ECH8690

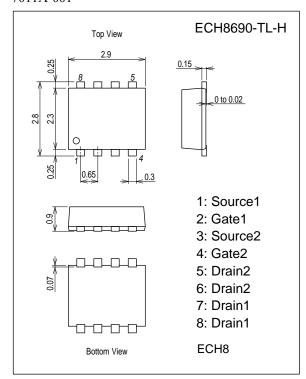
Power MOSFET 60V, 4.7A, 55mΩ -60V, -3.5A, 94mΩ Complementary Dual ECH8

Features

- On-State Resistance Nch:RDS(on)1=42mΩ(typ.) Pch:RDS(on)1=73mΩ(typ.)
- 4V drive
- Nch+Pch MOSFET

- COR ON Semiconductor® http://onsemi.com
- Protection diode in
- Halogen free compliance

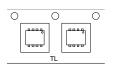
Specifications


Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	N-channel P-channel		Unit
Drain to Source Voltage	V _{DSS}		60	V	
Gate to Source Voltage	VGSS		±20	±20	V
Drain Current (DC)	۱ _D		4.7	-3.5	А
Drain Current (Pulse)	I _{DP}	PW≤10µs, duty cycle≤1%	30	-30	А
Allowable Power Dissipation	PD	When mounted on ceramic substrate (1200mm ² ×0.8mm)1unit		W	
Total Dissipation	PT	When mounted on ceramic substrate (1200mm ² ×0.8mm)		W	
Channel Temperature	Tch			°C	
Storage Temperature	Tstg			°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Package Dimensions


unit : mm (typ) 7011A-001

Ordering & Package Information

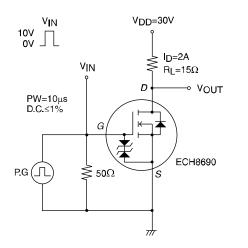
•	U		
Device	Package	Shipping	note
ECH8690-TL-H	ECH8	3000 pcs. / reel	Pb-Free and Halogen Free

Packing Type: TL

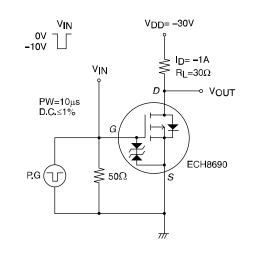
Electrical Connection

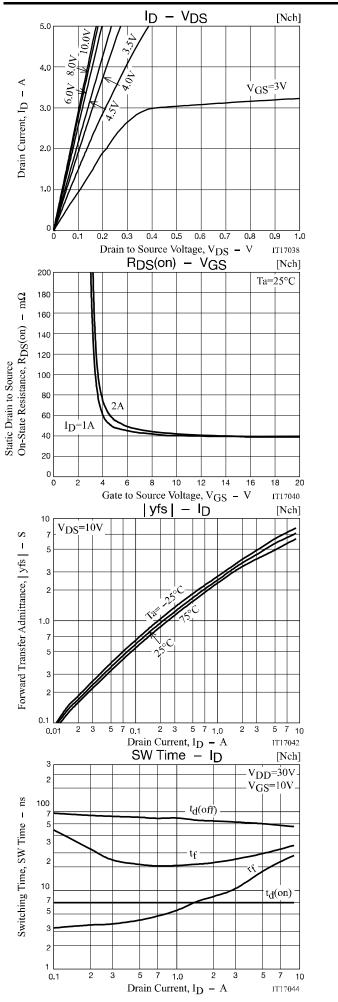
Marking

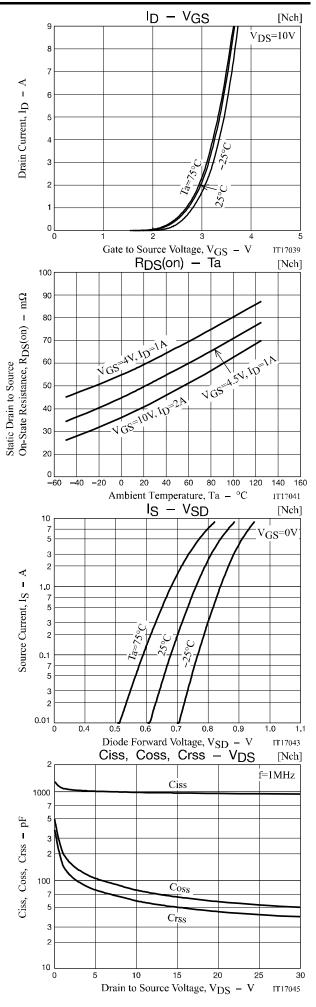
LOT No.

