# Self-Protected Low Side Driver with Temperature and Current Limit

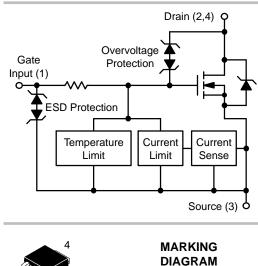
# 42 V, 10 A, Single N–Channel, DPAK

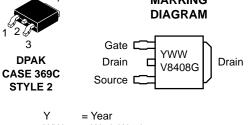
NCV8408 is a single channel protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. Thermal protection includes a latch which can be reset by toggling the input. This device is suitable for harsh automotive environments.

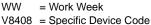
#### Features

- Short Circuit Protection
- Thermal Shutdown with Latched Reset
- Gate Input Current Flag During Latched Fault Condition
- Overvoltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

#### **Typical Applications**


- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial





## **ON Semiconductor®**

#### http://onsemi.com

| V <sub>DSS</sub><br>(Clamped) | R <sub>DS(on)</sub> TYP | I <sub>D</sub> MAX<br>(Limited) |
|-------------------------------|-------------------------|---------------------------------|
| 42 V                          | 55 mΩ @ 5 V             | 10 A                            |







G = Pb–Free Package

#### **ORDERING INFORMATION**

|   | Device       | Package           | Shipping <sup>†</sup> |
|---|--------------|-------------------|-----------------------|
| N | ICV8408DTRKG | DPAK<br>(Pb-Free) | 2500/Tape & Reel      |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

#### **MAXIMUM RATINGS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise noted)

| Rating                                                                                                                                                                                                                                                                                                                                                                                                                                              | Symbol                                                | Value                             | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------|------|
| Drain-to-Source Voltage Internally Clamped                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | 42                                | Vdc  |
| Drain-to-Gate Voltage Internally Clamped $(R_{GS} = 1.0 \text{ M}\Omega)$                                                                                                                                                                                                                                                                                                                                                                           | V <sub>DGR</sub>                                      | 42                                | V    |
| Gate-to-Source Voltage                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>GS</sub>                                       | ±14                               | Vdc  |
| Continuous Drain Current                                                                                                                                                                                                                                                                                                                                                                                                                            | ۱ <sub>D</sub>                                        | I <sub>D</sub> Internally Limited |      |
| Gate Input Current ( $V_{GS} = \pm 14 V_{DC}$ )                                                                                                                                                                                                                                                                                                                                                                                                     | I <sub>GS</sub>                                       | ±10                               | mA   |
| Source to Drain Current                                                                                                                                                                                                                                                                                                                                                                                                                             | I <sub>SD</sub>                                       | 4.0                               | A    |
| Total Power Dissipation<br>@ $T_A = 25^{\circ}C$ (Note 1)<br>@ $T_A = 25^{\circ}C$ (Note 2)                                                                                                                                                                                                                                                                                                                                                         | PD                                                    | 1.8<br>2.3                        | W    |
| Thermal Resistance<br>Junction-to-Ambient Steady State (Note 1)<br>Junction-to-Ambient Steady State (Note 2)<br>Junction-to-Tab Steady State (Note 3)                                                                                                                                                                                                                                                                                               | $f R_{	heta JA} \ R_{	heta JA} \ R_{	heta JT}$        | 70<br>55<br>2.1                   | °C/W |
| Single Pulse Inductive Load Switching Energy<br>( $V_{DD} = 20 \text{ Vdc}, V_{GS} = 5.0 \text{ V}, I_L = 8.0 \text{ A}$ )<br>Repetitive Pulse Inductive Load Switching Energy<br>( $V_{DD} = 20 \text{ Vdc}, V_{GS} = 5.0 \text{ V}, I_L = 8.0 \text{ A}, T_J = 25^{\circ}\text{C}$ )<br>Repetitive Pulse Inductive Load Switching Energy<br>( $V_{DD} = 20 \text{ Vdc}, V_{GS} = 5.0 \text{ V}, I_L = 6.8 \text{ A}, T_J = 105^{\circ}\text{C}$ ) | E <sub>AS</sub><br>E <sub>AR</sub><br>E <sub>AR</sub> | 185<br>128<br>92                  | mJ   |
| Load Dump Voltage (V <sub>GS</sub> = 0 and 10 V, $R_I$ = 2.0 $\Omega$ , $R_L$ = 4.5 $\Omega$ , $t_d$ = 400 ms, $T_J$ = 25°C)                                                                                                                                                                                                                                                                                                                        | V <sub>LD</sub>                                       | 63                                | V    |
| Operating Junction Temperature                                                                                                                                                                                                                                                                                                                                                                                                                      | TJ                                                    | -40 to 150                        | °C   |
| Storage Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                 | T <sub>stg</sub>                                      | -55 to 150                        | °C   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Surface-mounted onto minimum pad FR4 PCB (1 oz Cu, 0.06" thick).
Surface-mounted onto 2" square FR4 PCB, (1" square, 1 oz Cu, 0.06" thick).
Surface-mounted onto minimum pad FR4 PCB (2 oz Cu, 0.06" thick).

