Protected Power MOSFET

2.6 A, 52 V, N-Channel, Logic Level, Clamped MOSFET w/ ESD Protection

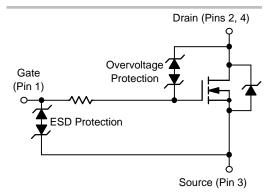
Features

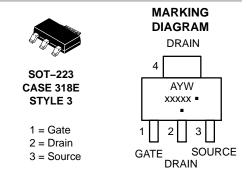
- Diode Clamp Between Gate and Source
- ESD Protection Human Body Model 5000 V
- Active Over-Voltage Gate to Drain Clamp
- Scalable to Lower or Higher R_{DS(on)}
- Internal Series Gate Resistance
- These are Pb-Free Devices

Benefits

- High Energy Capability for Inductive Loads
- Low Switching Noise Generation

Applications


- Automotive and Industrial Markets:
 Solenoid Drivers, Lamp Drivers, Small Motor Drivers
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable



ON Semiconductor®

www.onsemi.com

V _{DSS} (Clamped)	R _{DS(ON)} TYP	I _D MAX
52 V	95 mΩ @ 10 V	2.6 A

A = Assembly Location

′ = Year

W = Work Week xxxxx = V8440 or 8440A ■ = Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	V_{DSS}	52–59	V
Gate-to-Source Voltage - Continuous	V _{GS}	±15	V
Drain Current - Continuous @ $T_A = 25^{\circ}C$ - Single Pulse ($t_p = 10~\mu s$) (Note 1)	I _D	2.6 10	А
Total Power Dissipation @ T _A = 25°C (Note 1)	P _D	1.69	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Single Pulse Drain–to–Source Avalanche Energy (V _{DD} = 50 V, I _{D(pk)} = 1.17 A, V _{GS} = 10 V, L = 160 mH, R _G = 25 Ω)	E _{AS}	110	mJ
Load Dump Voltage (V _{GS} = 0 and 10 V, R _I = $2.0~\Omega$, R _L = $9.0~\Omega$, td = $400~ms$)	V_{LD}	60	V
Thermal Resistance, Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	$R_{ hetaJA} \ R_{ hetaJA}$	74 169	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. When surface mounted to a FR4 board using 1" pad size, (Cu area 1.127 in²).

2. When surface mounted to a FR4 board using minimum recommended pad size, (Cu area 0.412 in²).

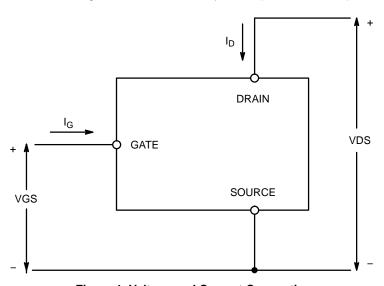


Figure 1. Voltage and Current Convention

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

Charac	Symbol	Min	Тур	Max	Unit		
OFF CHARACTERISTICS							
$\begin{array}{c} \textbf{Drain-to-Source Breakdown Voltage (N (V_{GS}=0~V,~I_D=1.0~mA,~T_J=25^{\circ}\text{C})}\\ \textbf{(V}_{GS}=0~V,~I_D=1.0~mA,~T_J=-40^{\circ}\text{C}\\ \textbf{Temperature Coefficient (Negative)} \end{array}$	V _{(BR)DSS}	52 50.8	55 54 –9.3	59 59.5	V V mV/°C		
Zero Gate Voltage Drain Current $(V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V})$ $(V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 125^{\circ}\text{C})$	I _{DSS}			10 25	μΑ		
Gate-Body Leakage Current $(V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V})$ $(V_{GS} = \pm 14 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}		±35	±10	μΑ		
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage (Note 3) $(V_{DS} = V_{GS}, I_D = 100 \mu A)$ Threshold Temperature Coefficient (Neg	gative)	V _{GS(th)}	1.1	1.5 -4.1	1.9	V mV/°C	
	R _{DS(on)}		150 135 95	180 160 110	mΩ		
Forward Transconductance (Note 3) (V _I	_{DS} = 15 V, I _D = 2.6 A)	9FS		3.8		Mhos	
DYNAMIC CHARACTERISTICS							
Input Capacitance		C _{iss}		155		pF	
Output Capacitance	$V_{DS} = 35 \text{ V}, V_{GS} = 0 \text{ V},$ f = 10 kHz	C _{oss}		60			
Transfer Capacitance		C _{rss}		25			
Input Capacitance		C _{iss}		170		pF	
Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 10 kHz	C _{oss}		70			
Transfer Capacitance	-	C _{rss}		30			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Not subject to production testing.5. Switching characteristics are independent of operating junction temperatures.

