# **Small Signal MOSFET**

-20 V, -760 mA, Single P-Channel, Gate Zener, SC-75, SC-89

#### **Features**

- Low R<sub>DS(on)</sub> for Higher Efficiency and Longer Battery Life
- Small Outline Package (1.6 x 1.6 mm)
- SC-75 Standard Gullwing Package
- ESD Protected Gate
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

## **Applications**

- High Side Load Switch
- DC-DC Conversion
- Small Drive Circuits
- Battery Operated Systems such as Cell Phones, PDAs, Digital Cameras, etc.

## MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise stated)

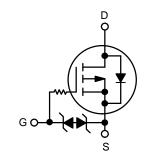
| Parameter                                                  | Symbol                               | Value               | Units      |    |
|------------------------------------------------------------|--------------------------------------|---------------------|------------|----|
| Drain-to-Source Voltage                                    | $V_{DSS}$                            | -20                 | V          |    |
| Gate-to-Source Voltage                                     | V <sub>GS</sub> ±6.0                 |                     | V          |    |
| Continuous Drain Current Steady State (Note 1)             |                                      | I <sub>D</sub> –760 |            | mA |
| Power Dissipation (Note 1)<br>SC-75<br>SC-89 Steady State  |                                      | P <sub>D</sub>      | 301<br>313 | mW |
| Pulsed Drain Current                                       | I <sub>DM</sub>                      | ±1000               | mA         |    |
| Operating Junction and Storage                             | T <sub>J</sub> ,<br>T <sub>STG</sub> | –55 to<br>150       | °C         |    |
| Continuous Source Current (Bo                              | I <sub>S</sub>                       | -250                | mA         |    |
| Lead Temperature for Soldering (1/8 in from case for 10 s) | T <sub>L</sub>                       | 260                 | °C         |    |
| Gate-to-Source ESD Rating -<br>(Human Body Model           | ESD                                  | 1800                | V          |    |

## THERMAL RESISTANCE RATINGS

| Junction-to-Ambient - Steady State (Note 1) | $R_{\theta JA}$ |     | °C/W |
|---------------------------------------------|-----------------|-----|------|
| SC-75                                       |                 | 415 |      |
| SC-89                                       |                 | 400 |      |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

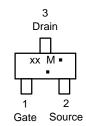



# ON Semiconductor®

#### www.onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> TYP | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| -20 V                | 0.26 Ω @ -4.5 V         |                    |
|                      | 0.35 Ω @ -2.5 V         | –760 mA            |
|                      | 0.49 Ω @ -1.8 V         |                    |

#### P-Channel MOSFET




# MARKING DIAGRAM & PIN ASSIGNMENT





SC-89 CASE 463C



xx = Device Code M = Date Code\* = Pb-Free Package

(Note: Microdot may be in either location)

\*Date Code orientation may vary depending upon manufacturing location.

