Power MOSFET

30 V, 69 A, Single N-Channel, SO-8 FL

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

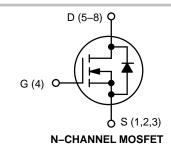
Applications

- CPU Power Delivery
- DC-DC Converters

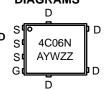
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Para	meter		Symbol	Value	Unit
Drain-to-Source Volt	age		V _{DSS}	30	V
Gate-to-Source Volta	age		V _{GS}	±20	V
Continuous Drain Current R _{0,JA}		T _A = 25°C	I _D	20.0	Α
(Note 1)		T _A = 80°C		14.9	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.55	W
Continuous Drain		T _A = 25°C	I _D	31.6	Α
Current $R_{\theta JA} \le 10 \text{ s}$ (Note 1)		T _A = 80°C		23.7	
Power Dissipation $R_{\theta JA} \le 10 \text{ s (Note 1)}$	Steady	T _A = 25°C	P _D	6.4	W
Continuous Drain	State	T _A = 25°C	I _D	11	Α
Current R _{θJA} (Note 2)		T _A = 80°C	1	8.2	
Power Dissipation $R_{\theta JA}$ (Note 2)		T _A = 25°C	P _D	0.77	W
Continuous Drain		T _C = 25°C	I _D	69	Α
Current R _{θJC} (Note 1)		T _C =80°C		52	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	P _D	30.5	W
Pulsed Drain Current	$T_A = 25^{\circ}$	$^{\circ}$ C, $t_{p} = 10 \ \mu s$	I _{DM}	166	Α
Current Limited by Pa	ackage	T _A = 25°C	I _{Dmax}	80	Α
Operating Junction ar Temperature	nd Storage		T _J , T _{STG}	–55 to +150	°C
Source Current (Body	/ Diode)		I _S	28	Α
Drain to Source DV/D	T		dV/d _t	7.0	V/ns
Single Pulse Drain-to Energy ($T_J = 25$ °C, V L = 0.1 mH, $R_{GS} = 25$	GS = 10 V,	$I_{L} = 37 A_{pk}$	E _{AS}	68	mJ
Lead Temperature for (1/8" from case for 10		Purposes	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.
- 3. Parts are 100% tested at T_J = 25°C, V_{GS} = 10 V, I_L = 27 A_{pk} , EAS = 36 mJ.

ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	$4.0~\text{m}\Omega$ @ 10 V	69 A
30 V	6.0 mΩ @ 4.5 V	09 A

A = Assembly Location
Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4C06NT1G	SO-8 FL (Pb-Free)	1500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

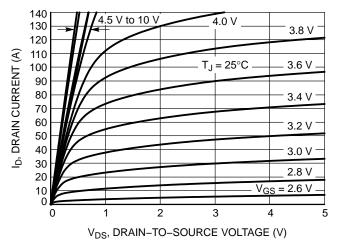
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	4.1	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	49	°C/W
Junction-to-Ambient - Steady State (Note 5)	$R_{\theta JA}$	162.3	C/VV
Junction-to-Ambient - (t ≤ 10 s) (Note 4)	$R_{\theta JA}$	19.5	

