IGBT 600V, 14A, N-Channel

Electrical Connection

N-Channel

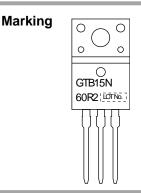
1:Gate 2:Collector 3:Emitter

Features

- Reverse Conducting II IGBT
- IGBT VCE(sat)=1.85V typ. (IC=15A, VGE=15V)
- IGBT tf=75ns typ.
- Diode V_F=1.7V typ. (I_F=15A)
- Diode t_{rr}=95ns typ.
- 10µs Short Circuit Capability

Applications

• General Purpose Inverter


Specifications

Absolute Maximum Ratings at Ta = 25°C, Unless otherwise specified

Parameter		Symbol	Value	Unit
Collector to Emitter Voltage		VCES	600	V
Gate to Emitter Voltage		VGES	±20	V
Collector Current (DC)	@Tc=25°C *2		24	А
Limited by Tjmax	@Tc=100°C *2	IC *1	14	А
Collector Current (Peak) Pulse width Limited by Timax		ICP	60	A
Diode Average Output Current		lo	15	А
Power Dissipation Tc=25°C (Our ideal heat dissipation condition) * ²		PD	54	W
Junction Temperature		Tj	175	°C
Storage Temperature		Tstg	-55 to +175	°C

Note: *1 Collector Current is calculated from the following formula.

$$I_{C}(Tc) = \frac{I_{jmax} - Ic}{R_{th}(j-c) \times V_{CE}(sat) (I_{C}(Tc))}$$

*2 Our condition is radiation from backside.

The method is applying silicone grease to the backside of the device and attaching the device to water-cooled radiator made of aluminum.

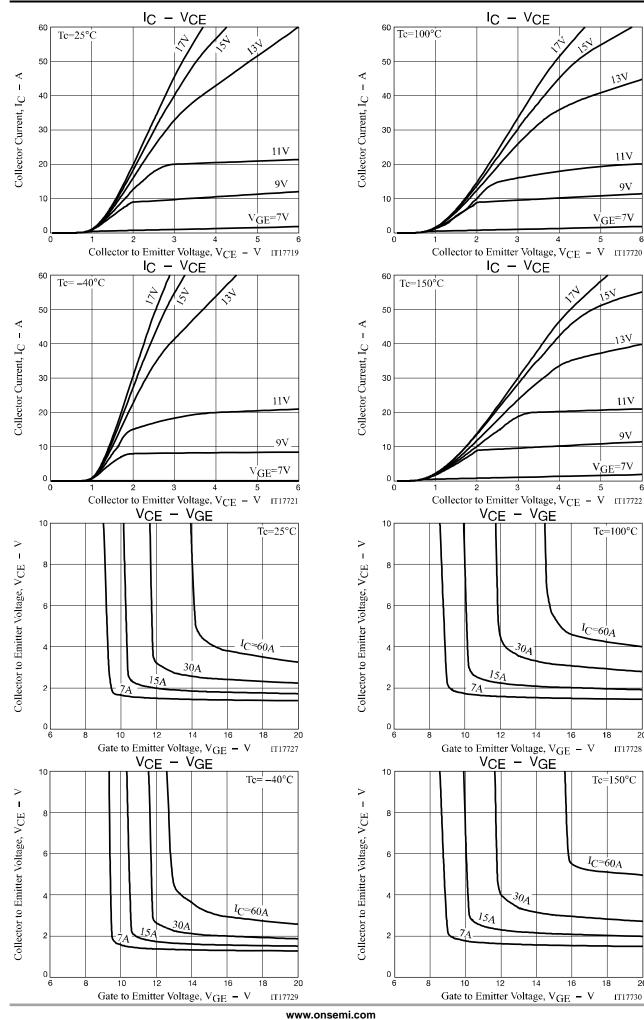
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

