Dual PNP Bias Resistor Transistors

R1 = 2.2 k Ω , R2 = 47 k Ω

PNP Transistors with Monolithic Bias Resistor Network

This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

Features

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

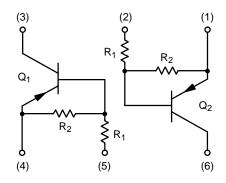
(T_A = 25°C, common for Q1 and Q2, unless otherwise noted)

Rating	Symbol	Max	Unit
Collector-Base Voltage	V_{CBO}	50	Vdc
Collector–Emitter Voltage	V_{CEO}	50	Vdc
Collector Current – Continuous	IC	100	mAdc
Input Forward Voltage	V _{IN(fwd)}	12	Vdc
Input Reverse Voltage	V _{IN(rev)}	5	Vdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION

Device	Package	Shipping [†]
MUN5135DW1T1G, NSVMUN5135DW1T1G	SOT-363	3,000 / Tape & Reel
NSBA123JDXV6T5G	SOT-563	8,000 / Tape & Reel
NSBA123JDP6T5G	SOT-963	8,000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor®

www.onsemi.com

PIN CONNECTIONS

MARKING DIAGRAMS

SOT-363 CASE 419B

SOT-563 CASE 463A

SOT-963 CASE 527AD

0M/P = Specific Device Code

M = Date Code*

■ = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

THERMAL CHARACTERISTICS

	Characteristic	Symbol	Max	Unit
MUN5135DW1 (SOT-363) On	e Junction Heated			
Total Device Dissipation $T_A = 25^{\circ}C \qquad (Note 1)$ $(Note 2)$ Derate above 25°C $(Note 2)$	(Note 1)	P _D	187 256 1.5 2.0	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ hetaJA}$	670 490	°C/W
MUN5135DW1 (SOT-363) Bo	th Junction Heated (Note 3)			
Total Device Dissipation $T_A = 25^{\circ}C \qquad (Note 1)$ $(Note 2)$ Derate above 25°C $(Note 2)$	(Note 1)	P _D	250 385 2.0 3.0	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ hetaJA}$	493 325	°C/W
Thermal Resistance, Junction to Lead (Note 2)	(Note 1)	$R_{ hetaJL}$	188 208	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C
NSBA123JDXV6 (SOT-563)	One Junction Heated			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) Derate above $25^{\circ}C$	(Note 1)	P _D	357 2.9	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1)	$R_{ hetaJA}$	350	°C/W
NSBA123JDXV6 (SOT-563) E	Both Junction Heated (Note 3)			
Total Device Dissipation T _A = 25°C (Note 1) Derate above 25°C	(Note 1)	P _D	500 4.0	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1)	$R_{ hetaJA}$	250	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C
NSBA123JDP6 (SOT-963) O	ne Junction Heated			
Total Device Dissipation $T_A = 25^{\circ}C \qquad (Note 4)$ $(Note 5)$ Derate above 25°C $(Note 5)$	(Note 4)	P _D	231 269 1.9 2.2	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 4) (Note 5)	$R_{ hetaJA}$	540 464	°C/W
NSBA123JDP6 (SOT-963) Bo	oth Junction Heated (Note 3)	ı		
Total Device Dissipation $T_A = 25^{\circ}C \qquad (Note 4)$ $(Note 5)$ Derate above 25°C $(Note 5)$	(Note 4)	P _D	339 408 2.7 3.3	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 4) (Note 5)	$R_{ hetaJA}$	369 306	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C

