NSS12200WT1G

12 V, 2 A, Low V_{CE(sat)} PNP Transistor

ON Semiconductor's e²PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical application are DC–DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features

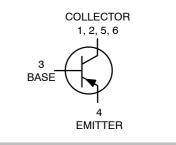
- High Current Capability (3 A)
- High Power Handling (Up to 650 mW)
- Low V_{CE(s)} (170 mV Typical @ 1 A)
- Small Size
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Benefits

- High Specific Current and Power Capability Reduces Required PCB Area
- Reduced Parasitic Losses Increases Battery Life

MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	-12	Vdc
Collector-Base Voltage	V _{CBO}	-12	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous – Peak	I _C I _{CM}	-2.0 -3.0	Adc
Electrostatic Discharge	ESD	HBM Class 3 MM Class C	


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

$\begin{array}{c} 12 \text{ VOLTS} \\ 2.0 \text{ AMPS} \end{array} \\ \textbf{PNP LOW V}_{\text{CE(sat)}} \text{ TRANSISTOR} \\ \textbf{EQUIVALENT R}_{\text{DS(on)}} \text{ 163 m} \Omega \end{array}$

SC-88/SOT-363 CASE 419B STYLE 20

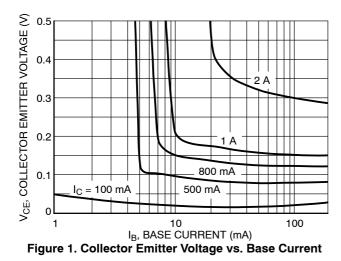
DEVICE MARKING

V2 = Specific Device Code

- M = Date Code
- = Pb–Free Package

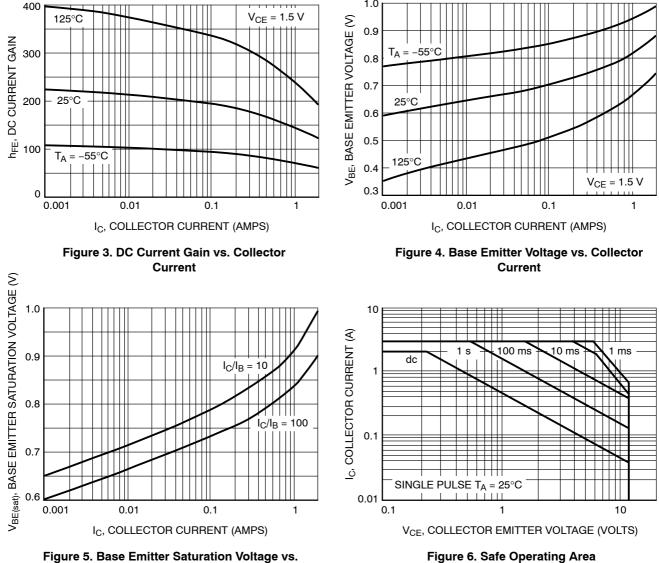
ORDERING INFORMATION

Device	Package	Shipping [†]
NSS12200WT1G	SOT-363 (Pb-Free)	3000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


