54 | 0.69 | 0.014  | 0.021 | 0.029 |  |
| HE  | 2.10        | 2.40 | 2.64 | 0.083  | 0.094 | 0.104 |  |
| θ   | 0°          |      | 10°  | 0°     |       | 10°   |  |

STYLE 6: PIN 1. BASE

2. EMITTER

3. COLLECTOR

#### SOLDERING FOOTPRINT



**ON Semiconductor** and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components instended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized applicable copyright hass and is not for resard in manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

For additional information, please contact your local Sales Representative

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: BCW66GLT1G BCW66GLT3G