Power MOSFET

-60 V, -12 A, P-Channel DPAK

This Power MOSFET is designed to withstand high energy in the avalanche and commutation modes. Designed for low–voltage, high–speed switching applications in power supplies, converters, and power motor controls. These devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer an additional safety margin against unexpected voltage transients.

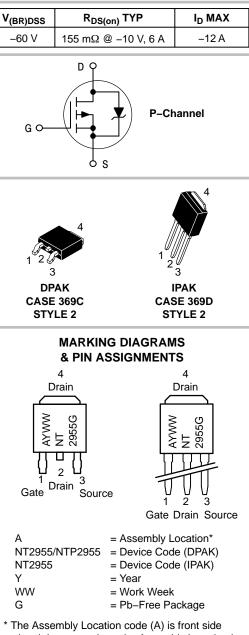
Features

- Avalanche Energy Specified
- I_{DSS} and V_{DS(on)} Specified at Elevated Temperature
- Designed for Low–Voltage, High–Speed Switching Applications and to Withstand High Energy in the Avalanche and Commutation Modes
- NVD and SVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit	
Drain-to-Source Voltage	V _{DSS}	-60	Vdc	
Gate–to–Source Voltage – Continuous – Non–repetitive (t _p ≤ 10 ms)	V _{GS} V _{GSM}	± 20 ± 25	Vdc Vpk	
Drain Current – Continuous @ T _a = 25°C – Single Pulse (t _p ≤ 10 ms)	I _D I _{DM}	-12 -18	Adc Apk	
Total Power Dissipation @ $T_a = 25^{\circ}C$	PD	55	W	
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 175	°C	
$ Single Pulse Drain-to-Source Avalanche \\ Energy - Starting T_J = 25^\circ C \\ (V_{DD} = 25 Vdc, V_{GS} = 10 Vdc, Peak \\ I_L = 12 Apk, L = 3.0 mH, R_G = 25 \Omega) $	E _{AS}	216	mJ	
Thermal Resistance – Junction-to-Case – Junction-to-Ambient (Note 1) – Junction-to-Ambient (Note 2)	R _{θJC} R _{θJA} R _{θJA}	2.73 71.4 100	°C/W	
Maximum Lead Temperature for Soldering Purposes, 1/8 in. from case for 10 seconds	ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


 When surface mounted to an FR4 board using 1 in pad size (Cu area = 1.127 in²).

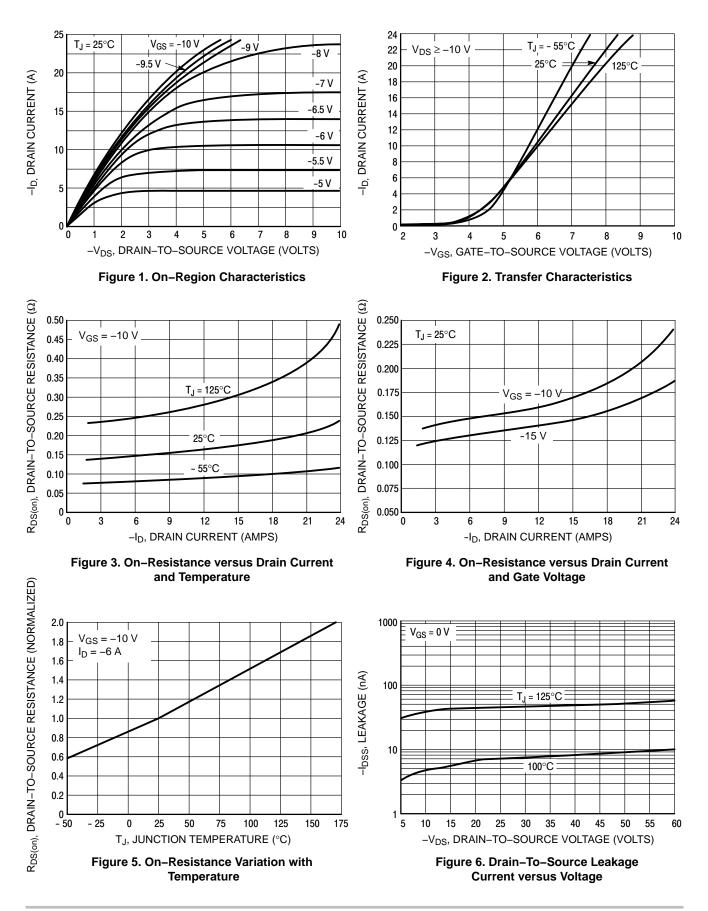
 When surface mounted to an FR4 board using the minimum recommended pad size (Cu area = 0.412 in²).

