Power MOSFET 25 V, 49 A, Single N–Channel, DPAK/IPAK

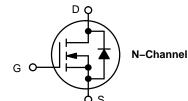
Features

- Trench Technology
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These are Pb–Free Devices

Applications

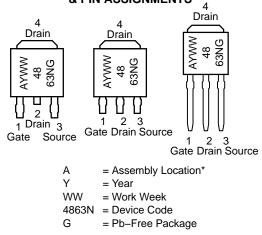
- VCORE Applications
- DC–DC Converters
- High Side Switching

Para	Symbol	Value	Unit		
Drain-to-Source Vo	V _{DSS}	25	V		
Gate-to-Source Vol	Gate-to-Source Voltage			±20	V
Continuous Drain		T _A = 25°C	۱ _D	11.3	А
Current R _{0JA} (Note 1)		T _A = 85°C		8.8	
Power Dissipation $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	PD	1.95	W
Continuous Drain Current R _{0JA}		$T_A = 25^{\circ}C$	ID	9.2	А
(Note 2)	Steady State	T _A = 85°C		7.1	
Power Dissipation $R_{\theta JA}$ (Note 2)	Sidle	$T_A = 25^{\circ}C$	PD	1.27	W
Continuous Drain Current $R_{\theta JC}$		$T_C = 25^{\circ}C$	۱ _D	49	A
(Note 1)		$T_{C} = 85^{\circ}C$		38	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	36.6	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	98	A
Current Limited by P	ackage	T _A = 25°C	I _{DmaxPkg}	35	А
Operating Junction a Temperature	Operating Junction and Storage Temperature			–55 to +175	°C
Source Current (Bod	y Diode)		۱ _S	30.5	А
Drain to Source dV/dt			dV/dt	6	V/ns
Single Pulse Drain-t Energy ($T_J = 25^{\circ}C$, V $I_L = 11 A_{pk}$, L = 1.0 m	$I_{\rm DD} = 50 \rm V,$	V _{GS} = 10 V,	EAS	60.5	mJ
	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
25 V	9.3 mΩ @ 10 V	49 A
20 0	14 mΩ @ 4.5 V	49 A

& PIN ASSIGNMENTS

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ extsf{ heta}JC}$	4.1	°C/W
Junction-to-TAB (Drain)	$R_{\theta JC-TAB}$	3.5	
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}	77	
Junction-to-Ambient - Steady State (Note 2)	R _{θJA}	118	

1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.

2. Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Cond	lition	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D =$	= 250 μA	25			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				23		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			1.0	μΑ
		$V_{DS} = 20 V$	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	₆ = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μA	1.45		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		8.4	9.3	mΩ
		V _{GS} = 4.5 V	I _D = 30 A		12.8	14	
Forward Transconductance	9 _{FS}	V _{DS} = 1.5 V, I	_D = 15 A				S
CHARGES AND CAPACITANCES	-	• •		-			
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V}, \text{ f} = 1.0 \text{ MHz}, \text{ V}_{DS} = 12 \text{ V}$			990		pF
Output Capacitance	C _{OSS}				253		
Reverse Transfer Capacitance	C _{RSS}				144		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} =	15 V, I _D = 30 A		9.0	13.5	nC
Threshold Gate Charge	Q _{G(TH)}				1.0		
Gate-to-Source Charge	Q _{GS}				3.4		
Gate-to-Drain Charge	Q _{GD}				4.1		1
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 30 A			17.8		nC
SWITCHING CHARACTERISTICS (Note	4)					-	-
Turn–On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω			11.5		ns
Rise Time	t _r				19.7		1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