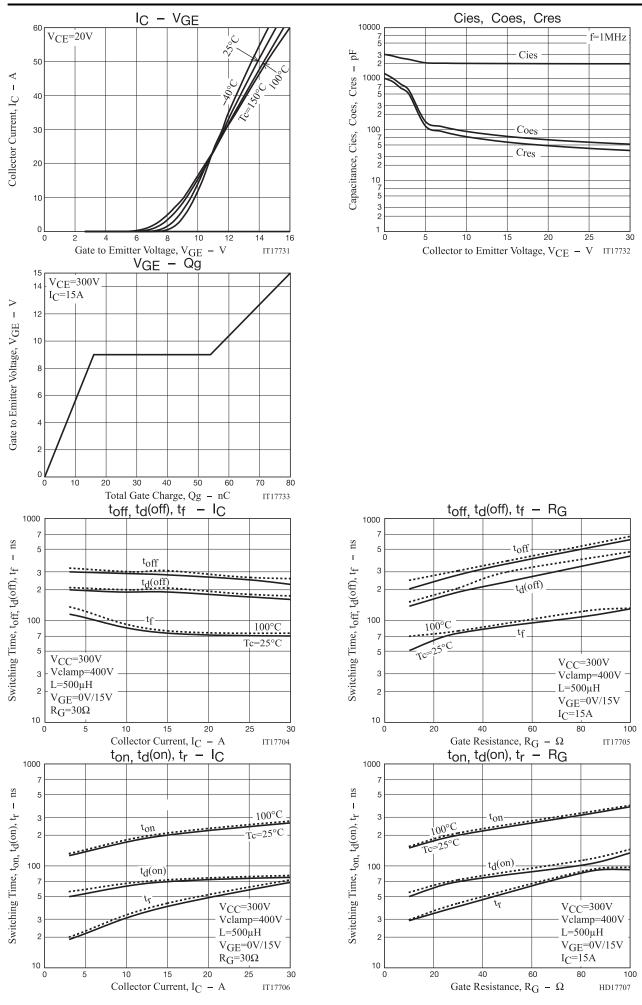
ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

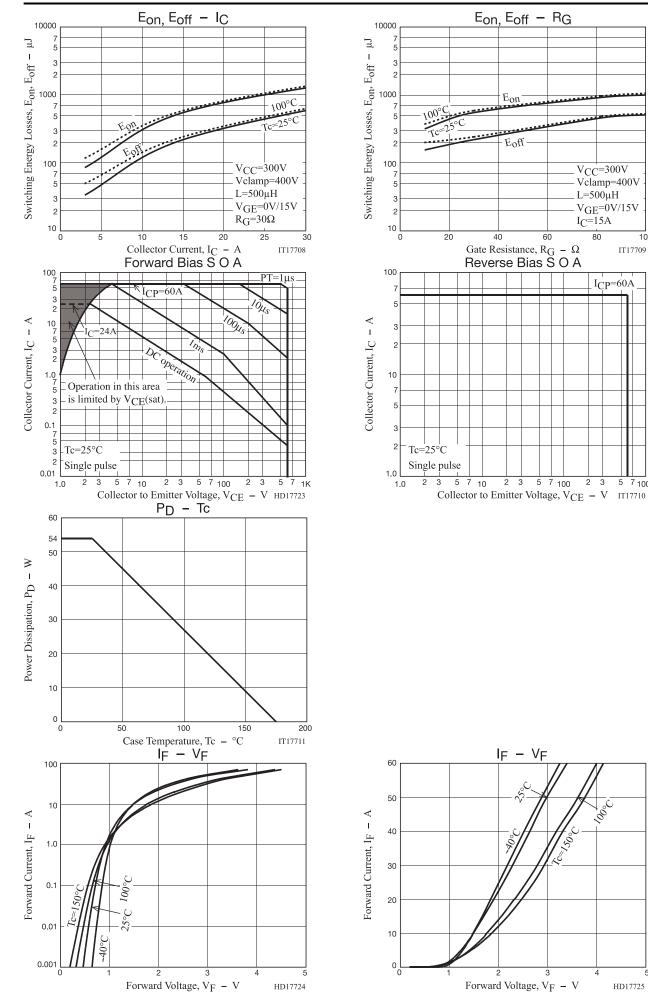
Electrical Characteristics at Ta = 25°C, Unless otherwise specified

Doromotor	Symbol	Conditions		Value			
Parameter				min	typ	max	Unit
Collector to Emitter Breakdown Voltage	V(BR)CES	IC=500μA, VGE=0V		600			V
Collector to Emitter Cut off Current	ICES		Tc=25°C			10	μA
		VCE=600V, VGE=0V	Tc=125°C			1	mA
Gate to Emitter Leakage Current	IGES	V _{GE} =±20V, V _{CE} =0V				±100	nA
Gate to Emitter Threshold Voltage	V _{GE} (th)	V _{CE} =20V, I _C =250µA		4.5		7.0	V
Collector to Emitter Saturation Voltage		V _{GE} =15V, I _C =15A	Tc=25°C		1.85	2.1	V
	VCE(sat)	V _{GE} =15V, I _C =14A	Tc=100°C		2.0	2.3	V
Forward Diode Voltage	VF	IF=15A			1.7	2.1	V
Input Capacitance	Cies	V _{CE} =20V, f=1MHz			2000		pF
Output Capacitance	Coes				65		pF
Reverse Transfer Capacitance	Cres				50		pF
Turn-ON Delay Time	t _d (on)	V _{CC} =300V, I _C =15A R _G =30Ω, L=500μH V _{GE} =0V/15V Vclamp=400V T _C =25°C See Fig.1, See Fig.2			70		ns
Rise Time	tr				40		ns
Turn-ON Time	ton				200		ns
Turn-OFF Delay Time	t _d (off)				190		ns
Fall Time	tf				75		ns
Turn-OFF Time	toff				290		ns
Turn-ON Energy	Eon				550		μJ
Turn-OFF Energy	Eoff				220		μJ
Total Gate Charge	Qg	V _{CE} =300V, V _{GE} =15V, I _C =15A			80		nC
Gate to Emitter Charge	Qge				16		nC
Gate to Collector "Miller" Charge	Qgc				38		nC
Diode Reverse Recovery Time	trr	IF=15A,di/dt=300A/µs, VCC	;=300V, See Fig.3		95		ns


