1 A Low Noise, RF LDO Voltage Regulator

The NCP59800 is a family of 1 A low-dropout linear regulators (LDOs) offering high power-supply ripple rejection (PSRR) and ultra-low output noise. This series of LDOs uses an advanced BiCMOS process to achieve very good electrical performance. It is an ideal choice for noise sensitive Analog RF Front-Ends used in Telecom Equipment. The NCP59800 is available in the 3 mm x 3 mm DFN8 package.

Features

- Operating Input Voltage Range: 2.2 V to 6.0 V
- Output Voltage Range:
 - Fixed V_{OUT}: 0.8 to 5 V (0.1 V steps)
 - ◆ Adjustable V_{OUT}: 0.8 V to 5 V
- Quiescent Current typ. 60 μA
- Low Dropout: 200 mV typ. at 1 A, $V_{OUT} = 2.5 \text{ V}$
- ±2.5% V_{OUT} Accuracy across Load/Line/Temperature
- Stable with Small 4.7 μF Ceramic Capacitors
- Very–Low Noise: Typically 15 μV_{RMS} from 100 Hz to 100 kHz
- Over-Current and Thermal Shutdown Protection
- Available in 3 x 3 mm DFN8 Package

Typical Applications

- Telecom Infrastructure
- Audio
- High–Speed I/F (PLL/VCO)

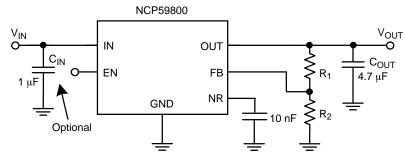


Figure 1. Typical Application Schematics Adjustable Voltage Option

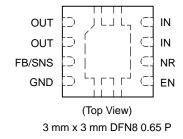
ON Semiconductor®

www.onsemi.com

DFN8 3 x 3 mm CASE 506DB

MARKING DIAGRAM

= Assembly Location


L = Wafer Lot Y = Year

Α

W = Work Week ■ Pb–Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

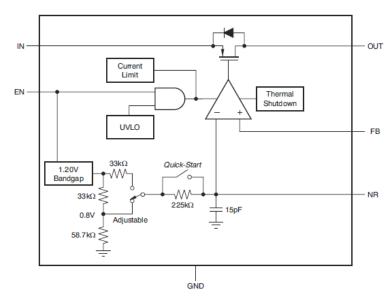


Figure 2. Internal Block Diagram - Adjustable Voltage Option

Table 1. PIN FUNCTION DESCRIPTION

Pin No. DFN8	Pin Name	Description
7,8	IN	Unregulated input supply.
4, EPAD	GND	Ground.
5	EN	Driving the enable pin (EN) high turns on the regulator. Driving this pin low puts the regulator into shutdown mode.
6	NR	Connect an external capacitor between this pin and ground to reduce the output noise to very low levels. The capacitor slows down the V_{OUT} ramp as well (soft–start). Max recommended C_{NR} value is 0.47 μF
3 (Adjustable devices)	FB	This pin is the input to the control loop error amplifier and is used to set the output voltage of the device.
3 (Fixed Volt devices)	SNS	This pin is the input to the control loop error amplifier and is used to set the output voltage of the device. This pin is to be joined with OUT at load devices.
1,2	OUT	Regulator output. A 4.7 μ F to 100 μ F capacitor of any type is required for stability. R _{ESR} \leq 1 Ω

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Input Voltage (Note 1)	IN	6.5	V	
Output, Sense Voltage	OUT, SNS	-0.3 to $(V_{IN} + 0.3) \le 6.5$	V	
Enable Input	EN	-0.3 to 6.5	V	
Other Voltages	FB, NR	-0.3 to 3.6	V	
Output Current	I _{OUT}	Internally Limited	mA	
Maximum Junction Temperature	$T_{J(MAX)}$	150	°C	
Storage Temperature	T _{STG}	-55 to 150	°C	
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V	
ESD Capability, Machine Model (Note 2)	ESD _{MM}	200	V	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