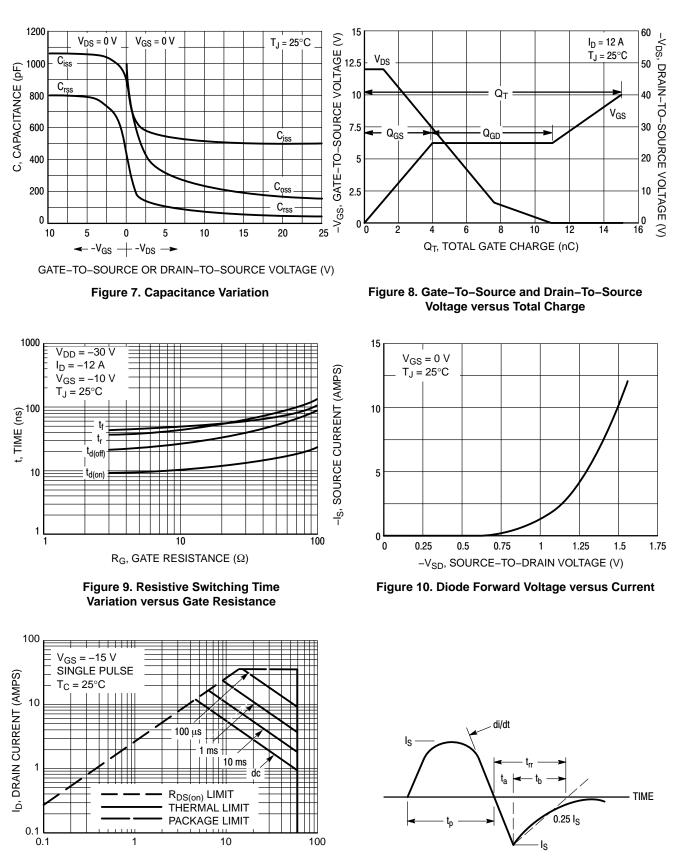
ON Semiconductor®

www.onsemi.com

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION


See detailed ordering and shipping information on page 5 of this data sheet.


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage (Note 3) ($V_{GS} = 0 \text{ Vdc}, I_D = -0.25 \text{ mA}$) (Positive Temperature Coefficient)		V _{(BR)DSS}	-60 -	67		Vdc mV/°C	
Zero Gate Voltage Drain Current $(V_{GS} = 0 \text{ Vdc}, V_{DS} = -60 \text{ Vdc}, T_J = 25^{\circ}\text{C})$ $(V_{GS} = 0 \text{ Vdc}, V_{DS} = -60 \text{ Vdc}, T_J = 150^{\circ}\text{C})$		I _{DSS}			-10 -100	μAdc	
Gate-Body Leakage Current (VG	$_{\rm S}$ = ± 20 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	-	-	-100	nAdc	
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = -250 \ \mu Adc)$ (Negative Temperature Coefficient)		V _{GS(th)}	-2.0	-2.8 4.5	-4.0 -	Vdc mV/°C	
Static Drain–Source On–State Resistance $(V_{GS} = -10 \text{ Vdc}, I_D = -6.0 \text{ Adc})$		R _{DS(on)}	_	0.155	0.180	Ω	
Drain-to-Source On-Voltage ($V_{GS} = -10 \text{ Vdc}, I_D = -12 \text{ Adc}$) ($V_{GS} = -10 \text{ Vdc}, I_D = -6.0 \text{ Adc}, T_J = 150^{\circ}\text{C}$)		V _{DS(on)}		-1.86 -	-2.6 -2.0	Vdc	
Forward Transconductance (V _{DS}	= 10 Vdc, I _D = 6.0 Adc)	gFS		8.0	-	Mhos	
DYNAMIC CHARACTERISTICS			1		1		
Input Capacitance		C _{iss}	-	500	750	pF	
Output Capacitance	$(V_{DS} = -25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, F = 1.0 \text{ MHz})$	C _{oss}	-	150	250		
Reverse Transfer Capacitance		C _{rss}	-	50	100		
SWITCHING CHARACTERISTICS	(Notes 3 and 4)					•	
Turn-On Delay Time		t _{d(on)}	-	10	20	ns	
Rise Time	(V _{DD} = -30 Vdc, I _D = -12 A,	t _r	-	45	85		
Turn–Off Delay Time	$V_{GS} = -10 \text{ V}, \text{ R}_{G} = 9.1 \Omega$	t _{d(off)}	-	26	40		
Fall Time		t _f	-	48	90		
Gate Charge	(V _{DS} = -48 Vdc, V _{GS} = -10 Vdc, I _D = -12 A)	QT	-	15	30	nC	
		Q _{GS}	-	4.0	-		
		Q_{GD}	-	7.0	-		
DRAIN-SOURCE DIODE CHARA	CTERISTICS (Note 3)						
Diode Forward On–Voltage ($I_S = 12 \text{ Adc}, V_{GS} = 0 \text{ V}$) ($I_S = 12 \text{ Adc}, V_{GS} = 0 \text{ V}, T_J = 15$	50°C)	V _{SD}		-1.6 -1.3	-2.5 -	Vdc	
Reverse Recovery Time (I _S = 12 A, dI _S /dt = 100 A/ μ s ,V _{GS} = 0 V)		t _{rr}	-	50		ns	
		t _a	-	40	-	1	
		t _b	-	10	-	1	
Reverse Recovery Stored Charge		Q _{RR}	-	0.10	-	μC	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Indicates Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. 4. Switching characteristics are independent of operating junction temperature.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

