Plastic Medium-Power PNP Silicon Transistor

This device is designed for use in line-operated applications such as low power, line-operated series pass and switching regulators requiring PNP capability.

Features

- High Collector-Emitter Sustaining Voltage
- Excellent DC Current Gain
- Plastic Thermopad[™] Package
- Complement to MJE340
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	300	Vdc
Emitter–Base Voltage	V _{EB}	3.0	Vdc
Collector Current – Continuous	Ι _C	500	mAdc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	20 0.16	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

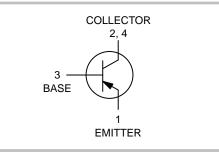
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	R_{\thetaJC}	6.25	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

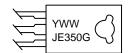
Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Sustaining Voltage $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	300	-	Vdc
Collector Cutoff Current (V_{CB} = 300 Vdc, I _E = 0)	I _{CBO}	-	100	μAdc
Emitter Cutoff Current ($V_{EB} = 3.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	100	μAdc
ON CHARACTERISTICS				

DC Current Gain	h _{FE}			-
$(I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$		30	240	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

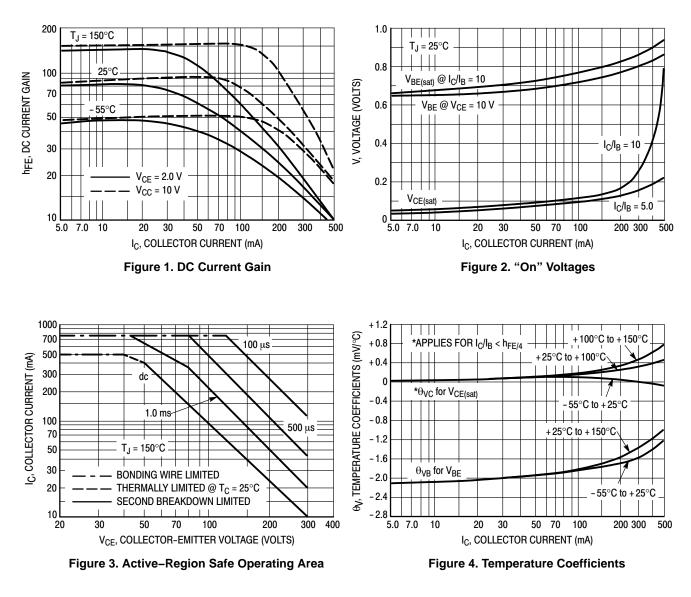

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor[®]


http://onsemi.com

0.5 AMPERE POWER TRANSISTOR **PNP SILICON 300 VOLTS, 20 WATTS**

MARKING DIAGRAM



= Year Y ww = Work Week JE350 = Device Code = Pb-Free Package G

ORDERING INFORMATION

Device	Package	Shipping
MJE350G	TO–225 (Pb–Free)	500 Units/Box

MJE350G

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 3 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}$ C. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

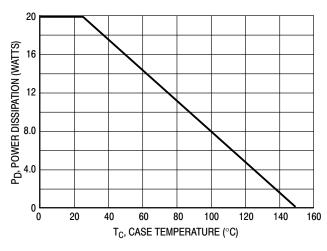
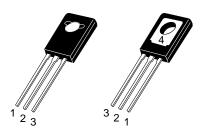
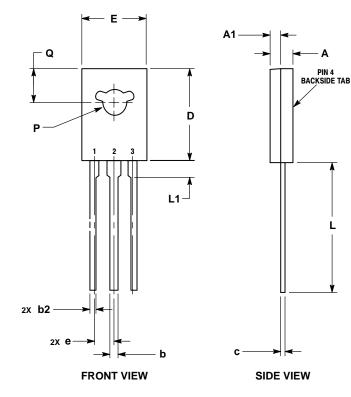



Figure 5. Power Derating

MJE350G


PACKAGE DIMENSIONS

TO-225 CASE 77-09 ISSUE AC

FRONT VIEW

BACK VIEW

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.40	3.00	
A1	1.00	1.50	
b	0.60	0.90	
b2	0.51	0.88	
C	0.39	0.63	
D	10.60	11.10	
E	7.40	7.80	
e	2.04	2.54	
L	14.50	16.63	
L1	1.27	2.54	
Р	2.90	3.30	
Q	3.80	4.20	
STYLE 1: PIN 1. EMITTER 2., 4. COLLECTOR 3. BASE			

Thermopad is a trademark of Semiconductor Components Industries, LLC (SCILLC).

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

ca Technical Support: Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 For additional information, please contact your local

Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: MJE350G