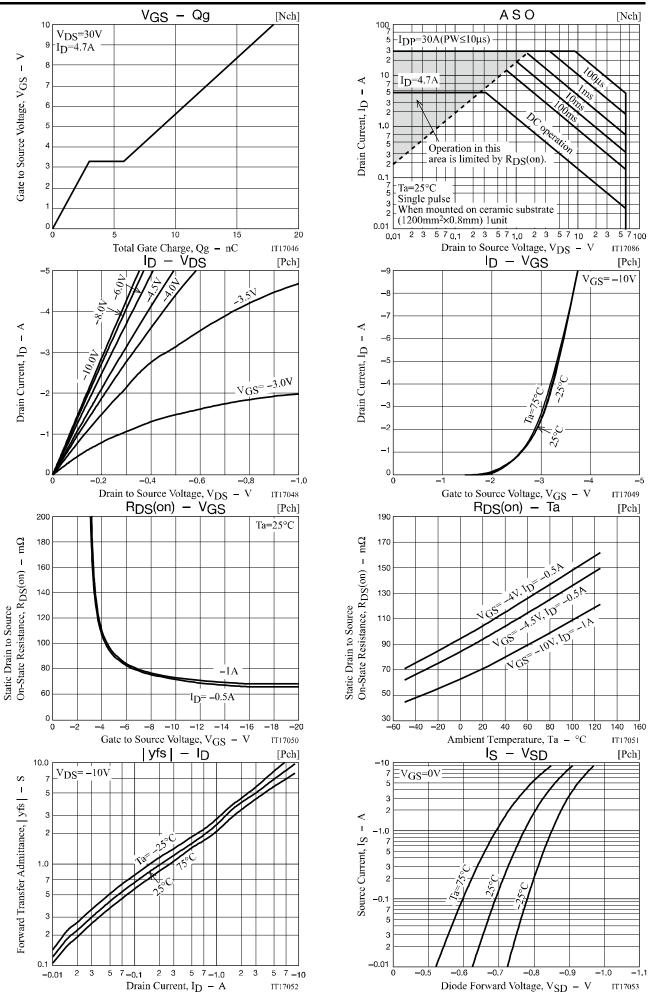

ECH8690

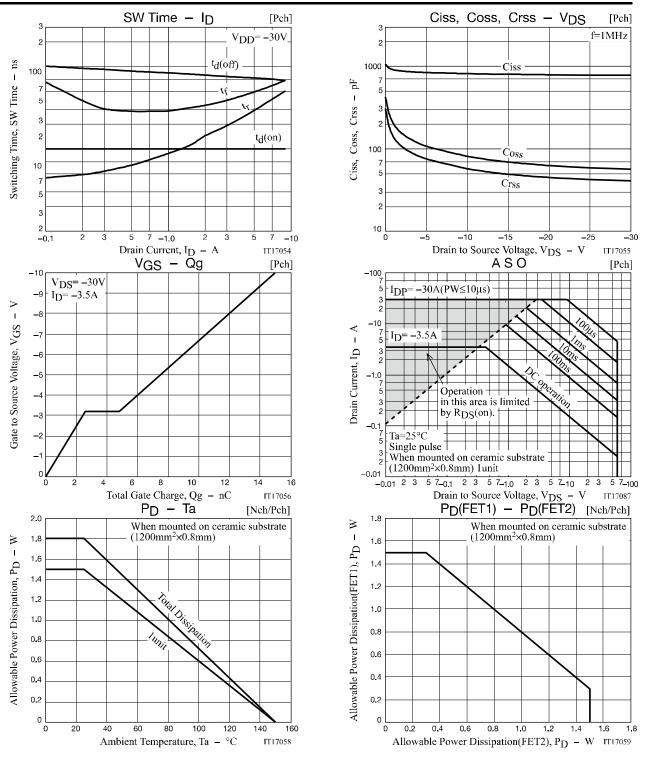
Electrical Characteristics at $Ta = 25^{\circ}C$