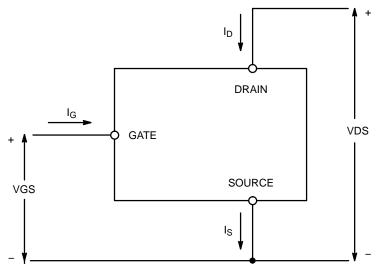
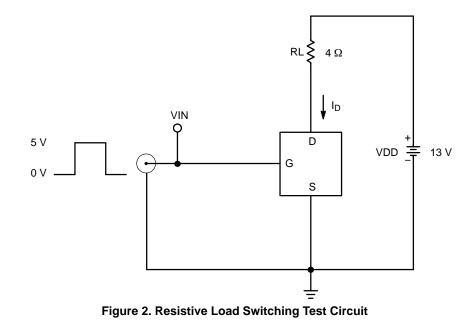



Figure 1. Voltage and Current Convention

#### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = $25^{\circ}C$ unless otherwise noted)


| Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test Conditions                                                                                                                                                                                                                                              | Symbol                              | Min                     | Тур            | Max                 | Unit   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------|----------------|---------------------|--------|
| OFF CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                              | ·                                   |                         |                |                     |        |
| $\label{eq:Gamma} \begin{array}{ c c c c } \hline Drain-to-Source Clamped Breakdown Vc (V_{GS}=0 V, I_D=10 mA, T_J=25^\circ C) \\ (V_{GS}=0 V, I_D=10 mA, T_J=150^\circ C) (Note (V_{GS}=0 V, I_D=10 mA, T_J=-40^\circ C) (Note (V_{GS}=0 V, I_D=10 mA) (V_{GS}=0 V) (V_{GS$                                                                  | e 6)                                                                                                                                                                                                                                                         | V <sub>(BR)DSS</sub>                | 42<br>40<br>43          | 46<br>45<br>47 | 51<br>51<br>51      | V      |
| Zero Gate Voltage Drain Current<br>( $V_{GS} = 0 V, V_{DS} = 32 V, T_J = 25^{\circ}C$ )<br>( $V_{GS} = 0 V, V_{DS} = 32 V, T_J = 150^{\circ}C$ ) (Note 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                              | I <sub>DSS</sub>                    |                         | 0.6<br>2.5     | 5.0<br>10           | μΑ     |
| <b>INPUT CHARACTERISTICS</b> (Note 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                              | ·                                   |                         |                |                     |        |
| Gate Input Current – Normal Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (V <sub>GS</sub> = 5.0 V)                                                                                                                                                                                                                                    | I <sub>GSSF</sub>                   | _                       | 25             | 50                  | μΑ     |
| Gate Input Current – Protection Latched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (V <sub>GS</sub> = 5.0 V) (Note 6)                                                                                                                                                                                                                           | I <sub>GSSL</sub>                   | -                       | 440            | -                   | μΑ     |
| Gate Threshold Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(V_{GS} = V_{DS}, I_D = 1 \text{ mA})$                                                                                                                                                                                                                      | V <sub>GS(th)</sub>                 | 1.0                     | 1.7            | 2.2                 | V      |
| Gate Threshold Temperature Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                              | V <sub>GS(th)</sub> /T <sub>J</sub> | -                       | 5.0            | -                   | –mV/°C |
| Latched Reset Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Note 6)                                                                                                                                                                                                                                                     | V <sub>LR</sub>                     | 0.8                     | 1.4            | 1.9                 | V      |
| Latched Reset Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(V_{GS} = 5.0 \text{ V to } V_{GS} < 1 \text{ V}) \text{ (Note 6)}$                                                                                                                                                                                         | t <sub>LR</sub>                     | 10                      | 40             | 100                 | μs     |
| Internal Gate Input Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                              |                                     | -                       | 25.5           | -                   | kΩ     |
| <b>ON CHARACTERISTICS</b> (Note 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                              |                                     |                         |                |                     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ote 6)                                                                                                                                                                                                                                                       | R <sub>DS(on)</sub>                 |                         | 55<br>100      | 60<br>120           | mΩ     |
