IGBT

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop (FS) Trench construction, and provides superior performance in demanding switching applications, offering both low on–state voltage and minimal switching loss. The IGBT is well suited for resonant or soft switching applications. Incorporated into the device is a rugged co–packaged free wheeling diode with a low forward voltage.

Features

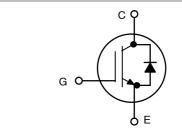
- Low Saturation Voltage using Trench with Fieldstop Technology
- Low Switching Loss Reduces System Power Dissipation
- Optimized for Low Case Temperature in IH Cooker Application
- Low Gate Charge
- These are Pb-Free Devices

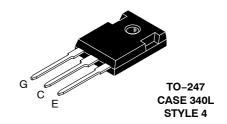
Typical Applications

- Inductive Heating
- Consumer Appliances
- Soft Switching

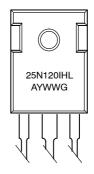
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V_{CES}	1200	V
Collector current @ Tc = 25°C @ Tc = 100°C	l _c	50 25	Α
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	200	Α
Diode forward current @ Tc = 25°C @ Tc = 100°C	I _F	50 25	Α
Diode pulsed current, T _{pulse} limited by T _{Jmax}	I _{FM}	200	Α
Gate-emitter voltage	V_{GE}	±20	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P_D	192 77	W
Operating junction temperature range	TJ	-55 to +150	°C
Storage temperature range	T _{stg}	-55 to +150	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C
@ Tc = 25°C @ Tc = 100°C Operating junction temperature range Storage temperature range Lead temperature for soldering, 1/8"	T _J	777 -55 to +150 -55 to +150	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®


http://onsemi.com

25 A, 1200 V V_{CEsat} = 1.85 V E_{off} = 0.8 mJ

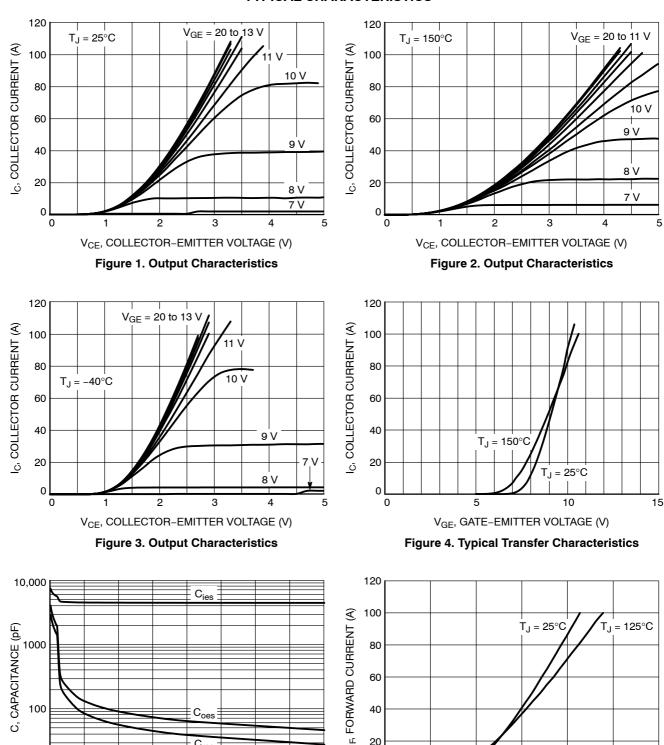
MARKING DIAGRAM

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTB25N120IHLWG	TO-247 (Pb-Free)	30 Units / Rail


THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ hetaJC}$	0.65	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ hetaJC}$	2.0	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC	•			•		L
Collector-emitter breakdown voltage, gate-emitter short-circuited	$V_{GE} = 0 \text{ V}, I_{C} = 500 \mu\text{A}$	V _{(BR)CES}	1200	_	-	V
Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 25 A V _{GE} = 15 V, I _C = 25 A, T _J = 150°C	V _{CEsat}	-	1.85 2.1	2.3 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_{C} = 250 \mu A$	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	$V_{GE} = 0 \text{ V}, V_{CE} = 1200 \text{ V}$ $V_{GE} = 0 \text{ V}, V_{CE} = 1200 \text{ V}, T_{J=} 150^{\circ}\text{C}$	I _{CES}	- -	_ _	0.5 2.0	mA
Gate leakage current, collector-emitter short-circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	100	nA
DYNAMIC CHARACTERISTIC		•				
Input capacitance		C _{ies}	-	4700	-	pF
Output capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{oes}	_	155	-	
Reverse transfer capacitance	1	C _{res}	-	100	-	
Gate charge total		Q_g		200		nC
Gate to emitter charge	V _{CE} = 600 V, I _C = 25 A, V _{GE} = 15 V	Q _{ge}		38		
Gate to collector charge		Q _{gc}		100		
SWITCHING CHARACTERISTIC, INDUC	TIVE LOAD					
Turn-off delay time	T _J = 25°C	t _{d(off)}		235		ns
Fall time	$V_{CC} = 600 \text{ V}, I_{C} = 25 \text{ A}$ $R_{q} = 10 \Omega$	t _f		160		
Turn-off switching loss	V _{GE} = 0 V/ 15V	E _{off}		0.8		mJ
Turn-off delay time	T _J = 125°C	t _{d(off)}		250		ns
Fall time	$V_{CC} = 600 \text{ V, I}_{C} = 25 \text{ A}$ $R_{g} = 10 \Omega$	t _f		225		
Turn-off switching loss	V _{GE} = 0 V/ 15V	E _{off}		1.9		mJ
DIODE CHARACTERISTIC						
Forward voltage	V _{GE} = 0 V, I _F = 25 A V _{GE} = 0 V, I _F = 25 A, T _J = 150°C	V _F		1.7 1.8	1.8	V