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (No	ote 5)					
Turn-On Delay Time		t _{d(on)}		375		ns
Rise Time	$V_{GS} = 4.5 \text{ V}, V_{DD} = 40 \text{ V},$	t _r		1525		
Turn-Off Delay Time	$I_D = 2.6 \text{ A}, R_D = 15.4 \Omega$	t _{d(off)}		1530		
Fall Time		t _f		1160		
Turn-On Delay Time		t _{d(on)}		325		ns
Rise Time	V _{GS} = 4.5 V. V _{DD} = 40 V.	t _r		1275		
Turn-Off Delay Time	$V_{GS} = 4.5 \text{ V}, V_{DD} = 40 \text{ V},$ $I_{D} = 1.0 \text{ A}, R_{D} = 40 \Omega$	t _{d(off)}		1860		
Fall Time		t _f		1150		
Turn-On Delay Time		t _{d(on)}		190		ns
Rise Time	V _{GS} = 10 V, V _{DD} = 15 V,	t _r		710		
Turn-Off Delay Time	$I_D = 2.6 \text{ A}, R_D = 5.8 \Omega$	t _{d(off)}		2220		
Fall Time		t _f		1180		
Gate Charge		Q _T		4.5		nC
	$V_{GS} = 4.5 \text{ V}, V_{DS} = 40 \text{ V},$ $I_{D} = 2.6 \text{ A} \text{ (Note 3)}$	Q ₁		0.9		
	15 = 2.6 / (Note 6)	Q ₂		2.6		
Gate Charge		Q _T		3.9		nC
	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 1.5 \text{ A} \text{ (Note 3)}$	Q ₁		1.0		
	15 = 1.6 / (Note 6)	Q ₂		1.7		
SOURCE-DRAIN DIODE CHARACTE	RISTICS	•		•		
Forward On-Voltage	$I_S = 2.6 \text{ A}, V_{GS} = 0 \text{ V (Note 3)}$ $I_S = 2.6 \text{ A}, V_{GS} = 0 \text{ V}, T_J = 125^{\circ}\text{C}$	V _{SD}		0.81 0.66	1.5	V
Reverse Recovery Time		t _{rr}		730		ns
	$I_S = 1.5 \text{ A}, V_{GS} = 0 \text{ V},$ $dI_S/dt = 100 \text{ A}/\mu\text{s} \text{ (Note 3)}$	t _a		200		1
	αίζιαι – 100 / γμο (11010 0)	t _b		530		
Reverse Recovery Stored Charge	Q _{RR}		6.3		μC	
ESD CHARACTERISTICS (Note 4)		•	1	•	<u>I</u>	1
Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	5000			V
	Machine Model (MM)	1	500			
	1		<u> </u>			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 3. Pulse Test: Pulse Width $\leq 300~\mu s,$ Duty Cycle $\leq 2\%.$
- 4. Not subject to production testing.
- 5. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