| Source-Drain Forward On Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (V <sub>GS</sub> = 0 V, I <sub>S</sub> = 7.0 A)                                                                                                                                                                                                              | V <sub>SD</sub>                     | _                       | 0.95           | _                   | V      |
| SWITCHING CHARACTERISTICS (Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6)                                                                                                                                                                                                                                                           |                                     | •                       |                | •                   | +      |
| Turn–OFF/ON Slew Rate Matching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} V_{GS} = 5.0 \text{ V}, V_{DS} = 13 \text{ V}, \text{ R}_{L} = 4 \ \Omega; \\ T_{J} = -40^{\circ}\text{C} \\ T_{J} = 150^{\circ}\text{C} \\ T_{J} = 25^{\circ}\text{C} \\ -40^{\circ}\text{C} < T_{J} < 150^{\circ}\text{C} \end{array} $ | T <sub>Match</sub>                  | -15<br>-15<br>-5<br>-20 | -<br>-<br>-    | 15<br>15<br>5<br>20 | %      |
| Turn-ON Delay Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                              | t <sub>d(ON)</sub>                  |                         | 10             | 20                  | μs     |
| Rise Time (10% I <sub>D</sub> to 90% I <sub>D</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                              | tr                                  |                         | 20             | 40                  | _      |
| Turn-OFF Delay Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>GS</sub> = 5 V, V <sub>DS</sub> = 13 V                                                                                                                                                                                                                | t <sub>d(OFF)</sub>                 |                         | 30             | 60                  | _      |
| Fall Time (90% I <sub>D</sub> to 10% I <sub>D</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $R_{L} = 4 \Omega$ , $-40^{\circ}C < T_{J} < 150^{\circ}C$                                                                                                                                                                                                   | t <sub>f</sub>                      |                         | 20             | 40                  |        |
| Slew-Rate ON (90% V <sub>D</sub> to 10% V <sub>D</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                              | -dV <sub>DS</sub> /dt <sub>ON</sub> |                         | 0.5            |                     | V/µs   |
| Slew–Rate OFF (10% $V_D$ to 90% $V_D$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                              | dV <sub>DS</sub> /dt <sub>OFF</sub> |                         | 0.5            |                     |        |
| SELF PROTECTION CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>5</b> (T <sub>J</sub> = 25°C unless otherwise noted) ( <b>1</b>                                                                                                                                                                                           | Note 5)                             |                         |                |                     |        |
| $\label{eq:current Limit} \begin{array}{ c c } \hline Current Limit \\ V_{GS} = 5.0 \ V, \ V_{DS} = 10 \ V, \ T_J \ @ \ 25^{\circ}C \\ V_{GS} = 5.0 \ V, \ V_{DS} = 10 \ V, \ T_J = 150^{\circ}C \ (Not \ V_{GS} = 5.0 \ V, \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V_{DS} = 10 \ V, \ T_J = -40^{\circ}C \ (Not \ V$ | e 6)                                                                                                                                                                                                                                                         | ILIM                                | 10<br>10<br>9           | 13<br>-<br>-   | 16<br>18<br>16      | A      |
| Temperature Limit (Turn–off)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>GS</sub> = 5.0 V<br>V <sub>GS</sub> = 10 V                                                                                                                                                                                                            | T <sub>LIM(off)</sub>               | 150<br>150              | 175<br>165     | 200<br>185          | °C     |

## ECTRICAL CHARACTERISTICS ( $T_j = 25^{\circ}C$ unless otherwise noted)

| Electro-Static Discharge Capability | Machine Model (MM)     | ESD | 400  | - | 1 | V | ĺ |
|-------------------------------------|------------------------|-----|------|---|---|---|---|
| Electro–Static Discharge Capability | Human Body Model (HBM) | ESD | 4000 | - | - | V |   |

Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.
Fault conditions are viewed as beyond the normal operating range of the part.
Not subject to production testing.