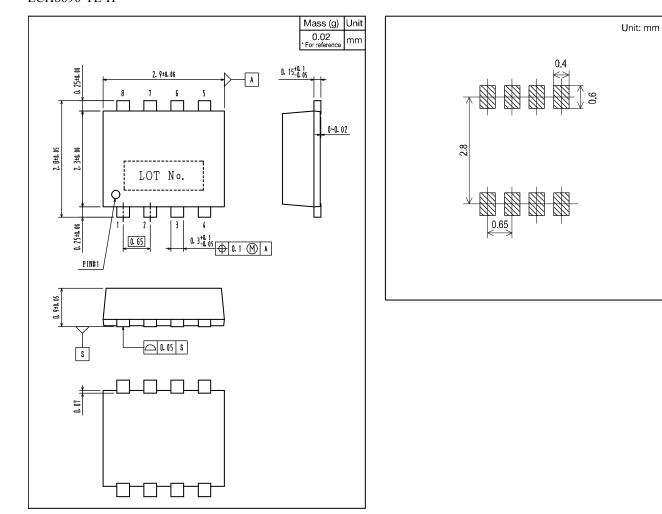

Parameter	Symbol	Conditions		Ratings		
Falanielei	Symbol	Conditions	min	typ	max	Unit
[N-channel]						-
Drain to Source Breakdown Voltage	V(BR)DSS	I _D =1mA, V _{GS} =0V	60			V
Zero-Gate Voltage Drain Current	IDSS	V _{DS} =60V, V _{GS} =0V			1	μA
Gate to Source Leakage Current	IGSS	$V_{GS}=\pm 16V, V_{DS}=0V$			±10	μA
Cutoff Voltage	VGS(off)	V _{DS} =10V, I _D =1mA	1.2		2.6	V
Forward Transfer Admittance	yfs	V _{DS} =10V, I _D =2A		4.2		S
Static Drain to Source On-State Resistance	R _{DS} (on)1	I _D =2A, V _{GS} =10V		42	55	mΩ
	R _{DS} (on)2	I _D =1A, V _{GS} =4.5V		53	74	mΩ
	R _{DS} (on)3	I _D =1A, V _{GS} =4V		61	85	mΩ
Input Capacitance	Ciss			955		pF
Output Capacitance	Coss	V _{DS} =20V, f=1MHz		58		pF
Reverse Transfer Capacitance	Crss			45		pF
Turn-ON Delay Time	t _d (on)			7		ns
Rise Time	tr	See specified Test Circuit.		8.4		ns
Turn-OFF Delay Time	t _d (off)			76		ns
Fall Time	tf			23		ns
Total Gate Charge	Qg			18		nC
Gate to Source Charge	Qgs	V _{DS} =30V, V _{GS} =10V, I _D =4.7A		3		nC
Gate to Drain "Miller" Charge	Qgd			2.8		nC
Diode Forward Voltage	V _{SD}	IS=4.7A, VGS=0V		0.82	1.2	V
[P-channel]						
Drain to Source Breakdown Voltage	V(BR)DSS	ID=-1mA, VGS=0V	-60			V
Zero-Gate Voltage Drain Current	IDSS	V _{DS} =-60V, V _{GS} =0V			-1	μA
Gate to Source Leakage Current	IGSS	V _{GS} =±16V, V _{DS} =0V			±10	μA
Cutoff Voltage	VGS(off)	V _{DS} =-10V, I _D =-1mA	-1.2		-2.6	V
Forward Transfer Admittance	yfs	V _{DS} =-10V, I _D =-1.5A		3.4		S
	R _{DS} (on)1	I _D =-1A, V _{GS} =-10V		73	94	mΩ
Static Drain to Source On-State Resistance	R _{DS} (on)2	I _D =-0.5A, V _{GS} =-4.5V		97	135	mΩ
	R _{DS} (on)3	I _D =-0.5A, V _{GS} =-4V		108	153	mΩ
Input Capacitance	Ciss			790		pF
Output Capacitance	Coss	V _{DS} =-20V, f=1MHz		63		pF
Reverse Transfer Capacitance	Crss			45		pF
Turn-ON Delay Time	t _d (on)			10		ns
Rise Time	tr	See specified Test Circuit.		8.8		ns
Turn-OFF Delay Time	t _d (off)			84		ns
Fall Time	tf			29		ns
Total Gate Charge	Qg			15		nC
Gate to Source Charge	Qgs	V _{DS} =-30V, V _{GS} =-10V, I _D =-3.5A		2.6		nC
Gate to Drain "Miller" Charge	Qgd	7		2.2		nC
Diode Forward Voltage	VSD	IS=-3.5A, VGS=0V		-0.83	-1.2	V


Switching Time Test Circuit


[N-channel]


[P-channel]




ECH8690

Outline Drawing ECH8690-TL-H

Note on usage : Since the ECH8690 is a MOSFET product, please avoid using this device in the vicinity of highly charged objects.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and feating hold scilLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: ECH8690-TL-H