TYPICAL CHARACTERISTICS

V_{CE}, COLLECTOR-EMITTER VOLTAGE (V) Figure 5. Typical Capacitance

100

75

10

Cres

125

150

V_F, FORWARD VOLTAGE (V) Figure 6. Diode Forward Characteristics

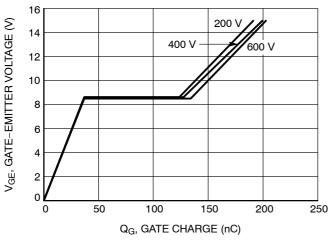
1.5

2.0

2.5

3.0

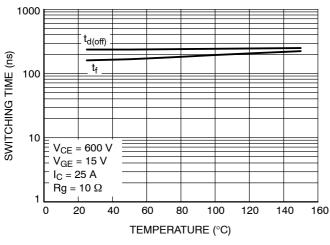
200


20

0

0.5

1.0


TYPICAL CHARACTERISTICS

(m $V_{CE} = 600 \text{ V}$ 1.8 Eoff, TURN-OFF SWITCHING LOSS $V_{GE} = 15 V$ - I_C = 25 A 1.6 $Rg = 10 \Omega$ 1.4 1.2 1.0 8.0 0.6 0.4 0.2 0 0 20 80 100 120 140 TEMPERATURE (°C)

Figure 7. Typical Gate Charge

Figure 8. Energy Loss vs. Temperature

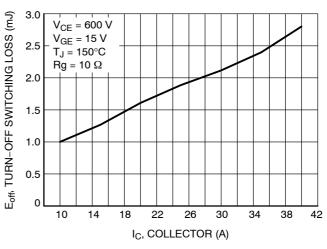
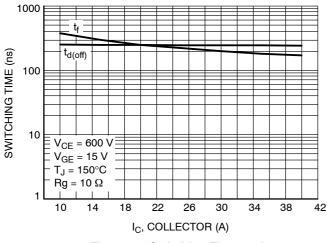



Figure 9. Switching Time vs. Temperature

Figure 10. Energy Loss vs. I_C

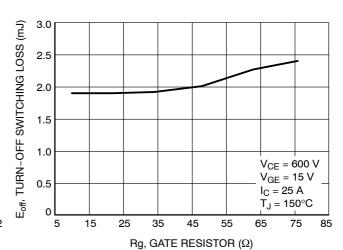
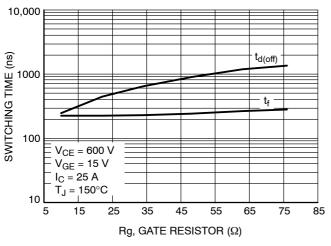
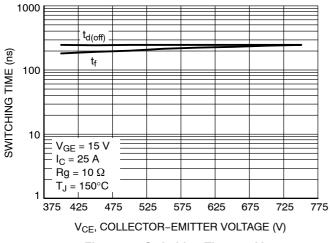



Figure 11. Switching Time vs. I_C

Figure 12. Energy Loss vs. Rg


TYPICAL CHARACTERISTICS

2.5 2.0 ENERGY (mJ) 1.5 1.0 V_{GE} = 15 V I_C = 25 A 0.5 $Rg = 10 \Omega$ T_J = 150°C 725 775 375 425 525 575 625 675 V_{CE}, COLLECTOR-EMITTER VOLTAGE (V)