## TEST CIRCUITS AND WAVEFORMS



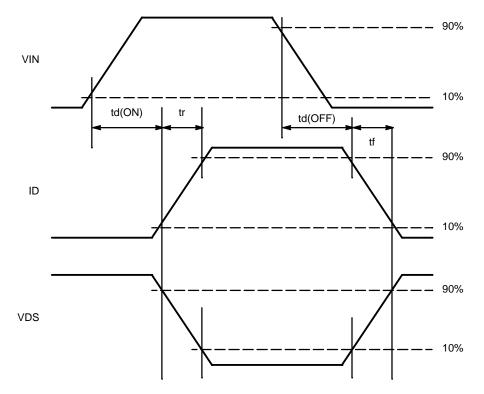



Figure 3. Resistive Load Switching Waveforms

## TEST CIRCUITS AND WAVEFORMS

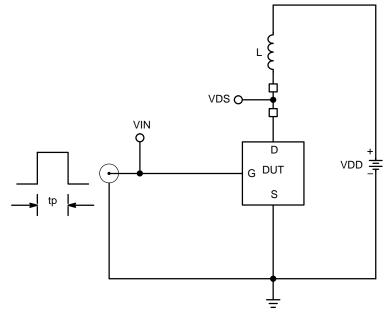
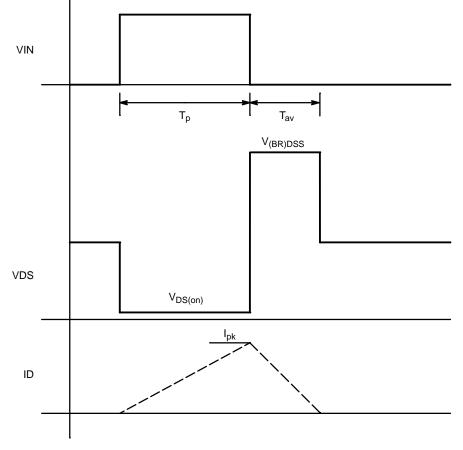
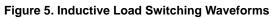
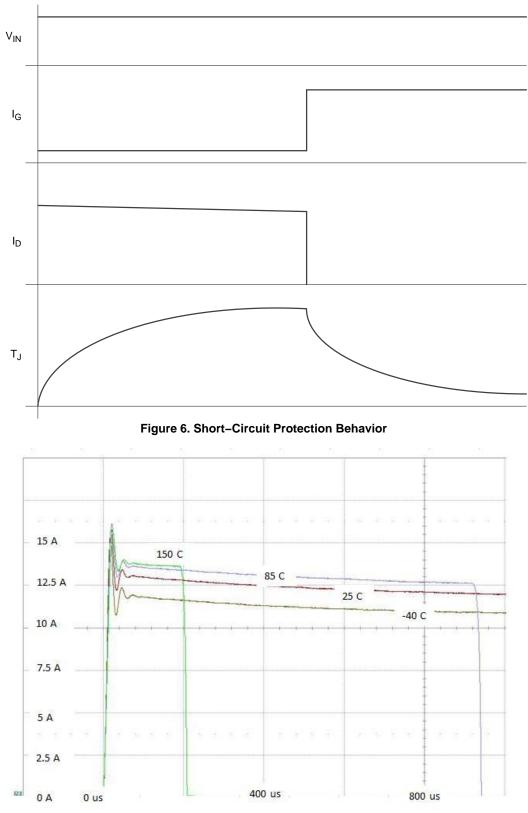
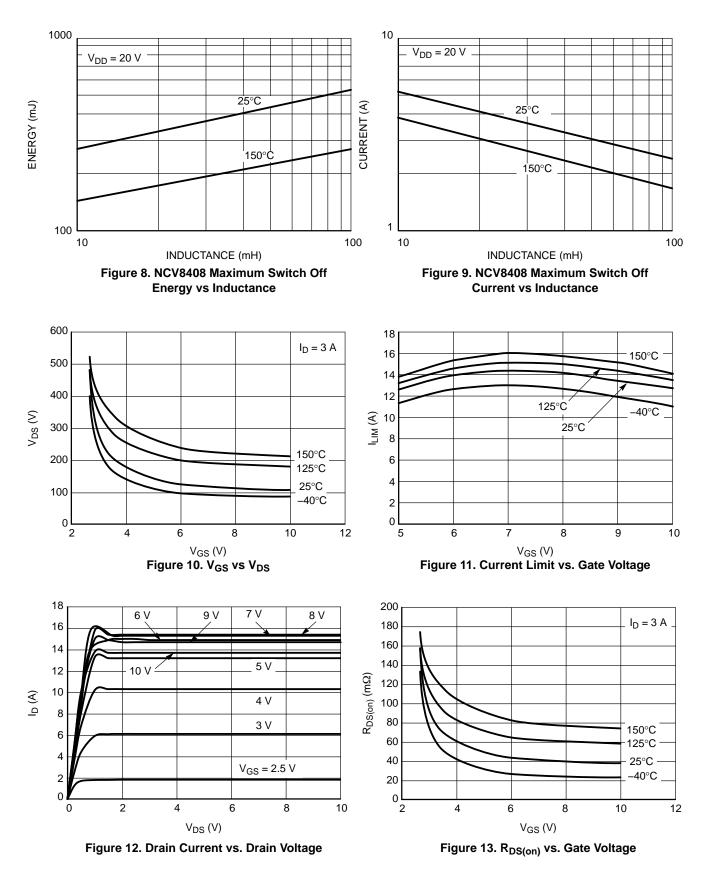