- 4. Surface–mounted on FR4 board using 1 sq-in pad, 1 oz Cu.5. Surface–mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
	OFF CHARACTERISTICS							
Transe Transcent Transc	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
$ \begin{array}{ c c c c c } \hline \text{Temperature Coefficient} & T_J & & & & & & & & \\ \hline & & & & & & & & & &$	· ·	V _{(BR)DSSt}	$V_{GS} = 0 \text{ V, } I_{D(aval)} = 12.6 \text{ A,}$ $T_{case} = 25^{\circ}\text{C, } t_{transient} = 100 \text{ ns}$		34			V
VDS = 24 V TJ = 125°C 10 10 PA		V _{(BR)DSS} / T _J				14.4		mV/°C
T _J = 125°C 10 10 10 10 10 10 10 1	Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	T _J = 25°C			1.0	^
ON CHARACTERISTICS (Note 6) Gate Threshold Voltage V _{GS} (TH) V _{GS} = V _{DS} , I _D = 250 μA 1.3 2.1 V Negative Threshold Temperature Coefficient V _{GS} (TH)/T _J 3.8 mV/F Drain-to-Source On Resistance R _{DS} (on) V _{GS} = 10 V I _D = 30 A 3.2 4.0 Forward Transconductance g _{FS} V _{DS} = 1.5 V, I _D = 15 A 58 6.0 Forward Transconductance g _{FS} V _{DS} = 1.5 V, I _D = 15 A 58 5 Gate Resistance R _G T _A = 25°C 0.3 1.0 2.0 Q CHARGES AND CAPACITANCES Input Capacitance C _{ISS} V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V 841 pF Reverse Transfer Capacitance C _{RSS} V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V, f = 1 MHz 0.023 pF Capacitance Ratio C _{RSS} C/I _{ISS} V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz 0.023 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 1.6 1.6 1.6 1.6 1.6 1.6 </td <td></td> <td></td> <td>V_{DS} = 24 V</td> <td>T_J = 125°C</td> <td></td> <td></td> <td>10</td> <td>μΑ</td>			V _{DS} = 24 V	T _J = 125°C			10	μΑ
Negative Threshold Voltage VGS(TH) VGS = VDS, ID = 250 μA 1.3 2.1 V	Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	= ±20 V			±100	nA
Negative Threshold Temperature Coefficient V _{GS} (TH)/T _J 3.8 mV/F	ON CHARACTERISTICS (Note 6)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μΑ	1.3		2.1	V
V _{GS} = 4.5 V I _D = 25 A 4.8 6.0 mS	Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.8		mV/°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		3.2	4.0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{GS} = 4.5 V	I _D = 25 A		4.8	6.0	mΩ2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Forward Transconductance	9FS	V _{DS} = 1.5 V, I _D = 15 A			58		S
$ \begin{array}{ c c c c c c } \hline \text{Input Capacitance} & C_{ISS} \\ \hline \text{Output Capacitance} & C_{OSS} \\ \hline \text{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \hline \text{Reverse Transfer Capacitance} & C_{RSS} \\ \hline \hline \text{Capacitance Ratio} & C_{RSS}/C_{ISS} \\ \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Threshold Gate Charge} & Q_{GS} \\ \hline \text{Gate-to-Drain Charge} & Q_{GD} \\ \hline \text{Gate Plateau Voltage} & V_{GP} \\ \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Turn-On Delay Time} & t_{d(OFF)} \\ \hline \text{Turn-Off Delay Time} & t_{d(OFF)} \\ \hline \end{array} $	Gate Resistance	R_{G}	T _A = 25°C		0.3	1.0	2.0	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHARGES AND CAPACITANCES							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{ISS}				1683		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{OSS}	00 1 20			841		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{RSS}				40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Capacitance Ratio	C _{RSS} /C _{ISS}				0.023		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}				11.6		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}; I_D = 30 \text{ A}$			2.6		nC
	Gate-to-Source Charge	Q_{GS}				4.7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Drain Charge	Q_{GD}				4.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Plateau Voltage	V_{GP}				3.1		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V}; I_D = 30 \text{ A}$			26		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS (Note 7)							
Turn–Off Delay Time $t_{d(OFF)} \qquad \qquad t_{OS} = 4.5 \text{ V, } V_{DS} = 15 \text{ V,} \\ I_{D} = 15 \text{ A, } R_{G} = 3.0 \Omega$	Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 15 \text{ A}, R_{G} = 3.0 \Omega$			10		
u(orr)	Rise Time	t _r				32]
Fall Time t _f 5.0	Turn-Off Delay Time	t _{d(OFF)}				18		- ns
	Fall Time	t _f				5.0		


6. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.
7. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (N	lote 7)			•	•	•	•
Turn-On Delay Time	t _{d(ON)}				8.0		
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V},$ $I_D = 15 \text{ A}, R_G = 3.0 \Omega$			28		ns
Turn-Off Delay Time	t _{d(OFF)}				24		
Fall Time	t _f				3.0		
DRAIN-SOURCE DIODE CHARACT	ERISTICS						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 V$	T _J = 25°C		0.8	1.1	.,
		$V_{GS} = 0 V$, $I_S = 10 A$	T _J = 125°C		0.63		V
Reverse Recovery Time	t _{RR}		•		34		
Charge Time	t _a	$V_{GS} = 0 \text{ V, dIS/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 30 \text{ A}$			17		ns
Discharge Time	t _b				17		
Reverse Recovery Charge	Q_{RR}				22		nC

^{6.} Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
7. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