Figure 13. Switching Time vs. Rg

Figure 14. Energy Loss vs. V_{CE}

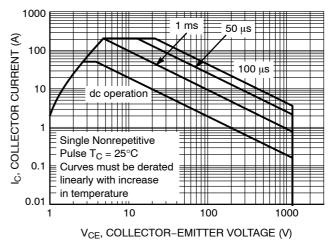


Figure 15. Switching Time vs. V_{CE}

Figure 16. Safe Operating Area

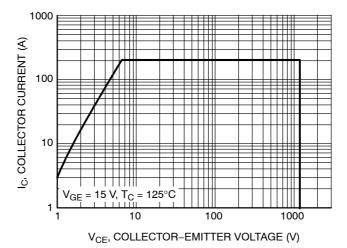


Figure 17. Reverse Bias Safe Operating Area

TYPICAL CHARACTERISTICS

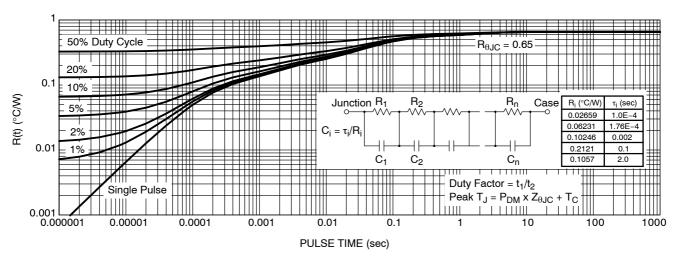


Figure 18. IGBT Transient Thermal Impedance

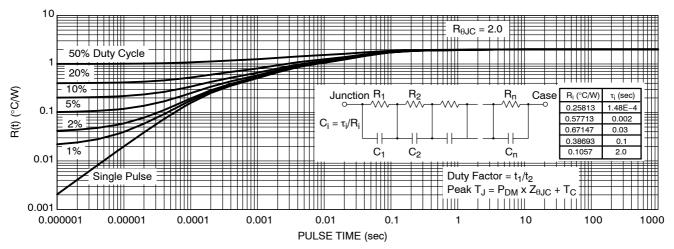


Figure 19. Diode Transient Thermal Impedance

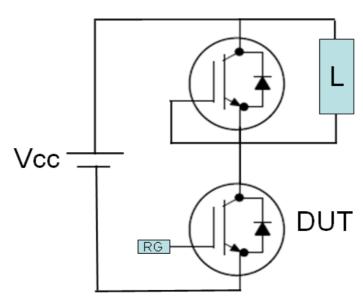


Figure 20. Test Circuit for Switching Characteristics

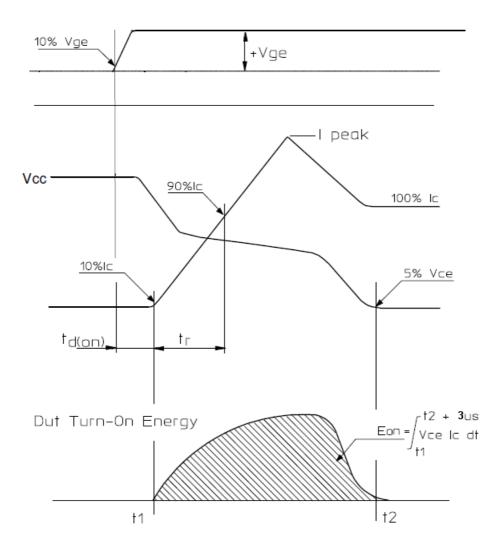


Figure 21. Definition of Turn On Waveform

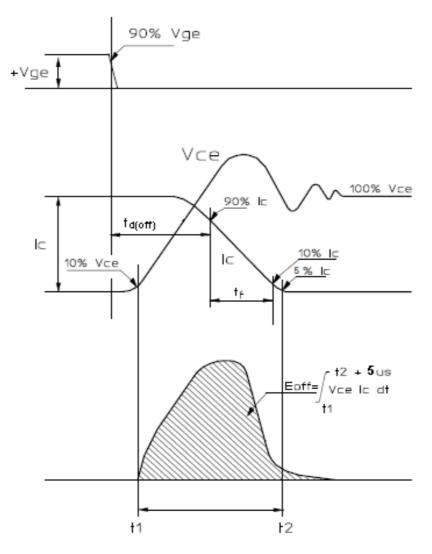
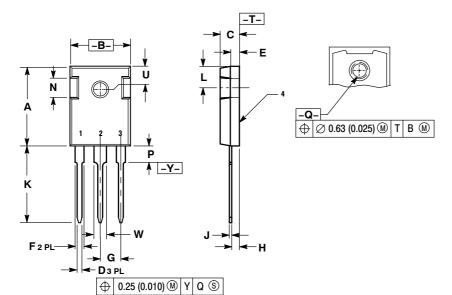



Figure 22. Definition of Turn Off Waveform

PACKAGE DIMENSIONS

TO-247 CASE 340L-02 ISSUE F

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M. 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	20.32	21.08	0.800	8.30	
В	15.75	16.26	0.620	0.640	
С	4.70	5.30	0.185	0.209	
D	1.00	1.40	0.040	0.055	
Е	1.90	2.60	0.075	0.102	
F	1.65	2.13	0.065	0.084	
G	5.45 BSC		0.215 BSC		
Н	1.50	2.49	0.059	0.098	
7	0.40	0.80	0.016	0.031	
K	19.81	20.83	0.780	0.820	
L	5.40	6.20	0.212	0.244	
N	4.32	5.49	0.170	0.216	
P		4.50		0.177	
ø	3.55	3.65	0.140	0.144	
J	6.15	BSC	0.242 BSC		
W	2.87	3.12	0.113	0.123	

STYLE 4:

PIN 1. GATE 2. COLLECTOR

2. COLLECTOR 3. EMITTER

4. COLLECTOR

ON Semiconductor and was a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems in syst

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NGTB25N120IHLWG