- FR-4 @ Minimum Pad.
 FR-4 @ 1.0 x 1.0 Inch Pad.
 Both junction heated values assume total power is sum of two equally powered channels.
 FR-4 @ 100 mm², 1 oz. copper traces, still air.
 FR-4 @ 500 mm², 1 oz. copper traces, still air.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, common for Q_1 and Q_2 , unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•		•	
Collector–Base Cutoff Current $(V_{CB} = 50 \text{ V}, I_E = 0)$	Ісво	_	_	100	nAdc
Collector–Emitter Cutoff Current $(V_{CE} = 50 \text{ V}, I_B = 0)$	I _{CEO}	_	-	500	nAdc
Emitter-Base Cutoff Current (V _{EB} = 6.0 V, I _C = 0)	I _{EBO}	_	_	0.2	mAdc
Collector–Base Breakdown Voltage $(I_C = 10 \mu A, I_E = 0)$	V _(BR) CBO	50	-	_	Vdc
Collector–Emitter Breakdown Voltage (Note 6) (I _C = 2.0 mA, I _B = 0)	V _(BR) CEO	50	_	_	Vdc
ON CHARACTERISTICS					
DC Current Gain (Note 6) (I _C = 5.0 mA, V _{CE} = 10 V)	h _{FE}	80	140	_	
Collector–Emitter Saturation Voltage (Note 6) (I _C = 10 mA, I _B = 0.3 mA)	V _{CE(sat)}	_	_	0.25	Vdc
Input Voltage (off) ($V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}$)	V _{i(off)}	_	0.6	_	Vdc
Input Voltage (on) (V _{CE} = 0.2 V, I _C = 5.0 mA)	V _{i(on)}	_	0.8	_	Vdc
Output Voltage (on) (V _{CC} = 5.0 V, V _B = 2.5 V, R _L = 1.0 k Ω)	V _{OL}	_	-	0.2	Vdc
Output Voltage (off) (V _{CC} = 5.0 V, V _B = 0.5 V, R _L = 1.0 k Ω)	V _{OH}	4.9	_	_	Vdc
Input Resistor	R1	1.5	2.2	2.9	kΩ
Resistor Ratio	R ₁ /R ₂	0.038	0.047	0.056	

^{6.} Pulsed Condition: Pulse Width = 300 msec, Duty Cycle \leq 2%.

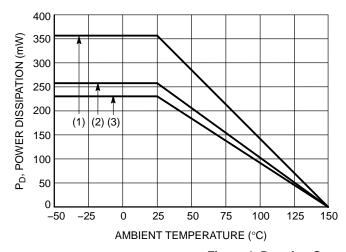


Figure 1. Derating Curve

- (1) SOT-363; 1.0 x 1.0 inch Pad
- (2) SOT-563; Minimum Pad
- (3) SOT-963; 100 mm², 1 oz. copper trace

