NTMFS5H400NL

Power MOSFET
 $40 \mathrm{~V}, 0.80 \mathrm{~m} \Omega, 330 \mathrm{~A}$ ，Single N －Channel

Features

－Small Footprint（ $5 \times 6 \mathrm{~mm}$ ）for Compact Design
－Low $\mathrm{R}_{\mathrm{DS}(\text { on })}$ to Minimize Conduction Losses
－Low Q_{G} and Capacitance to Minimize Driver Losses
－These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant
MAXIMUM RATINGS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted）

Parameter			Symbol	Value	Unit
Drain－to－Source Voltage			$\mathrm{V}_{\text {DSS }}$	40	V
Gate－to－Source Voltage			V_{GS}	± 20	V
Continuous Drain Current $\mathrm{R}_{\text {日JC }}$ （Notes 1，3）	Steady State	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	330	A
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		210	
Power Dissipation $\mathrm{R}_{\text {日JC }}$（Note 1）		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	160	W
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		66	
Continuous Drain Current $\mathrm{R}_{\text {日JA }}$ （Notes 1，2，3）	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	46	A
		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		29	
Power Dissipation $\mathrm{R}_{\text {өJA }}$（Notes 1 \＆2）		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	3.3	W
		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		1.3	
Pulsed Drain Current	$\mathrm{T}_{\mathrm{A}}=$	$\mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	IDM	900	A
Operating Junction and Storage Temperature			$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \mathrm{to} \\ & +150 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Source Current（Body Diode）			Is	180	A
Single Pulse Drain－to－Source Avalanche Energy（ $\mathrm{L}_{\mathrm{L}(\mathrm{pk})}=49 \mathrm{~A}$ ）			$\mathrm{E}_{\text {AS }}$	360	mJ
Lead Temperature for Soldering Purposes （ $1 / 8^{\prime \prime}$ from case for 10 s ）			T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device．If any of these limits are exceeded，device functionality should not be assumed，damage may occur and reliability may be affected．

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction－to－Case－Steady State	$R_{\text {日JC }}$	0.76	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction－to－Ambient－Steady State（Note 2）	$\mathrm{R}_{\text {日JA }}$	38	

1．The entire application environment impacts the thermal resistance values shown， they are not constants and are only valid for the particular conditions noted．
2．Surface－mounted on FR4 board using a $650 \mathrm{~mm}^{2}$ ， 2 oz ．Cu pad．
3．Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle．

ON Semiconductor ${ }^{\circledR}$
www．onsemi．com

$\mathbf{V}_{\text {（BR）DSS }}$	$\mathbf{R}_{\text {DS（ON）}}$ MAX	$\mathbf{I}_{\mathbf{D}}$ MAX
40 V	$0.80 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	330 A
	$1.1 \mathrm{~m} \Omega @ 4.5 \mathrm{~V}$	

G（4）

N－CHANNEL MOSFET

5H400L＝Specific Device Code

A	$=$ Assembly Location
Y	$=$ Year
W	$=$ Work Week
ZZ	$=$ Lot Traceability

ORDERING INFORMATION

See detailed ordering，marking and shipping information on page 5 of this data sheet．

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Typ	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {dSS }}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\mathrm{V}_{\left(\mathrm{BR} \mathrm{~T}_{\mathrm{JSS}}\right.}$				11.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Zero Gate Voltage Drain Current	IDSs	$V_{G S}=0 \mathrm{~V},$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$			10	
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$			250	
Gate-to-Source Leakage Current	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$,	20 V			100	nA

ON CHARACTERISTICS (Note 4)

Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		1.2		2.0	V
Threshold Temperature Coefficient	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})} / \mathrm{T}_{\mathrm{J}}$				-4.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Drain-to-Source On Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$		0.60	0.80	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$		0.85	1.1	
Forward Transconductance	g_{FS}	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$			350		S

CHARGES, CAPACITANCES \& GATE RESISTANCE

Input Capacitance	$\mathrm{C}_{\text {ISS }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$	7700	pF
Output Capacitance	Coss		1800	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {RSS }}$		87	
Output Charge	Qoss	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=20 \mathrm{~V}$	80	nC
Total Gate Charge	$\mathrm{Q}_{\mathrm{G}(\text { (TOT) }}$	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$	54	nC
Total Gate Charge	$\mathrm{Q}_{\mathrm{G}(\text { (TOT) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$	120	
Threshold Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{TH})}$	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}$	11	
Gate-to-Source Charge	Q_{GS}		20	
Gate-to-Drain Charge	Q_{GD}		13	
Plateau Voltage	V_{GP}		2.7	V

SWITCHING CHARACTERISTICS (Note 5)

Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=50 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1.0 \Omega \end{gathered}$	20	ns
Rise Time	t_{r}		140	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		51	
Fall Time	t_{f}		17	

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	$\mathrm{V}_{\text {SD }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{S}}=50 \mathrm{~A} \end{gathered}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	0.76	1.2	V
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	0.6		
Reverse Recovery Time	t_{RR}	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{dl}_{\mathrm{S}} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{\mu s}, \\ \mathrm{I}_{\mathrm{S}}=50 \mathrm{~A} \end{gathered}$		66		ns
Charge Time	t_{a}			35		
Discharge Time	t_{b}			31		
Reverse Recovery Charge	Q_{RR}			100		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Pulse Test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
5. Switching characteristics are independent of operating junction temperatures.

NTMFS5H400NL

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 5. On-Resistance Variation with Temperature

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTMFS5H400NL

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 11. Safe Operating Area

Figure 8. Gate-to-Source vs. Total Charge

$\mathrm{V}_{\text {SD }}$, SOURCE-TO-DRAIN VOLTAGE (V)
Figure 10. Diode Forward Voltage vs. Current

Figure 12. IPEAK vs. Time in Avalanche

NTMFS5H400NL

Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping †
NTMFS5H400NLT1G	5 H 400 L	DFN5 (Pb-Free)	$1500 /$ Tape \& Reel
NTMFS5H400NLT3G	$5 H 400 \mathrm{~L}$	DFN5 (Pb-Free)	$5000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTMFS5H400NL

PACKAGE DIMENSIONS

DFN5 5x6, 1.27P
(SO-8FL)
CASE 488AA
ISSUE M

STYLE 1:
PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Abstract

ON Semiconductor and the (01) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:
NTMFS5H400NLT1G