13.5

3.6

Turn-Off Delay Time

Fall Time

4. Switching characteristics are independent of operating junction temperatures.

t_{d(OFF)}

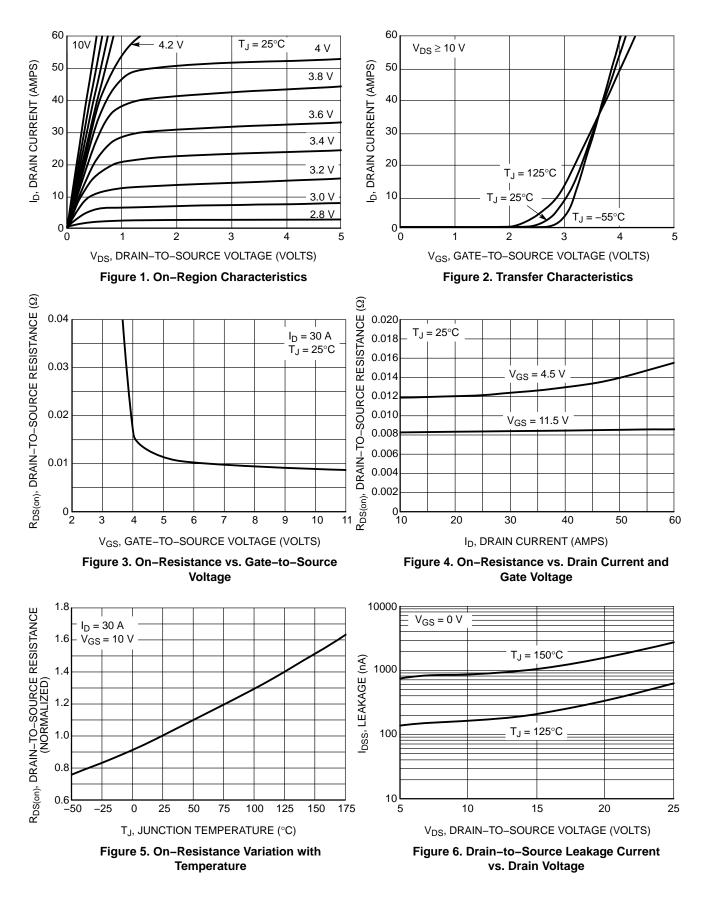
t_f

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified) (continued)

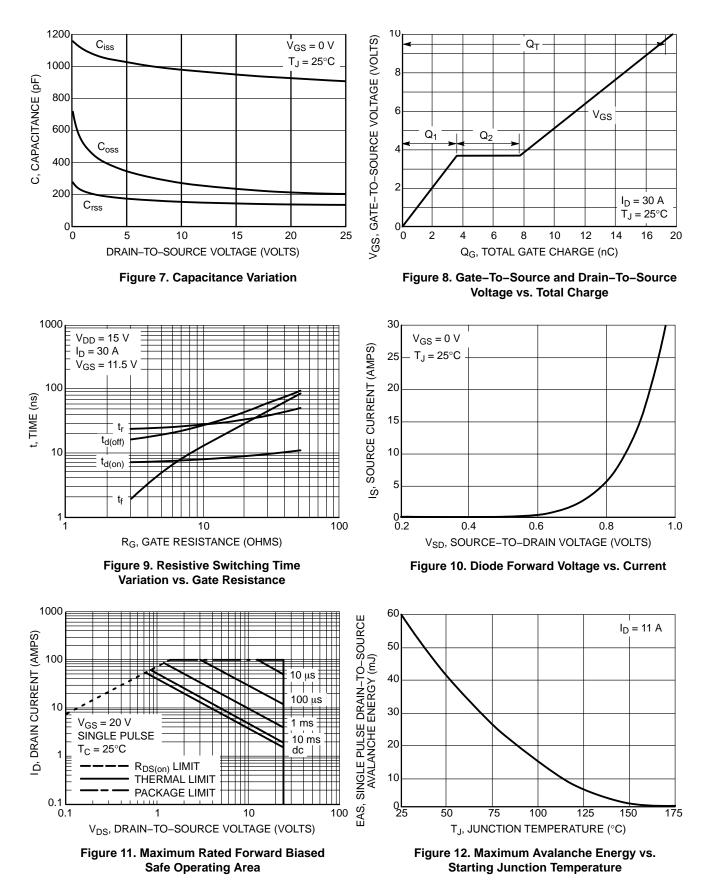
Parameter	Symbol	Test Condition		Min	Тур	Мах	Unit
SWITCHING CHARACTERISTICS (M	Note 4)	•			•		
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 11.5 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω			7.0		ns
Rise Time	tr	$I_D = 15 \text{ A}, \text{ K}_G = 3.0 \Omega$ 16.5	16.5				
Turn–Off Delay Time	t _{d(OFF)}				20.2		
Fall Time	t _f				2.0		
DRAIN-SOURCE DIODE CHARACT	ERISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$		0.96	1.2	V
		I _S = 30 A	T _J = 125°C		0.83		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0$ V, dIS/dt = 100 A/µs, $I_S = 30$ A			10.9		ns
Charge Time	t _a				5.4		
Discharge Time	t _b				5.5		
Reverse Recovery Charge	Q _{RR}				2.7		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S	T _A = 25°C			2.49		nH
Drain Inductance, DPAK	L _D				0.0164		
Drain Inductance, IPAK	L _D				1.88		
Gate Inductance	L _G				3.46		
		1					