THERMAL CHARACTERISTICS

Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25^{\circ}C Thermal Resistance, Junction-to-Ambient Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25^{\circ}C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Lead 6	P _D (Note R _{θJA} (Not P _D (Note R _{θJA} (Not R _{θJL} P _D Sing	e 1) 2) e 2)	450 3.6 275 650 5.2 192 105	n	mW nW/°C °C/W mW nW/°C °C/W	
Thermal Resistance, Junction-to-Ambient Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Ambient	P _D (Note	2) e 2)	275 650 5.2 192	n	°C/W mW nW/°C	
T _A = 25°C Derate above 25°C Thermal Resistance, Junction-to-Ambient Thermal Resistance,	R _{θJA} (Not	e 2)	5.2 192		ı₩/°C	
Thermal Resistance, Junction-to-Ambient Thermal Resistance,	R _{θJL}		192			
			105			
	P _D Sing			Ň	°C/W	
Total Device Dissipation (Single Pulse < 10 sec.)		ie	1.4		W	
Junction and Storage Temperature Range	T _J , T _{stg}		–55 to +15	0	°C	
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise not			1	1		
Characteristic	Symbol	Min	Тур	Мах	Unit	
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltage, ($I_C = -10 \text{ mAdc}$, $I_B = 0$)	V _{(BR)CEO}	-12	-15	-	Vdc	
Collector – Base Breakdown Voltage, ($I_{C} = -0.1 \text{ mAdc}, I_{E} = 0$)	V _{(BR)CBO}	-12	-25	-	Vdc	
Emitter – Base Breakdown Voltage, ($I_E = -0.1 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	-5.0	-7.0	-	Vdc	
Collector Cutoff Current, (V _{CB} = -12 Vdc, I _E = 0)	I _{CBO}	-	-0.02	-0.1	μAdc	
Collector–Emitter Cutoff Current, ($V_{CES} = -12 \text{ Vdc}$, $I_E = 0$)	I _{CES}	-	-0.03	-0.1	μAdc	
Emitter Cutoff Current, (V _{EB} = -5.0 Vdc, I _E = 0)	I _{EBO}	_	-0.03	-0.1	μAdc	
ON CHARACTERISTICS						
DC Current Gain (Note 3) ($I_C = -0.5 A$, $V_{CE} = -1.5 V$) ($I_C = -0.8 A$, $V_{CE} = -1.5 V$) ($I_C = -1.0 A$, $V_{CE} = -1.5 V$)	h _{FE}	100 100 100	180 165 160	_ 300 _		
Collector – Emitter Saturation Voltage (Note 3) ($I_C = -0.5 \text{ A}, I_B = -10 \text{ mA}$) ($I_C = -0.8 \text{ A}, I_B = -16 \text{ mA}$) ($I_C = -1.0 \text{ A}, I_B = -20 \text{ mA}$)	V _{CE(sat)}		-0.10 -0.14 -0.17	-0.160 -0.235 -0.290	V	
Base – Emitter Saturation Voltage (Note 3) $(I_C = -1.0 \text{ A}, I_B = -20 \text{ mA})$	V _{BE(sat)}	-	-0.84	-0.95	V	
Base – Emitter Turn–on Voltage (Note 3) ($I_C = -1.0 \text{ A}, V_{CE} = -1.5 \text{ V}$)	V _{BE(on)}	-	-0.81	-0.95	V	
Cutoff Frequency ($I_C = -100 \text{ mA}, V_{CE} = -5.0 \text{ V}, f = 100 \text{ MHz}$)	fT	-	100	_	MHz	
Output Capacitance ($V_{CB} = -1.5 \text{ V}, \text{ f} = 1.0 \text{ MHz}$)	C _{obo}	_	50	65	pF	


FR-4, Minimum Pad, 1 oz Coverage.
FR-4, 1" Pad, 1 oz Coverage.
Pulsed Condition: Pulse Width < 300 μsec, Duty Cycle < 2%.

1.0

Base Current

NSS12200WT1G

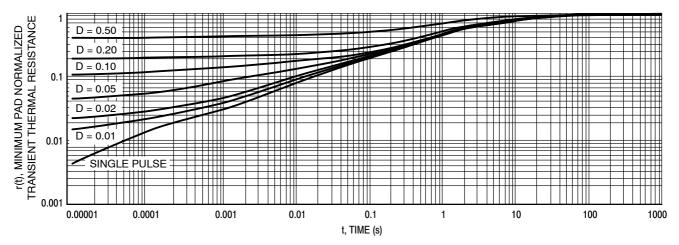
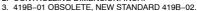
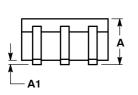


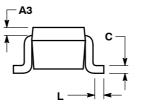
Figure 7. Normalized Thermal Response

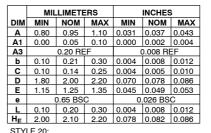
PACKAGE DIMENSIONS


SC-88/SC70-6/SOT-363

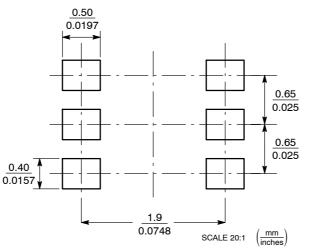
CASE 419B-02 **ISSUE W**


NOTES


1. DIMENSIONING AND TOLERANCING PER ANSI


Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	← D →
	> e <mark><</mark>
•	
	6 5 4
HE	
.	
	⊕ 0.2 (0.008) M E M


PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER

COLLECTOR 5.

6. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC obsent or any liability nor the rights of others. SCILIC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are specified to the COULY of the COUL intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NSS12200WT1G