- 2. This device series incorporates ESD protection and is tested by the following methods:
 - ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114) ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)

 - Latchup Current Maximum Rating tested per JEDEC standard: JESD78

Table 3. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, DFN8 3 mm x 3 mm Thermal Resistance, Junction–to–Air (Note 3)		52	°C/W

The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

Table 4. ELECTRICAL CHARACTERISTICS Over the operating temperature range of $T_J = -40^{\circ}\text{C}$ to +125°C, $V_{IN} = (V_{OUT(NOM)} + 0.5 \text{ V})$ or 2.2 V (whichever is greater), $I_{OUT} = 1$ mA, $V_{EN} = 2.2$ V, $C_{OUT} = 4.7$ μF, and $C_{NR} = 0.01$ μF, unless otherwise noted. NCP59800 Adjustable Option is tested at $V_{OUT} = 0.8$ V and $V_{OUT} = 5.0$ V. Typical values are at $T_J = +25^{\circ}\text{C}$.

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Input Voltage Range		V _{IN}	(V _{OUT} +V _{DO}) ≥ 2.2		6.0	V
Internal Reference		V_{NR}		0.8		V
Output Voltage	Fixed Voltage Options	V _{OUT}	0.8		5.0	V
	Adjustable Option		0.8		5.0	V
Output Voltage Accuracy (Note 4)	$\begin{aligned} &V_{OUT} + 0.5 \text{ V} \leq V_{IN} \leq 6.0 \text{ V}, V_{IN} \geq 2.2 \text{ V} \\ &1 \text{ mA} \leq I_{OUT} \leq 1 \text{ A} \end{aligned}$	V _{OUT}	-2.5	±0.3	+2.5	%
Line Regulation	V_{OUT} + 0.5 V \leq V $_{IN}$ \leq 6.0 V, V $_{IN}$ \geq 2.2 V I_{OUT} = 1 mA	ΔV out/ ΔV in		150		μV/V
Load Regulation	1 mA ≤ I _{OUT} ≤ 1 A	ΔV out/ ΔI out		2.0		μV/mA
Dropout Voltage (Note 5)	$\begin{aligned} &V_{OUT}+0.5 \text{ V} \leq V_{IN} \leq 6.0 \text{ V}, V_{IN} \geq 2.2 \text{ V} \\ &I_{OUT}=500 \text{ mA}, V_{FB}=\text{GND or } V_{SNS}=\text{GND} \end{aligned}$	V _{DO}			250	mV
	$\begin{aligned} &V_{OUT} + 0.5 \text{ V} \leq V_{IN} \leq 6.0 \text{ V}, V_{IN} \geq 2.5 \text{ V} \\ &I_{OUT} = 750 \text{ mA}, V_{FB} = \text{GND or V}_{SNS} = \text{GND} \end{aligned}$]			350	mV
	$\begin{aligned} &V_{OUT} + 0.5 \text{ V} \leq V_{IN} \leq 6.0 \text{ V}, V_{IN} \geq 2.5 \text{ V} \\ &I_{OUT} = 1 \text{ A, } V_{FB} = GND \text{ or } V_{SNS} = GND \end{aligned}$]			500	mV
Output Current Limit	$V_{OUT} = 0.85 \ V_{OUT(NOM)}, \ V_{IN} \ge 3.3 \ V$	I _{CL}	1.1	1.6	2.5	Α
Ground Pin Current	I _{OUT} = 0.1 mA	I _{GND}		60	100	μΑ
	I _{OUT} = 1 A				450	μΑ
Shutdown Current (I _{GND})	$\begin{split} &V_{EN} \leq 0.4 \text{ V, } V_{IN} \geq 2.2 \text{ V, } R_L = 1 \text{ k}\Omega, \\ &0^{\circ}C \leq T_J \leq 85^{\circ}C \end{split}$	I _{SHDN}		0.2	2.0	μΑ
Feedback Pin Current	$V_{IN} = 6.0 \text{ V}, V_{FB} = 0.8 \text{ V} \text{ (Adjustable Option)}$			0.02	1.0	μΑ
Sense Pin Current	V _{IN} = 6.0 V, V _{SNS} = V _{OUT(NOM)} (Fixed Option)			3.0		μΑ
Power Supply Rejection Ratio	$ \begin{array}{lll} I_{OUT} = 750 \text{ mA}, & & f = 100 \text{ Hz} \\ V_{OUT} = 3.3 \text{ V}, & & f = 1 \text{ kHz} \\ V_{IN} = 4.3 \text{ V} & & f = 1 \text{ MHz} \\ \end{array} $	PSRR		77 63 27		dB
Output Noise Voltage	BW = 100 Hz-100 kHz, I _{OUT} = 100 mA, C _{NR} = 100 nF, V _{IN} = 4.3 V, V _{OUT} = 3.3 V	V _N		15 x V _{OUT}		μV _{RMS}
Enable Input Current	$V_{IN} = V_{EN} = 6.0 \text{ V}$	I _{EN}		0.02	1.0	μΑ
Soft-Start Charging Current	V _{NR} = 0.5 V	I _{SS}		7.2		μΑ
EN Pin Threshold Voltage	EN Input Voltage "H"	V_{ENH}	1.2			V
	EN Input Voltage "L"	V _{ENL}			0.4	
Start-Up Time	$V_{OUT(NOM)} = 3.3 \text{ V}$ $C_{NR} = 10 \text{ nF}$ $V_{OUT} = 0\% \text{ to } 90\%$	t _{STR}		1.0		ms
	$V_{OUT(NOM)}$ $R_L = 3.3 kΩ$, C_{OUT} =4.7 μF $C_{NR} = 100 \text{ nF}$			10		ms