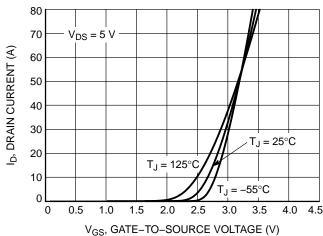


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

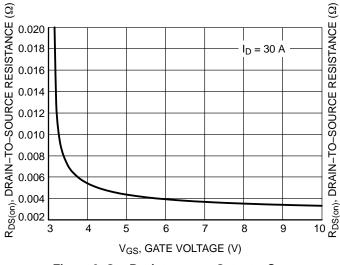


Figure 3. On–Resistance vs. Gate–to–Source Voltage

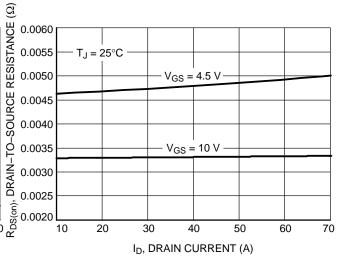


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

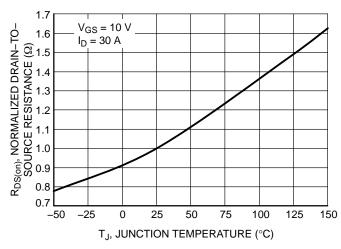


Figure 5. On–Resistance Variation with Temperature

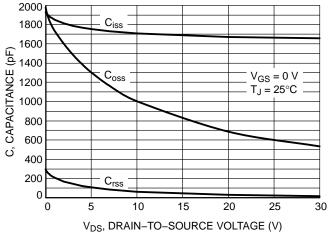


Figure 6. Capacitance Variation

TYPICAL CHARACTERISTICS

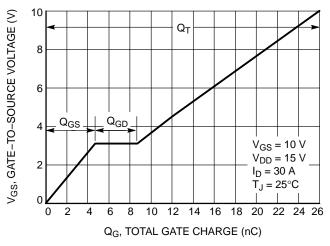


Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

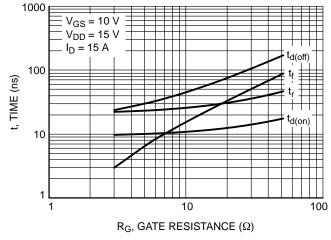


Figure 8. Resistive Switching Time Variation vs. Gate Resistance

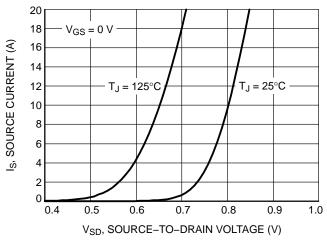


Figure 9. Diode Forward Voltage vs. Current

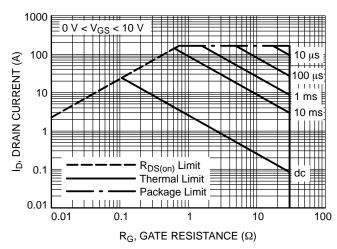


Figure 10. Maximum Rated Forward Biased Safe Operating Area

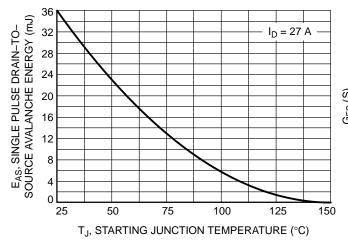


Figure 11. Maximum Avalanche Energy vs. Starting Junction Temperature

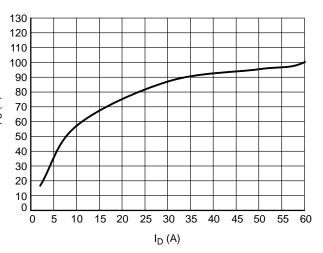


Figure 12. G_{FS} vs. I_D

TYPICAL CHARACTERISTICS

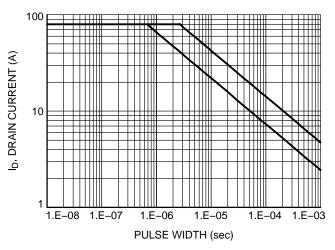


Figure 13. Avalanche Characteristics

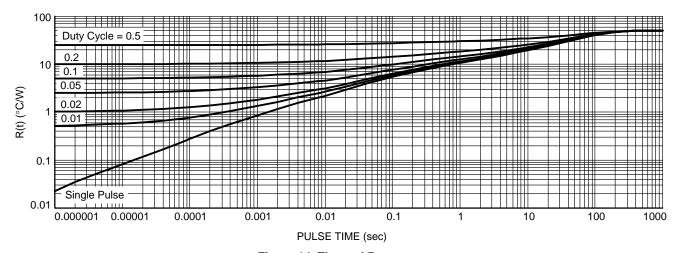
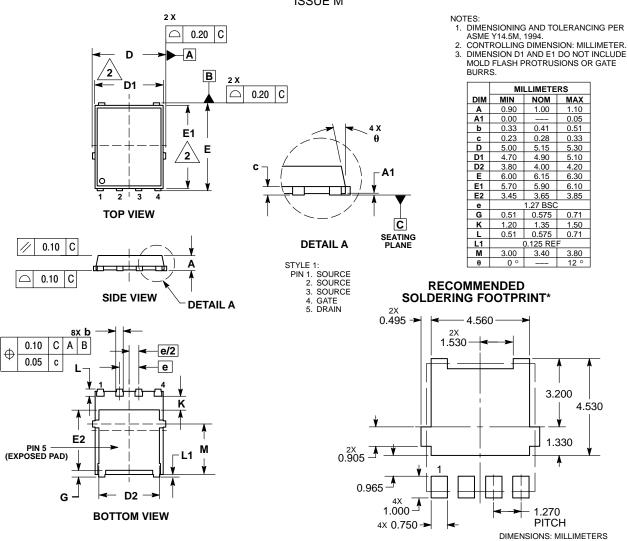



Figure 14. Thermal Response

PACKAGE DIMENSIONS

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE M

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NTMFS4C06NT1G NTMFS4C06NT3G