Preferred Device

Sensitive Gate Triacs

Silicon Bidirectional Thyristors

Designed for use in solid state relays, MPU interface, TTL logic and other light industrial or consumer applications. Supplied in surface mount package for use in automated manufacturing.

Features

- Sensitive Gate Trigger Current in Four Trigger Modes
- Blocking Voltage to 600 Volts
- Glass Passivated Surface for Reliability and Uniformity
- Surface Mount Package
- Pb–Free Packages are Available

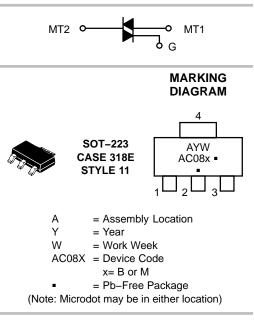
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
$\label{eq:state_state} \begin{array}{l} \mbox{Peak Repetitive Off-State Voltage (Note 1)} \\ \mbox{(Sine Wave, 50 to 60 Hz, Gate Open,} \\ \mbox{T}_{J} = 25 \mbox{ to 110°C} \\ \mbox{MAC08BT1} \\ \mbox{MAC08MT1} \\ \end{array}$	V _{drm,} V _{rrm}	200 600	V
On-State Current RMS (T _C = 80°C) (Full Sine Wave 50 to 60 Hz)	I _{T(RMS)}	0.8	A
Peak Non-repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, $T_{C} = 25^{\circ}C$)	I _{TSM}	8.0	A
Circuit Fusing Considerations (Pulse Width = 8.3 ms)	l ² t	0.4	A ² s
Peak Gate Power $(T_C = 80^{\circ}C, Pulse Width \le 1.0 \mu s)$	P _{GM}	5.0	W
Average Gate Power ($T_C = 80^{\circ}C$, t = 8.3 ms)	P _{G(AV)}	0.1	W
Operating Junction Temperature Range	TJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient PCB Mounted per Figure 1	$R_{\theta JA}$	156	°C/W
Thermal Resistance, Junction-to-Tab Measured on MT2 Tab Adjacent to Epoxy	$R_{\theta JT}$	25	°C/W
Maximum Device Temperature for Soldering Purposes for 10 Secs Maximum	ΤL	260	°C

ON Semiconductor®

http://onsemi.com

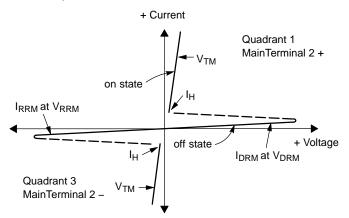
TRIAC 0.8 AMPERE RMS 200 thru 600 VOLTS

PIN ASSIGNMENT				
1	Main Terminal 1			
2	Main Terminal 2			
3	Gate			
4	Main Terminal 2			

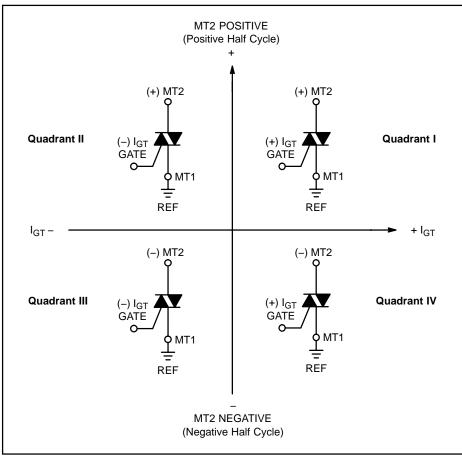
ORDERING INFORMATION

Device	Package	Shipping [†]
MAC08BT1	SOT-223	1000 Tape & Reel
MAC08BT1G	SOT-223 (Pb-Free)	1000 Tape & Reel
MAC08MT1	SOT-223	1000 Tape & Reel
MAC08MT1G	SOT-223 (Pb-Free)	1000 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

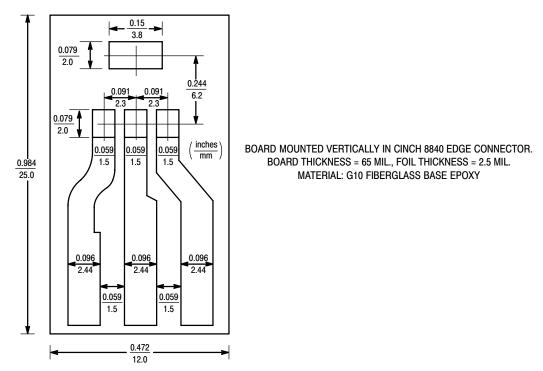

Preferred devices are recommended choices for future use and best overall value.