Figure 4. Inductive Load Switching Test Circuit










### **TYPICAL CHARACTERISTICS**



#### **TYPICAL CHARACTERISTICS**

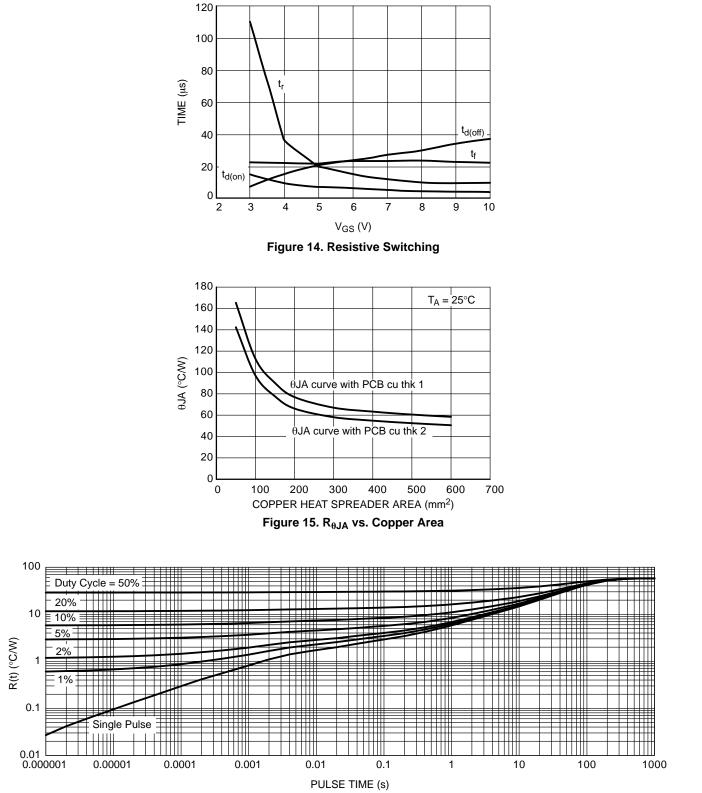
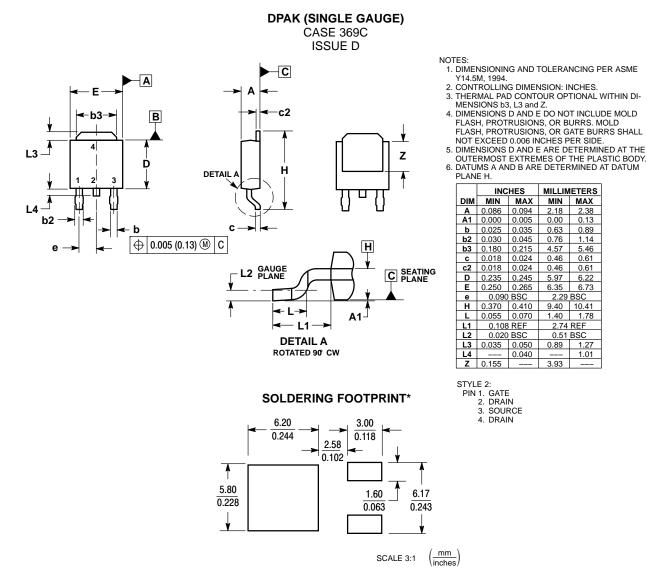




Figure 16. Transient Thermal Resistance

#### PACKAGE DIMENSIONS



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors hamless against all claims, costs, damages, and exponses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

MILLIMETERS

MIN MAX

2.38

0.13

0.89

1.14

5.46

0.61

0.61

6.22

6.73

1.78

1.01

2.18

0.00

0.63

0.76

4.57

0.46

0.46

5.97

6.35

1.40

0.89 1.27

3.93

2.29 BSC 9.40 10.41

2.74 REF

0.51 BSC

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NCV8408DTRKG