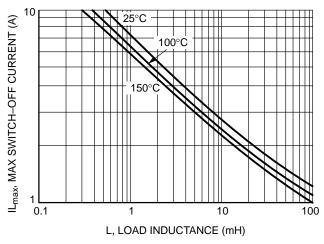


Figure 1. Single Pulse Maximum Switch-off Current vs. Load Inductance

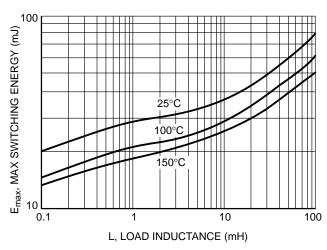
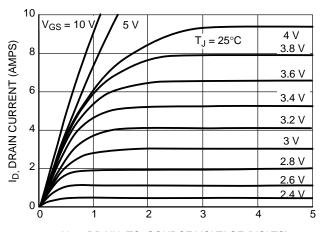



Figure 2. Single Pulse Maximum Switching Energy vs. Load Inductance

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

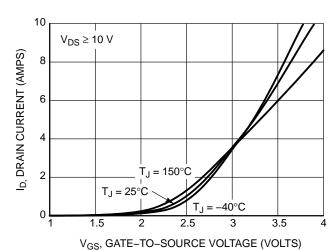


Figure 4. Transfer Characteristics

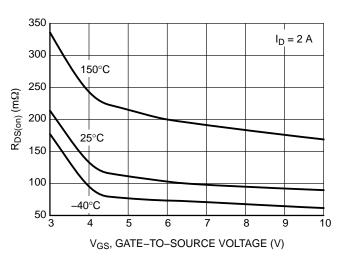


Figure 5. R_{DS(on)} vs. Gate-Source Voltage

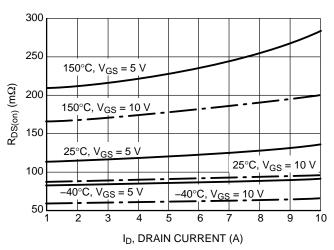


Figure 6. R_{DS(on)} vs. Drain Current

TYPICAL PERFORMANCE CURVES

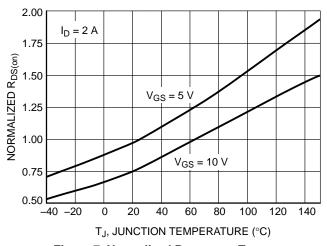


Figure 7. Normalized R_{DS(on)} vs. Temperature

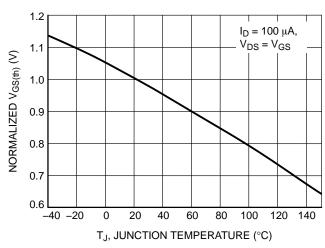


Figure 8. Normalized Threshold Voltage vs.
Temperature

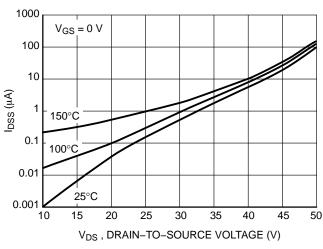


Figure 9. Drain-to-Source Leakage Current

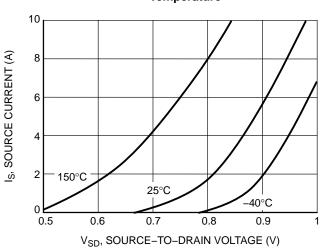
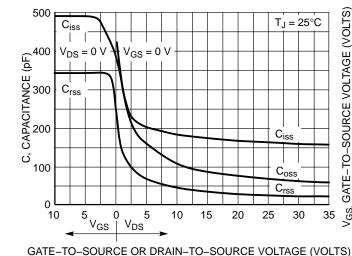