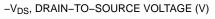


Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Diode Reverse Recovery Waveform

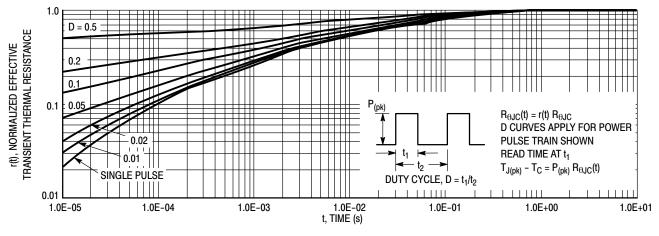
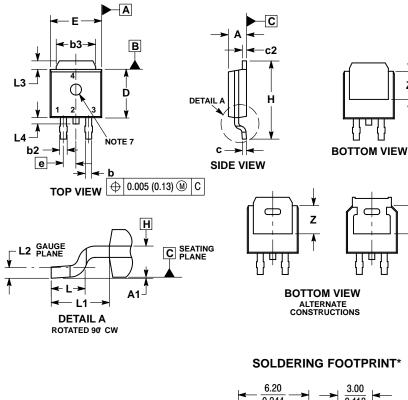
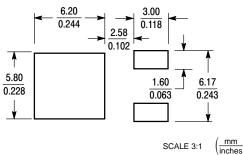


Figure 13. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD2955G	DPAK (Pb–Free)	75 Units / Rail
NTD2955–1G	IPAK (Pb–Free)	75 Units / Rail
NTD2955T4G	DPAK (Pb–Free)	2500 / Tape & Reel
NVD2955T4G*	DPAK (Pb–Free)	2500 / Tape & Reel
SVD2955T4G*	DPAK (Pb–Free)	2500 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


*NVD and SVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE) CASE 369C

ISSUE E

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

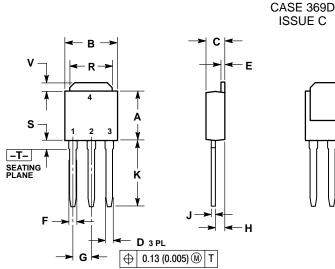
NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

7. OPTIONAL MOLD FEATURE.

Ζ

Ζ


A

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Е	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90 REF	
L2	0.020	BSC	0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Ζ	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

PACKAGE DIMENSIONS

IPAK

ISSUE C

ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. 2. INCHES MILLIMETERS MIN MAX DIM MIN MAX A 0.235 0.245 5.97 6.35 в 0.250 0.265 6.35 6.73 2.19 С 0.086 0.094 2.38 D 0.027 0.035 0.69 0.88 0.58 1.14 E F 0.018 0.023 0.46 0.045 0.037 0.94 0.090 BSC 2 29 BSC G H0.0340.040J0.0180.023 0.87 1.01 0.46 0.58 0.350 0.380 9.65 8.89 κ R 0.180 0.215 4.45 5.45 s 0.025 0.040 0.63 1.01 ٧ 0.035 0.050 0.89 1.27 **Z** 0.155 3.93

1. DIMENSIONING AND TOLERANCING PER

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE

NOTES:

z

4. DRAIN

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdl/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NTD2955-1G NTD2955T4G