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Peak Repetitive Blocking Current (V_D = Rated V_{DRM} , V_{RRM} ; Gate Open)	T _J = 25°C T _J = 110°C	I _{DRM} , I _{RRM}			10 200	μΑ μΑ
DN CHARACTERISTICS						
Peak On–State Voltage (Note 2) ($I_T = \pm 1.1 \text{ A Peak}$)		V _{TM}	-	_	1.9	V
Gate Trigger Current (Continuous dc) All Quadrants (V _D = 12 Vdc, R _L = 100 Ω)	I _{GT}	-	_	10	mA	
Holding Current (Continuous dc) ($V_D = 12$ Vdc, Gate Open, Initiating Current = ± 20 mA)			-	_	5.0	mA
Gate Trigger Voltage (Continuous dc) All Quadrants $(V_D = 12 \text{ Vdc}, R_L = 100 \Omega)$			-	_	2.0	V
OYNAMIC CHARACTERISTICS				-	<u>.</u>	
Critical Rate of Rise of Commutation Voltage (f = 250 Hz, I_{TM} = 1.0 A, Commutating di/dt = 1.5 A/mS On–State Current Duration = 2.0 mS, V_{DRM} = 200 V, Gate Unenergized, T_C = 110°C, Gate Source Resistance = 150 Ω , See Figure 10)	(dv/dt) _c	1.5	-	_	V/µs	
Critical Rate–of–Rise of Off State Voltage (V _{pk} = Rated V _{DRM} , T _C = 110°C, Gate Open, Exponential Method)			10	-	-	V/µs

