PNP Silicon General Purpose Amplifier Transistor

This PNP transistor is designed for general purpose amplifier applications. This device is housed in the SOT-723 package which is designed for low power surface mount applications, where board space is at a premium.

Features

- Reduces Board Space
- High h_{FE}, 210–460 (Typical)
- Low $V_{CE(sat)}$, < 0.5 V
- ESD Performance: Human Body Model; > 2000 V,
 - Machine Model; > 200 V
- Available in 8000 Unit Tape & Reel with 2 mm Pitch
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

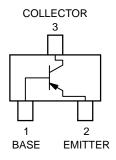
MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{(BR)CBO}	-60	Vdc
Collector–Emitter Voltage	V _{(BR)CEO}	-50	Vdc
Emitter-Base Voltage	$V_{(BR)EBO}$	-6.0	Vdc
Collector Current – Continuous	Ic	-150	mAdc

THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Power Dissipation (Note 1)	P_{D}	265	mW
Junction Temperature	T_J	150	°C
Storage Temperature Range	T _{stg}	-55 ~ + 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.

ON Semiconductor®

www.onsemi.com

PNP GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT

MARKING DIAGRAM

SOT-723 CASE 631AA

9F = Specific Device Code M = Date Code*

*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NS2029M3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel
NSV2029M3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector–Base Breakdown Voltage (I _C = -50 μAdc, I _E = 0)	V _{(BR)CBO}	-60	-	-	Vdc
Collector–Emitter Breakdown Voltage (I _C = -1.0 mAdc, I _B = 0)	V _{(BR)CEO}	-50	-	-	Vdc
Emitter–Base Breakdown Voltage ($I_E = -50 \mu Adc$, $I_E = 0$)	V _{(BR)EBO}	-6.0	-	-	Vdc
Collector–Base Cutoff Current (V _{CB} = -30 Vdc, I _E = 0)	Ісво	-	-	-0.5	nA
Emitter-Base Cutoff Current (V _{EB} = -7.0 Vdc, I _B = 0)	I _{EBO}	-	-	-0.1	μΑ
Collector–Emitter Saturation Voltage (Note 2) (I _C = -50 mAdc, I _B = -5.0 mAdc)	V _{CE(sat)}	-	-	-0.5	Vdc
DC Current Gain (Note 2) (V _{CE} = -6.0 Vdc, I _C = -1.0 mAdc)	h _{FE}	120	-	560	-
Transition Frequency (V _{CE} = -12 Vdc, I _C = -2.0 mAdc, f = 30 MHz)	f _T	_	140	-	MHz
Output Capacitance (V _{CB} = -12 Vdc, I _E = 0 Adc, f = 1.0 MHz)	C _{OB}	-	3.5	_	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.

TYPICAL ELECTRICAL CHARACTERISTICS

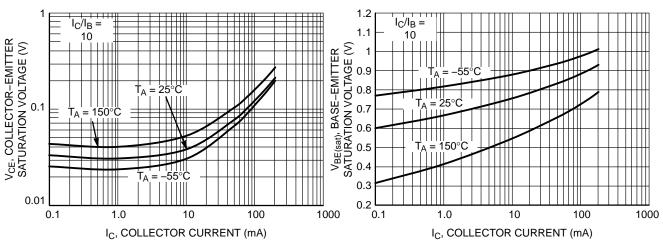


Figure 1. Collector–Emitter Saturation Voltage vs. Collector Current

Figure 2. Base–Emitter Saturation Voltage vs.
Collector Current

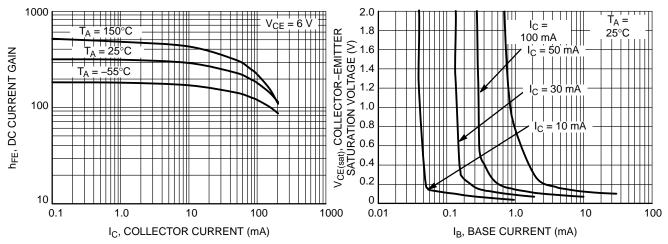


Figure 3. DC Current Gain vs. Collector Current

Figure 4. Saturation Region

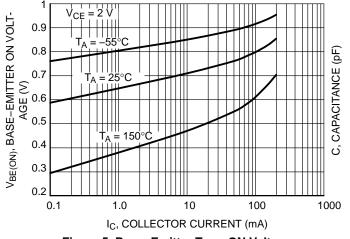


Figure 5. Base-Emitter Turn-ON Voltage vs.
Collector Current

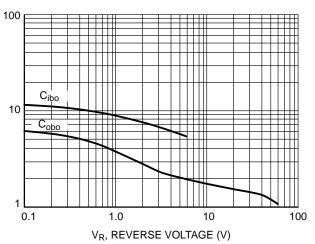
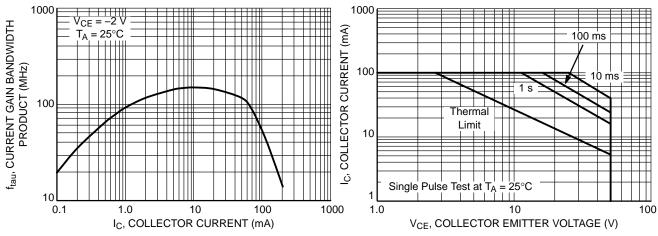
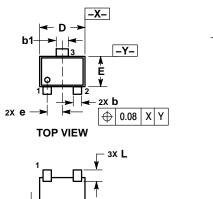


Figure 6. Capacitance

TYPICAL ELECTRICAL CHARACTERISTICS

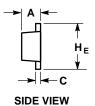
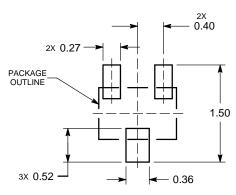

Figure 7. Current Gain Bandwidth Product vs. Collector Current

Figure 8. Safe Operating Area

PACKAGE DIMENSIONS

SOT-723 CASE 631AA ISSUE D



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME
- DIMENSIONING AND TOLERANCING PER ASME
 Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD
 FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM
 THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.45	0.50	0.55	
b	0.15	0.21	0.27	
b1	0.25	0.31	0.37	
С	0.07	0.12	0.17	
D	1.15	1.20	1.25	
E	0.75	0.80	0.85	
е	0.40 BSC			
ΗE	1.15	1.20	1.25	
L	0.29 REF			
L2	0.15	0.20	0.25	

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partner rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

3X L2

BOTTOM VIEW

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NS2029M3T5G NSV2029M3T5G