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

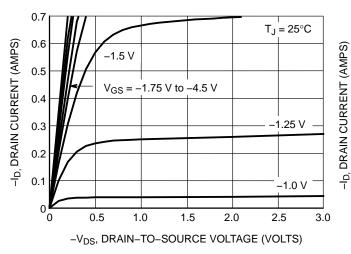
1

# **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = 25°C unless otherwise stated)

| Parameter                         | Symbol               | Symbol Test Condition                                                     |       | Тур   | Max  | Unit |  |
|-----------------------------------|----------------------|---------------------------------------------------------------------------|-------|-------|------|------|--|
| OFF CHARACTERISTICS               |                      |                                                                           |       |       | I    |      |  |
| Drain-to-Source Breakdown Voltage | V <sub>(BR)DSS</sub> | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$                            | -20   |       |      | V    |  |
| Zero Gate Voltage Drain Current   | I <sub>DSS</sub>     | $V_{GS} = 0 \text{ V}, V_{DS} = -16 \text{ V}$                            |       | -1.0  | -100 | nA   |  |
| Gate-to-Source Leakage Current    | I <sub>GSS</sub>     | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 4.5 \text{ V}$                        |       | ±1.0  | ±10  | μΑ   |  |
| ON CHARACTERISTICS (Note 2)       |                      |                                                                           | •     | •     | •    | •    |  |
| Gate Threshold Voltage            | V <sub>GS(TH)</sub>  | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$                                     | -0.45 |       | -1.2 | V    |  |
| Drain-to-Source On Resistance     | R <sub>DS(on)</sub>  | $V_{GS} = -4.5 \text{ V}, I_D = -350 \text{ mA}$                          |       | 0.26  | 0.36 | Ω    |  |
|                                   |                      | $V_{GS} = -2.5 \text{ V}, I_D = -300 \text{ mA}$                          |       | 0.35  | 0.45 |      |  |
|                                   |                      | $V_{GS} = -1.8 \text{ V}, I_D = -150 \text{ mA}$                          |       | 0.49  | 1.0  |      |  |
| Forward Transconductance          | 9FS                  | $V_{DS} = -10 \text{ V}, I_D = -250 \text{ mA}$                           |       | 0.4   |      | S    |  |
| CHARGES AND CAPACITANCES          |                      |                                                                           | •     | •     |      |      |  |
| Input Capacitance                 | C <sub>ISS</sub>     | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$<br>$V_{DS} = -5.0 \text{ V}$ |       | 156   |      | pF   |  |
| Output Capacitance                | C <sub>OSS</sub>     | $V_{DS} = -5.0 \text{ V}$                                                 |       | 28    |      |      |  |
| Reverse Transfer Capacitance      | C <sub>RSS</sub>     |                                                                           |       | 18    |      |      |  |
| Total Gate Charge                 | Q <sub>G(TOT)</sub>  | $V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$                        |       | 2.1   |      | nC   |  |
| Threshold Gate Charge             | Q <sub>G(TH)</sub>   | $I_D = -0.3 \text{ A}$                                                    |       | 0.125 |      |      |  |
| Gate-to-Source Charge             | $Q_{GS}$             |                                                                           |       | 0.325 |      |      |  |
| Gate-to-Drain Charge              | $Q_{GD}$             |                                                                           |       | 0.5   |      | 1    |  |
| SWITCHING CHARACTERISTICS (Note   | 3)                   |                                                                           | •     | •     | •    |      |  |
| Turn-On Delay Time                | td <sub>(ON)</sub>   | $V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$                        |       | 8.0   |      | ns   |  |
| Rise Time                         | t <sub>r</sub>       | $I_D$ = -200 mA, $R_G$ = 10 $\Omega$                                      |       | 8.2   |      | -    |  |
| Turn-Off Delay Time               | td <sub>(OFF)</sub>  |                                                                           |       | 29    |      |      |  |
| Fall Time                         | t <sub>f</sub>       |                                                                           |       | 20.4  |      |      |  |
| DRAIN-SOURCE DIODE CHARACTERI     | STICS                |                                                                           |       | -     |      | -    |  |
| Forward Diode Voltage             | $V_{SD}$             | $V_{GS} = 0 \text{ V, } I_{S} = -250 \text{ mA}$                          |       | -0.72 | -1.1 | V    |  |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

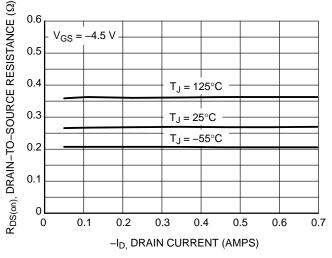
## **ORDERING INFORMATION**


| Device      | Marking | Package            | Shipping <sup>†</sup> |
|-------------|---------|--------------------|-----------------------|
| NTA4151PT1G | TN      | SC-75<br>(Pb-Free) | 3000 / Tape & Reel    |
| NTE4151PT1G | ТМ      | SC-89<br>(Pb-Free) | 3000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

<sup>2.</sup> Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.

<sup>3.</sup> Switching characteristics are independent of operating junction temperatures.


## TYPICAL ELECTRICAL CHARACTERISTICS



0.6  $V_{DS} \ge -10 \text{ V}$ 0.5 0.4 0.3 0.2 T<sub>J</sub> = 125°C  $T_J = 25^{\circ}C$ 0.1  $T_J = -55^{\circ}C$ 0 L 0.4 8.0 1.2 1.6 2.0 -V<sub>GS</sub>, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics



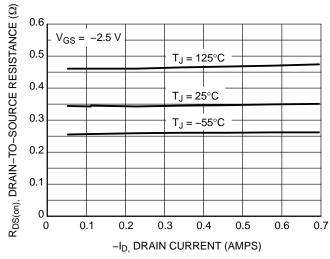
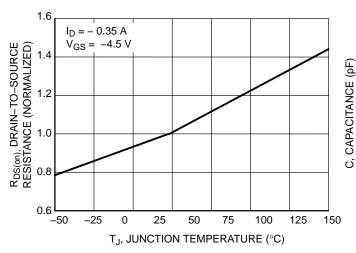
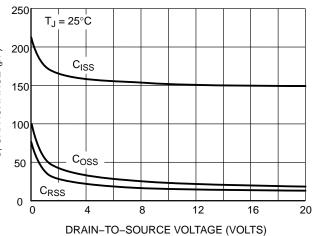