TYPICAL CHARACTERISTICS MUN5135DW1, NSBA123JDXV6

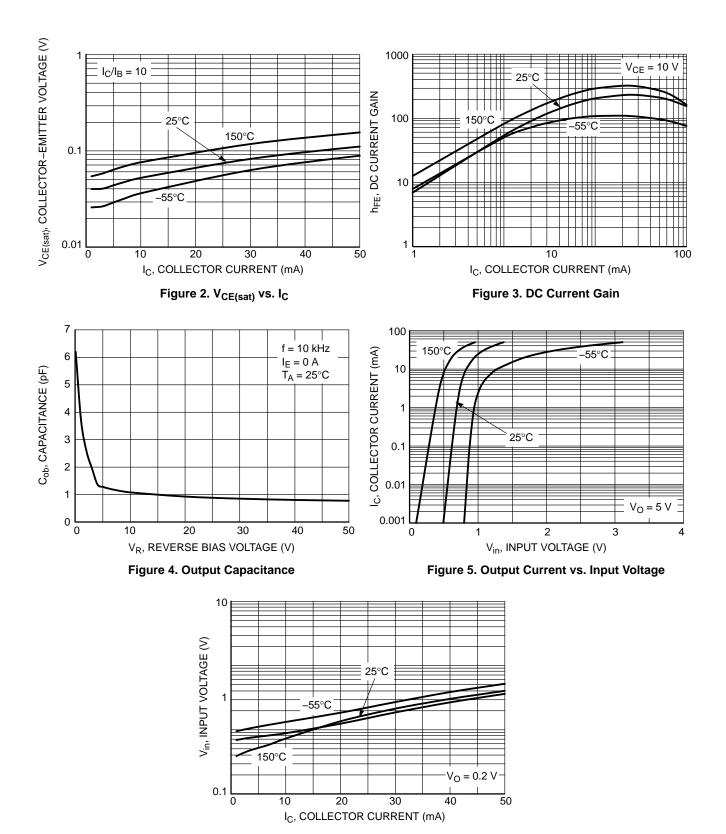


Figure 6. Input Voltage vs. Output Current

TYPICAL CHARACTERISTICS NSBA123JDP6

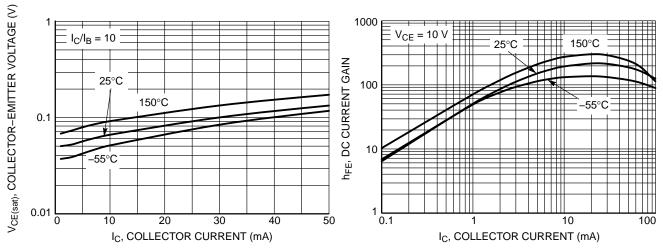


Figure 7. V_{CE(sat)} vs. I_C

Figure 8. DC Current Gain

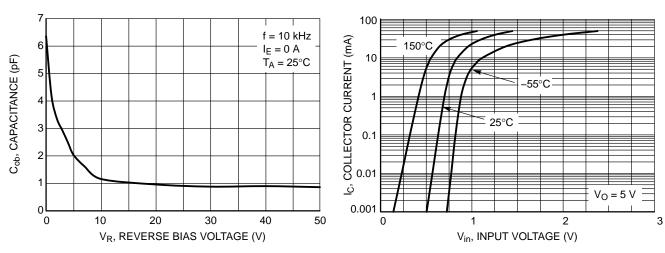
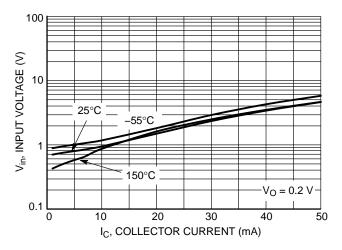
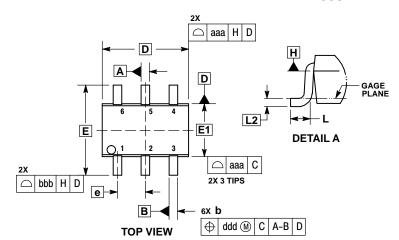
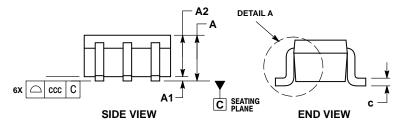


Figure 9. Output Capacitance

Figure 10. Output Current vs. Input Voltage


Figure 11. Input Voltage vs. Output Current

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363

CASE 419B-02 **ISSUE Y**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

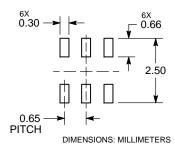
 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.

 4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF

- DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.

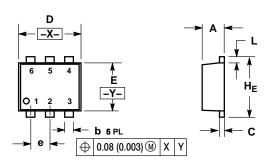
 DATUMS A AND B ARE DETERMINED AT DATUM H.


 DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.

 DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.

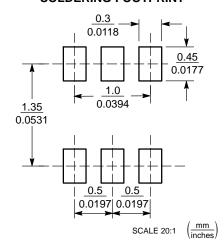
 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
С	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
е		0.65 BS	С	0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
CCC	0.10			0.004		
ddd	0.10				0.004	


RECOMMENDED SOLDERING FOOTPRINT*

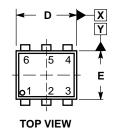
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

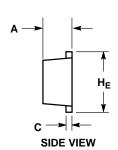
PACKAGE DIMENSIONS

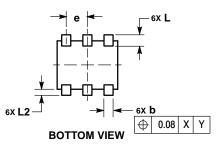

SOT-563, 6 LEAD CASE 463A ISSUE F

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETERS
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.021	0.023
b	0.17	0.22	0.27	0.007	0.009	0.011
C	0.08	0.12	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.062	0.066
Е	1.10	1.20	1.30	0.043	0.047	0.051
е	0.5 BSC 0.02 BSC					
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.50	1.60	1.70	0.059	0.062	0.066

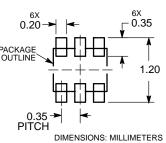

SOLDERING FOOTPRINT*




*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOT-963 CASE 527AD ISSUE E



NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.34	0.37	0.40	
b	0.10	0.15	0.20	
С	0.07	0.12	0.17	
D	0.95	1.00	1.05	
Е	0.75	0.80	0.85	
е	0.35 BSC			
HE	0.95	1.00	1.05	
Ĺ	0.19 REF			
L2	0.05	0.10	0.15	

RECOMMENDED MOUNTING FOOTPRINT

ON Semiconductor and in are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: MUN5135DW1T1G