indicated by the Electrical Characteristics if operated under different conditions.


Thermal Characteristics at Ta = 25°C, Unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Thermal Resistance IGBT (Junction to Case)	Rth(j-c) (IGBT)	Tc=25°C (Our ideal heat dissipation condition) * ²	2.78	°C/W
Thermal Resistance (Junction to Ambient)	Rth(j-a)		69	°C/W


Note : *2 Our condition is radiation from backside.

The method is applying silicone grease to the backside of the device and attaching the device to water-cooled radiator made of aluminum.

www.onsemi.com 4

V_{CC}=300V

L=500µH

IC=15A

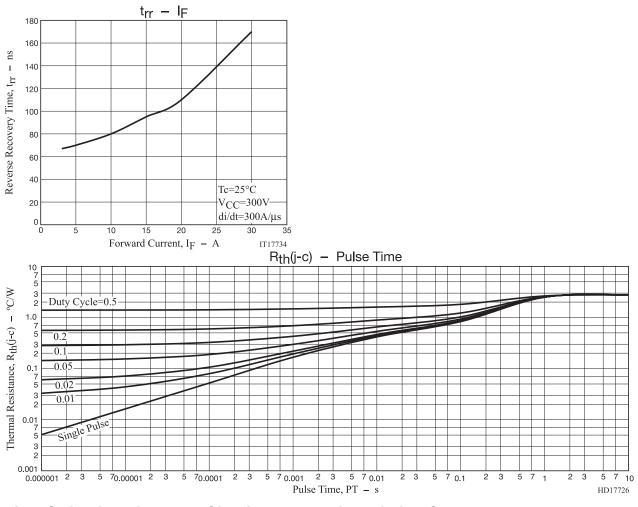
80

Vclamp=400V

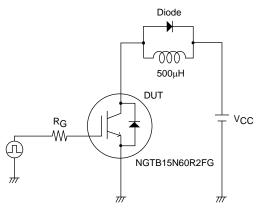
 $V_{GE}=0V/15V$

ICP=60A

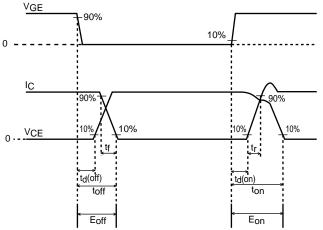
100


IT17709

5 7 1000


00°00

HD17725


www.onsemi.com 5

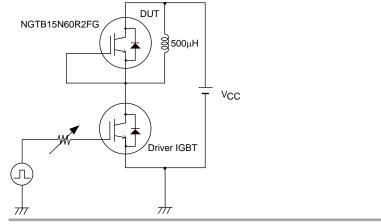
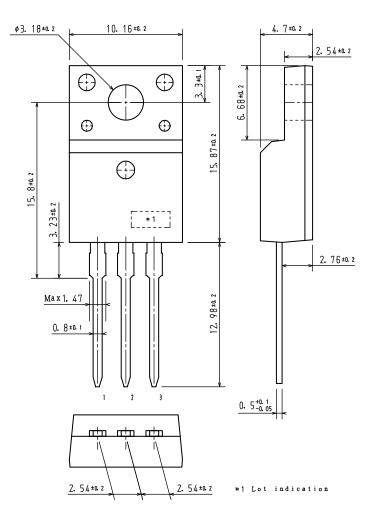


Fig.2 Timing Chart

Fig.3 Reverse Recovery Time Test Circuit

Package Dimensions


NGTB15N60R2FG

TO-220F-3FS

CASE 221AM ISSUE O

unit : mm

1:Gate 2:Collector 3:Emitter

ORDERING INFORMATION

Device	Package	Shipping	note	
NGTB15N60R2FG	TO-220F-3FS	50 pcs. / tube	Pb-Free and Halogen Free	

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright l

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NGTB15N60R2FG