Figure 3. On–Resistance vs. Drain Current and Temperature

Figure 4. On–Resistance vs. Drain Current and Temperature





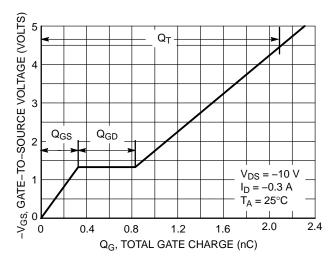


Figure 5. On–Resistance Variation with Temperature

Figure 6. Capacitance Variation

# TYPICAL ELECTRICAL CHARACTERISTICS

0.7

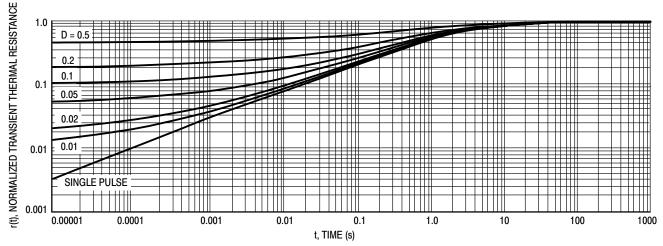
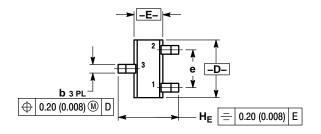
 $V_{GS} = 0 V$ 

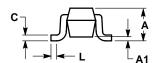


-I<sub>S</sub>, SOURCE CURRENT (AMPS) 0.6 0.5 0.4 0.3  $T_J = 125^{\circ}C$ 0.2 0.1  $T_J = 25^{\circ}C$ 00 0.4 1.0 -V<sub>SD</sub>, SOURCE-TO-DRAIN VOLTAGE (VOLTS)

Figure 7. Gate-to-Source Voltage vs. Total **Gate Charge** 

Figure 8. Diode Forward Voltage vs. Current

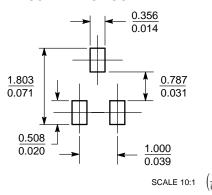


Figure 9. Normalized Thermal Response

# **PACKAGE DIMENSIONS**

# SC-75/SOT-416

**CASE 463** ISSUE F

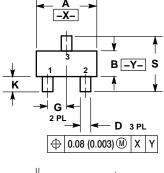


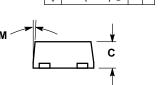


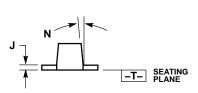

- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: MILLIMETER.

|     | MILLIMETERS |      |      | INCHES |          |       |
|-----|-------------|------|------|--------|----------|-------|
| DIM | MIN         | NOM  | MAX  | MIN    | NOM      | MAX   |
| Α   | 0.70        | 0.80 | 0.90 | 0.027  | 0.031    | 0.035 |
| A1  | 0.00        | 0.05 | 0.10 | 0.000  | 0.002    | 0.004 |
| b   | 0.15        | 0.20 | 0.30 | 0.006  | 0.008    | 0.012 |
| С   | 0.10        | 0.15 | 0.25 | 0.004  | 0.006    | 0.010 |
| D   | 1.55        | 1.60 | 1.65 | 0.059  | 0.063    | 0.067 |
| E   | 0.70        | 0.80 | 0.90 | 0.027  | 0.031    | 0.035 |
| е   | 1.00 BSC    |      |      |        | 0.04 BSC |       |
| L   | 0.10        | 0.15 | 0.20 | 0.004  | 0.006    | 0.008 |
| HE  | 1.50        | 1.60 | 1.70 | 0.061  | 0.063    | 0.065 |

STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN


# **SOLDERING FOOTPRINT\***



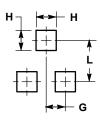


\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## PACKAGE DIMENSIONS

SC-89, 3-LEAD CASE 463C-03 **ISSUE C** 








#### NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETERS
  MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
  THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM
  THICKNESS OF BASE MATERIAL.
- 463C-01 OBSOLETE, NEW STANDARD 463C-02.

|     | MILLIMETERS    |      |      | INCHES    |       |       |  |
|-----|----------------|------|------|-----------|-------|-------|--|
| DIM | MIN            | NOM  | MAX  | MIN       | NOM   | MAX   |  |
| Α   | 1.50           | 1.60 | 1.70 | 0.059     | 0.063 | 0.067 |  |
| В   | 0.75           | 0.85 | 0.95 | 0.030     | 0.034 | 0.040 |  |
| С   | 0.60           | 0.70 | 0.80 | 0.024     | 0.028 | 0.031 |  |
| D   | 0.23           | 0.28 | 0.33 | 0.009     | 0.011 | 0.013 |  |
| G   | 0.50 BSC       |      |      | 0.020 BSC |       |       |  |
| Н   | 0.53 REF       |      |      | 0.021 REF |       |       |  |
| J   | 0.10 0.15 0.20 |      | 0.20 | 0.004     | 0.006 | 0.008 |  |
| K   | 0.30           | 0.40 | 0.50 | 0.012     | 0.016 | 0.020 |  |
| L   | 1.10 REF       |      |      | 0.043 REF |       |       |  |
| M   |                |      | 10   |           |       | 10    |  |
| N   |                |      | 10   |           |       | 10    |  |
| S   | 1.50           | 1.60 | 1.70 | 0.059     | 0.063 | 0.067 |  |

#### SOLDERING FOOTPRINT\*



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

# **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NTA4151PT1H