Power MOSFET -10 Amps, -20 Volts

P-Channel SOT-223

Features

- Low R_{DS(on)}
- Logic Level Gate Drive
- Diode Exhibits High Speed, Soft Recovery
- Avalanche Energy Specified
- NVF Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable*
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

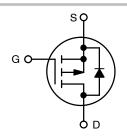
• Power Management in Portables and Battery-Powered Products, i.e.: Cellular and Cordless Telephones and PCMCIA Cards

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	-20	Vdc
Gate-to-Source Voltage	V _{GS}	±8.0	Vdc
Drain Current (Note 1) - Continuous @ T _A = 25°C - Continuous @ T _A = 70°C - Single Pulse (t _p = 10 µs)	I _D I _D	-10 -8.4 -35	Adc Apk
Total Power Dissipation @ T _A = 25°C	P _D	8.3	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
	E _{AS}	150	mJ
Thermal Resistance - Junction to Lead (Note 1) - Junction to Ambient (Note 2) - Junction to Ambient (Note 3)	$egin{array}{l} R_{ heta JL} \ R_{ heta JA} \ R_{ heta JA} \end{array}$	15 71.4 160	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Steady State.
- When surface mounted to an FR4 board using 1" pad size, (Cu. Area 1.127 sq in), Steady State.
- 3. When surface mounted to an FR4 board using minimum recommended pad size, (Cu. Area 0.412 sq in), Steady State.

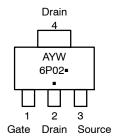


ON Semiconductor®

http://onsemi.com

-10 AMPERES -20 VOLTS

 $R_{DS(on)} = 44 \text{ m}\Omega \text{ (Typ.)}$



P-Channel MOSFET

MARKING DIAGRAM & PIN ASSIGNMENT

SOT-223 CASE 318E STYLE 3

A = Assembly Location

Y = Year

W = Work Week

6P02 = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location)

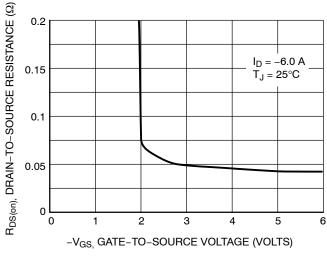
ORDERING INFORMATION

Device	Package	Shipping [†]
NTF6P02T3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NVF6P02T3G*	SOT-223 (Pb-Free)	4000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

FI FCTRICAL CHARACTERISTICS (T. = 25°C unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS		•			•	•
Drain-to-Source Breakdown Voltage (Note 4)			00	0.5		Vdc
(V _{GS} = 0 Vdc, I _D = -250 μAdc) Temperature Coefficient (Positive)			–20 –	-25 -11	-	mV/°C
Zero Gate Voltage Drain Current (V _{DS} = -20 Vdc, V _{GS} = 0 Vdc) (V _{DS} = -20 Vdc, V _{GS} = 0 Vdc, T _J = 125°C)			_ _	- -	-1.0 -10	μAdc
Gate-Body Leakage Current (V _{GS} = ± 8.0 Vdc, V _{DS} = 0 Vdc)			_	_	± 100	nAdc
ON CHARACTERISTICS (Note 4)				1		
Gate Threshold Voltage (Note 4)		V _{GS(th)}			1	Vdc
(V _{DS} = V _{GS} , I _D = -250 μAdc) Threshold Temperature Coefficient (Negative)			-0.4 -	-0.7 2.6	-1.0 -	mV/°C
Static Drain-to-Source On-Resistance (Note 4)			- - -	44 57 57	50 70 –	mΩ
Forward Transconductance (Note 4) (V _{DS} = -10 Vdc, I _D = -6.0 Adc)	9 _{fs}	-	12	-	Mhos	
DYNAMIC CHARACTERISTICS						
Input Capacitance	$(V_{DS} = -16 \text{ Vdc}, V_{GS} = 0 \text{ V},$	C _{iss}	-	900	1200	pF
Output Capacitance	f = 1.0 MHz)	C _{oss}	-	350	500	
Transfer Capacitance		C _{rss}	-	90	150	
Input Capacitance	$(V_{DS} = -10 \text{ Vdc}, V_{GS} = 0 \text{ V},$	C _{iss}	-	940	-	pF
Output Capacitance	f = 1.0 MHz)	C _{oss}	-	410	-	
Transfer Capacitance		C _{rss}	_	110	_	
SWITCHING CHARACTERISTIC	3 (Note 5)					
Turn-On Delay Time	$(V_{DD} = -5.0 \text{ Vdc}, I_D = -1.0 \text{ Adc},$	t _{d(on)}	-	7.0	12	ns
Rise Time	$V_{GS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$	t _r	-	25	45	
Turn-Off Delay Time	, ,	t _{d(off)}	-	75	125	
Fall Time		t _f	_	50	85	
Turn-On Delay Time	$(V_{DD} = -16 \text{ Vdc}, I_D = -6.0 \text{ Adc},$	t _{d(on)}	-	8.0	_	ns
Rise Time	$V_{GS} = -4.5 \text{ Vdc},$ $R_G = 2.5 \Omega)$	t _r	-	30	_	
Turn-Off Delay Time		t _{d(off)}	_	60	_	
Fall Time		t _f	-	60	_	
Gate Charge	$(V_{DS} = -16 \text{ Vdc}, I_D = -6.0 \text{ Adc}, V_{GS} = -4.5 \text{ Vdc}) \text{ (Note 4)}$	Q _T	_	15	20	nC
		Q _{gs}	-	1.7	_	
		Q_{gd}	-	6.0	_	
SOURCE-DRAIN DIODE CHARA	CTERISTICS					
Forward On-Voltage		V _{SD}	- - -	-0.82 -0.74 -0.68	-1.2 - -	Vdc
Reverse Recovery Time	$(I_S = -3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 4)}$	t _{rr}	-	42	-	ns
		t _a	_	17	-	
		t _b	-	25	_	
Reverse Recovery Stored Charge		Q _{RR}	-	0.036	_	μС


- Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL ELECTRICAL CHARACTERISTICS

12 $V_{DS} \ge -10 \text{ V}$ -ID, DRAIN CURRENT (AMPS) 10 8 6 $T_J =$ -55° 2 $T_J = 25^{\circ}C$ = 100°C 0 2 0 0.5 1.5 2.5 3 -V_{GS.} GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 2. Transfer Characteristics

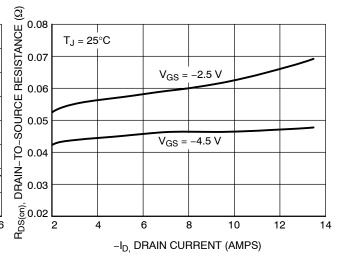
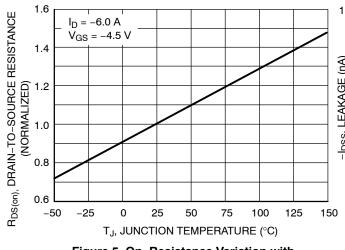



Figure 3. On-Resistance versus Gate-to-Source Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage

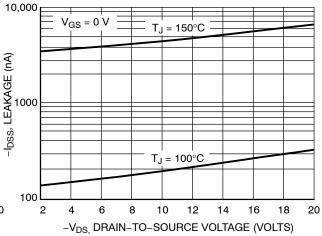


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

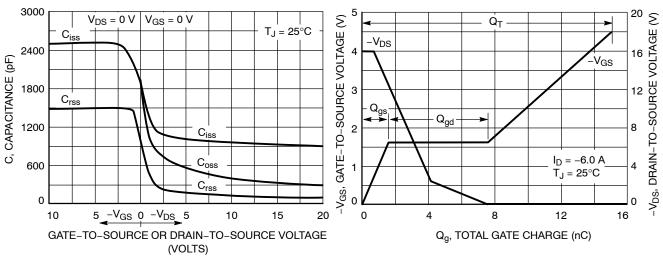


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

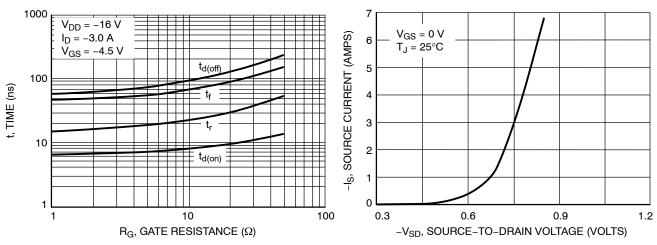


Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

TYPICAL ELECTRICAL CHARACTERISTICS

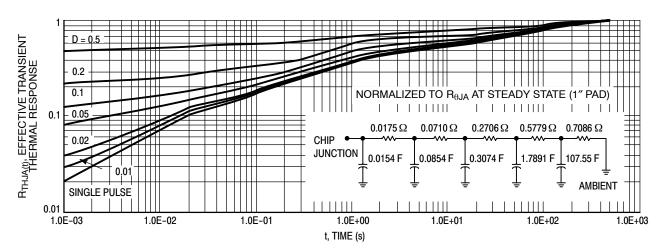
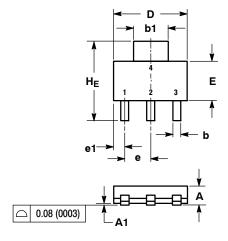
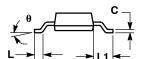




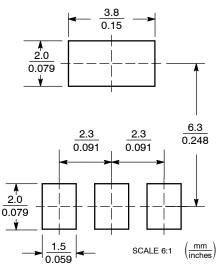
Figure 11. FET Thermal Response

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE N

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCH.


	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008	-	-
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
A	0°	_	10°	0°	-	10°

STYLE 3:

PIN 1. GATE 2. DRAIN

3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, one semiconductor and are registered traderinats of semiconductor Components mustures. Let (ScillLC) solicities with the copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent—Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for survicide implant into the policy or other applications intended for survicide implant into the policy or other applications. surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NVF6P02T3G