Figure 10. Source–Drain Diode Forward Characteristics

Et a 44 O a sulface We feet a

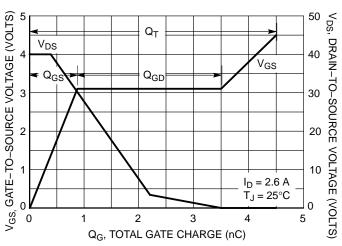


Figure 12. Gate-to-Source Voltage vs. Total Gate Charge

TYPICAL PERFORMANCE CURVES

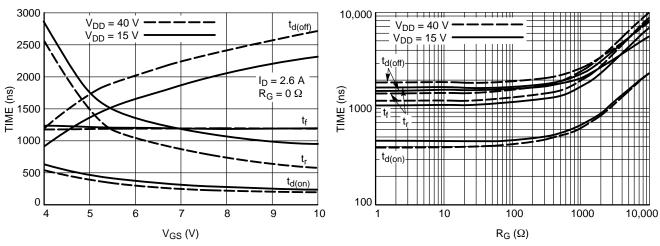


Figure 13. Resistive Load Switching Time vs.
Gate-Source Voltage

Figure 14. Resistive Load Switching Time vs. Gate Resistance ($V_{GS} = 5 \text{ V}, I_D = 2.6 \text{ A}$)

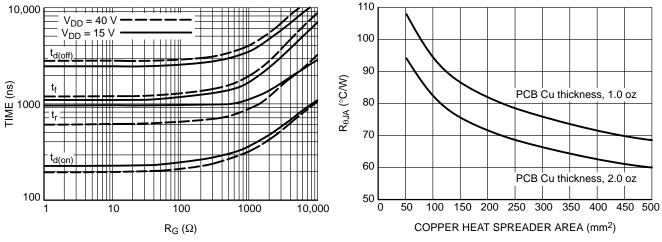


Figure 15. Resistive Load Switching Time vs. Gate Resistance ($V_{GS} = 10 \text{ V}, I_D = 2.6 \text{ A}$)

Figure 16. R_{0JA} vs. Copper Area

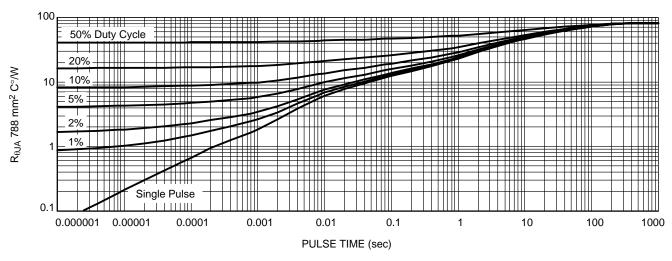
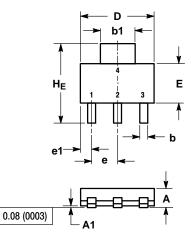


Figure 17. Transient Thermal Resistance


ORDERING INFORMATION

Device	Package	Shipping [†]		
NCV8440STT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel		
NCV8440ASTT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel		
NCV8440STT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel		
NCV8440ASTT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

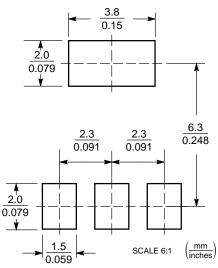
PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04

ISSUE N

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.63	1.75	0.060	0.064	0.068	
A1	0.02	0.06	0.10	0.001	0.002	0.004	
b	0.60	0.75	0.89	0.024	0.030	0.035	
b1	2.90	3.06	3.20	0.115	0.121	0.126	
С	0.24	0.29	0.35	0.009	0.012	0.014	
D	6.30	6.50	6.70	0.249	0.256	0.263	
E	3.30	3.50	3.70	0.130	0.138	0.145	
е	2.20	2.30	2.40	0.087	0.091	0.094	
e1	0.85	0.94	1.05	0.033	0.037	0.041	
L	0.20			0.008	-		
L1	1.50	1.75	2.00	0.060	0.069	0.078	
HE	6.70	7.00	7.30	0.264	0.276	0.287	
θ	0°	_	10°	0°	_	10°	


STYLE 3: PIN 1. GATE

2. DRAIN

SOURCE

4. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NCV8440ASTT3G NCV8440ASTT1G