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

As for NCP59800 (adjustable); it does not include external resistor tolerances and it is not tested at this condition:

 V_{OUT} = 0.8 V, 4.5 V \leq V_{IN} \leq 6.0 V, and 750 mA \leq I_{OUT} \leq 1 A because of power dissipation higher than maximum rating of the package. 5. V_{DO} is not measured for fixed output voltage devices with V_{OUT} < 1.7 V because minimum V_{IN} = 2.2 V.

Table 4. ELECTRICAL CHARACTERISTICS Over the operating temperature range of $T_J = -40^{\circ}\text{C}$ to +125°C, $V_{IN} = (V_{OUT(NOM)} + 0.5 \text{ V})$ or 2.2 V (whichever is greater), $I_{OUT} = 1$ mA, $V_{EN} = 2.2$ V, $C_{OUT} = 4.7$ μF, and $C_{NR} = 0.01$ μF, unless otherwise noted. NCP59800 Adjustable Option is tested at $V_{OUT} = 0.8$ V and $V_{OUT} = 5.0$ V. Typical values are at $T_J = +25^{\circ}\text{C}$.

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Undervoltage Lockout	V_{IN} rising, $R_L = 1 \text{ k}\Omega$	UVLO	1.86	2.0	2.1	V
UVLO Hysteresis	V_{IN} falling, $R_L = 1 \text{ k}\Omega$			75		mV
Thermal Shutdown	Shutdown, temperature increasing	T _{SD_TEMP}		160		°C
Thermal Shutdown Recovery	Shutdown Recovery Reset, temperature decreasing			140		
T _J Operating Range			-40		+125	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 4. As for NCP59800 (adjustable); it does not include external resistor tolerances and it is not tested at this condition: V_{OUT} = 0.8 V, 4.5 V ≤ V_{IN} ≤ 6.0 V, and 750 mA ≤ I_{OUT} ≤ 1 A because of power dissipation higher than maximum rating of the package.
- 5. V_{DO} is not measured for fixed output voltage devices with V_{OUT} < 1.7 V because minimum V_{IN} = 2.2 V.