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

0.5


Ω

Gate Resistance


4. Switching characteristics are independent of operating junction temperatures.

 R_G

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

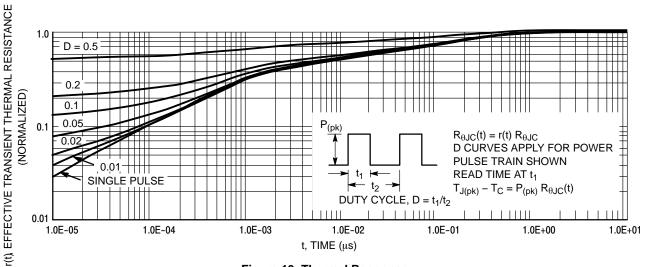
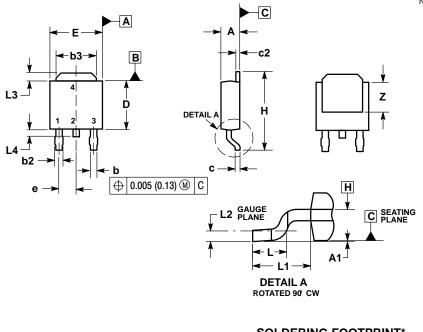


Figure 13. Thermal Response

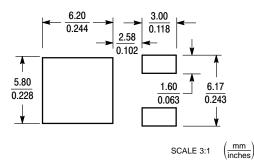

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD4863NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD4863N-1G	IPAK (Pb-Free)	75 Units / Rail
NTD4863N-35G	IPAK Trimmed Lead $(3.5 \pm 0.15 \text{ mm})$ (Pb-Free)	75 Units / Rail

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

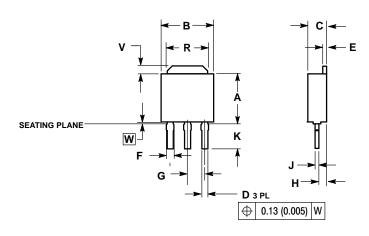
DPAK (SINGLE GUAGE) CASE 369AA **ISSUE B**

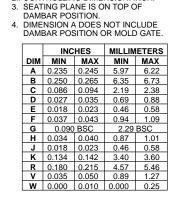

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS D3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- PLANE H.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29	BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108 REF		2.74 REF		
L2	0.020	BSC	0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Ζ	0.155		3.93		

SOLDERING FOOTPRINT*

STYLE 2:



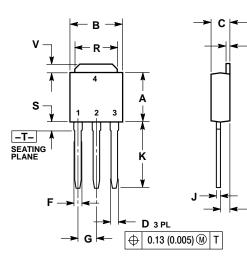

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

3 IPAK, STRAIGHT LEAD CASE 369AC

ISSUE O

NOTES: 1.. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.


2

3.

IPAK CASE 369D ISSUE C

Ε

н

Ζ

NOTES DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29 BSC	
Н	0.034	0.034 0.040 0.87		1.01
J	0.018	0.023	0.46	0.58
κ	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
۷	0.035	0.050	0.89	1.27
Ζ	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN DRAIN 3. SOURCE 4. DRAIN

ON Semiconductor and the 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other industries, Ltc (SoLLC) of its subsidiaries interventee to the online of states and/or other control to the secrets, and other industries, Ltc (SoLLC) of its subsidiaries interventee to the control control to the secrets, and other industries, Ltc (SoLLC) of its subsidiaries interventee to the control to the secrets, and other industries, Ltc (SoLLC) of its subsidiaries interventee to the control to the secrets, and states and/or other control to the secrets, and other industries, Ltc (SoLLC) of its subsidiaries interventee to the secrets, and secrets, and other interventee to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use a component in surface intervent in events in the surface in which any being in which any being individed for experiments. or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NTD4863N/D

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NTD4863NT4G