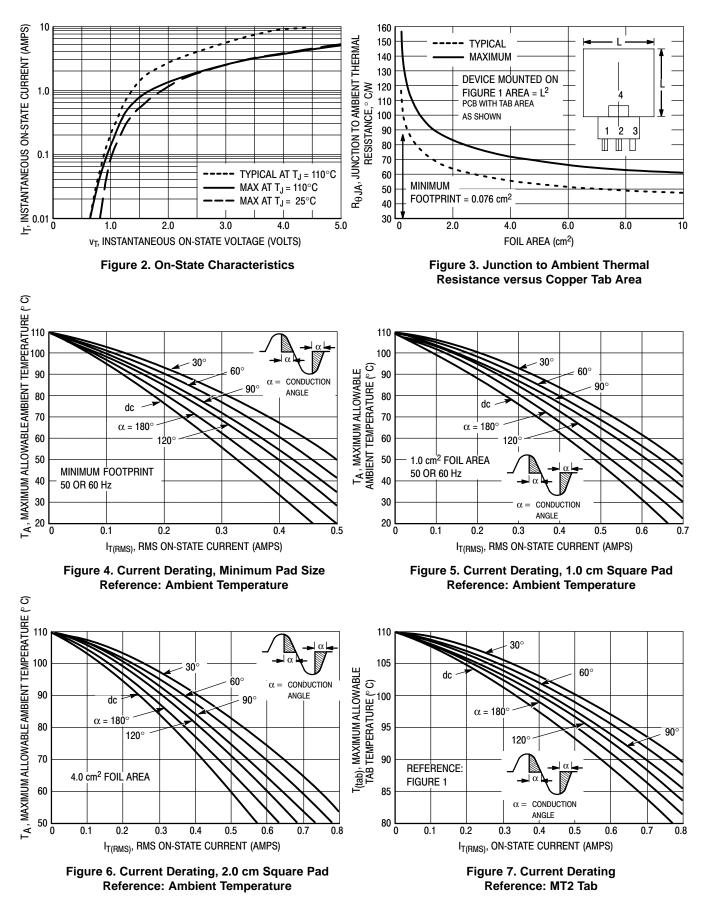

2. Pulse Test: Pulse Width \leq 300 µsec, Duty Cycle \leq 2%.

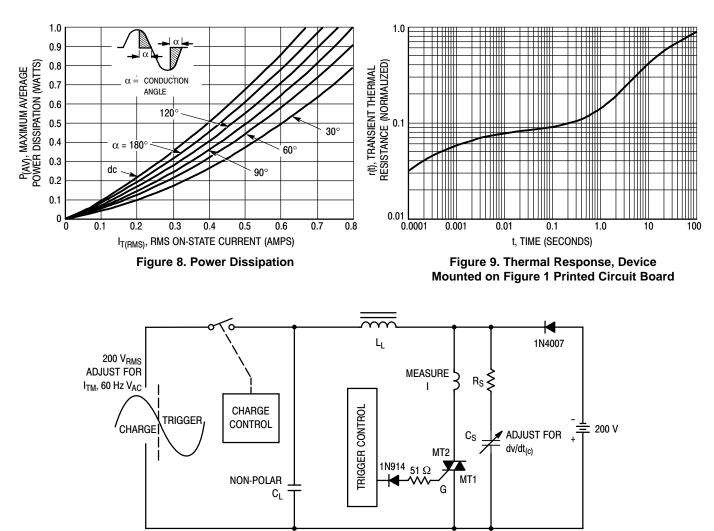
Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
Ι _Η	Holding Current

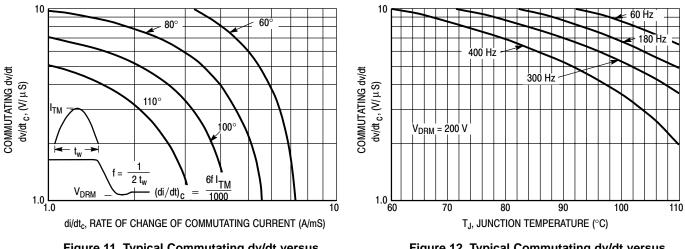


Quadrant Definitions for a Triac




All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.



Note: Component values are for verification of rated (dv/dt)_c. See AN1048 for additional information.

Figure 10. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Voltage (dv/dt)_c

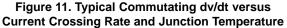


Figure 12. Typical Commutating dv/dt versus Junction Temperature at 0.8 Amps RMS

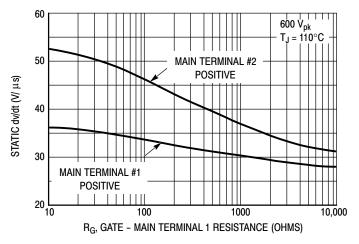


Figure 13. Exponential Static dv/dt versus Gate – Main Terminal 1 Resistance

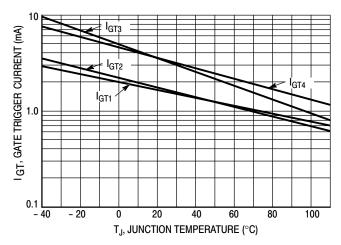


Figure 14. Typical Gate Trigger Current Variation

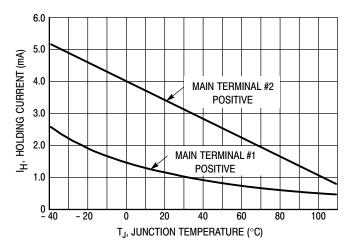


Figure 15. Typical Holding Current Variation

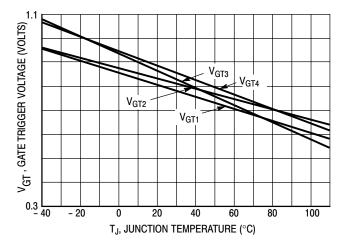
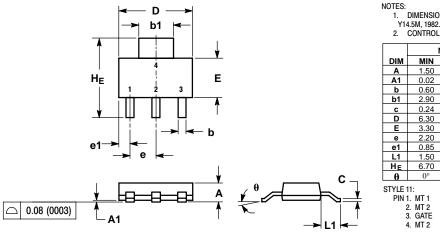
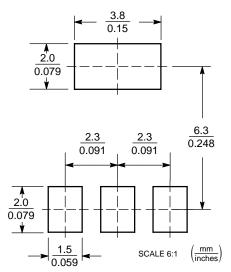



Figure 16. Gate Trigger Voltage Variation

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE L



1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982

2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS		INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
Е	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	-	10°	0°	-	10°

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: MAC08BT1G MAC08MT1G