APPLICATIONS INFORMATION

General Information

The NCP59800 regulator is equipped with Noise Reduction pin (NR) for noise sensitive applications. A noise reduction capacitor (C_{NR}) at the NR pin bypasses noise generated by the bandgap reference. This family of regulators offers sub-bandgap output voltages, current limit, and thermal protection, and is fully specified from -40°C to $+125^{\circ}\text{C}$. assuming resistors with zero error. For the actual design, pay attention to any resistor error factors. Figure 3 gives the connections for the adjustable output version (NCP59800BMNADJTBG).

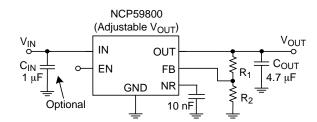


Figure 3. Typical Application Schematics

Output Voltage Setting

For the adjustable version (NCP59800BMNADJTBG), the voltage on the FB pin sets the output voltage and is determined by the values of R1 and R2. The values of R1 and R2 can be calculated for any voltage using the following formula:

$$V_{OUT} = 0.8 V \left(1 + \frac{R_1}{R_2} \right)$$

Capacitors Selection

Although an input capacitor is not required for stability, it is good analog design practice to connect a 0.1 μF to 1.0 μF

low equivalent series resistance (ESR) capacitor across the input supply near the regulator. The NCP59800 is designed to be stable with standard ceramic output capacitors of capacitance values 4.7 μF up to 100 μF . This device is evaluated using a 4.7 $\mu F/10$ V, 10% tolerance, X5R type Ceramic Capacitors of 0805 size.

X5R- and X7R-type capacitors are highly recommended because they have minimal variation in value and ESR over temperature. Maximum ESR should be $< 1.0 \Omega$.

Startup Response

The C_{NR} serves not only for noise reduction. Slow ramping of Voltage Reference (adjustable Soft–Start) is reducing the Inrush Current as well.

Recommended 1% Feedback Resistor Values for Frequently Used Nominal Output Voltages

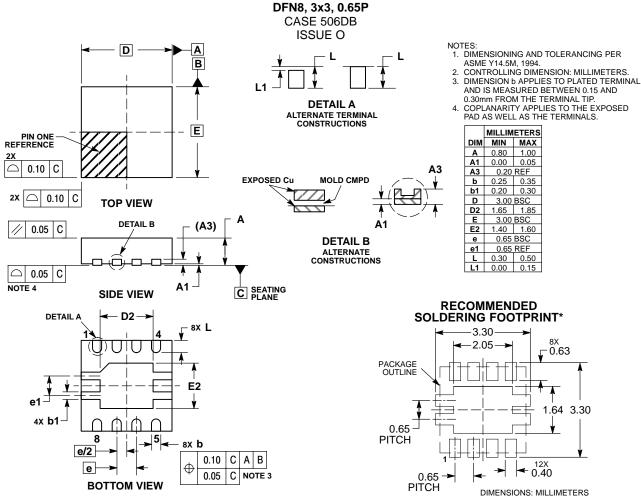

Vоит	R ₁	R ₂
0.8 V	0 Ω (Short)	10.0 kΩ
1.0 V	2.49 kΩ	10.0 kΩ
1.2 V	4.99 kΩ	10.0 kΩ
1.5 V	8.87 kΩ	10.0 kΩ
1.8 V	12.5 kΩ	10.0 kΩ
2.5 V	21.0 kΩ	10.0 kΩ
3.3 V	30.9 kΩ	10.0 kΩ
5.0 V	52.3 kΩ	10.0 kΩ

Table 5. ORDERING INFORMATION

Device	Output Voltage	Marking	Package	Shipping [†]
NCP59800BMNADJTBG	ADJ	59800 ADJB	DFN8 3x3 (Pb-Free)	3000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*To order other package and voltage variants, please contact your ON sales representative.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NCP59800BMNADJTBG