# Very Low Forward Voltage Trench-based Schottky Rectifier

Exceptionally Low  $V_F = 0.50 \text{ V}$  at  $I_F = 5 \text{ A}$ 

### **Features**

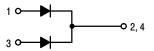
- Fine Lithography Trench-based Schottky Technology for Very Low Forward Voltage and Low Leakage
- Fast Switching with Exceptional Temperature Stability
- Low Power Loss and Lower Operating Temperature
- Higher Efficiency for Achieving Regulatory Compliance
- Low Thermal Resistance
- High Surge Capability
- These are Pb-Free Devices

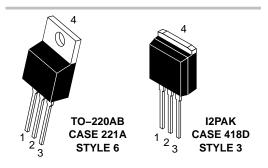
# **Typical Applications**

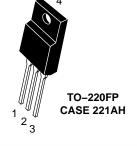
- Switching Power Supplies including Notebook / Netbook Adapters, ATX and Flat Panel Display
- High Frequency and DC-DC Converters
- Freewheeling and OR-ing diodes
- Reverse Battery Protection
- Instrumentation

# **Mechanical Characteristics**

- Case: Epoxy, Molded
- Epoxy Meets Flammability Rating UL 94-0 @ 0.125 in
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Maximum for 10 sec





ON Semiconductor®


www.onsemi.com

VERY LOW FORWARD VOLT-AGE, LOW LEAKAGE SCHOT-TKY BARRIER RECTIFIERS 30 AMPERES, 120 VOLTS

### **PIN CONNECTIONS**









## ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

# **MAXIMUM RATINGS**

| Rating                                                                                                  |                         | Symbol                                                 | Value       | Unit |
|---------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------|-------------|------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                  |                         | V <sub>RRM</sub><br>V <sub>RWM</sub><br>V <sub>R</sub> | 120         | V    |
| Average Rectified Forward Current (Rated V <sub>R</sub> , T <sub>C</sub> = 125°C)                       | Per device<br>Per diode | I <sub>F(AV)</sub>                                     | 30<br>15    | A    |
| Peak Repetitive Forward Current (Rated V <sub>R</sub> , Square Wave, 20 kHz, T <sub>C</sub> = 130°C)    | Per device<br>Per diode | I <sub>FRM</sub>                                       | 60<br>30    | A    |
| Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz) |                         | I <sub>FSM</sub>                                       | 150         | А    |
| Operating Junction Temperature                                                                          |                         | TJ                                                     | -40 to +150 | °C   |
| Storage Temperature                                                                                     |                         | T <sub>stg</sub>                                       | -40 to +150 | °C   |
| Voltage Rate of Change (Rated V <sub>R</sub> )                                                          |                         | dv/dt                                                  | 10,000      | V/μs |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

# THERMAL CHARACTERISTICS

| Rating                                                                          | Symbol                        | NTST30120CTG<br>NTSB30120CT-1G | NTSB30120CTG | NTSJ30120CTG | Unit |
|---------------------------------------------------------------------------------|-------------------------------|--------------------------------|--------------|--------------|------|
| Maximum Thermal Resistance per Diode<br>Junction-to-Case<br>Junction-to-Ambient | $R_{	heta JC} \ R_{	heta JA}$ | 2.5<br>70                      | 1.14<br>46.6 | 4.05<br>105  | °C/W |

# **ELECTRICAL CHARACTERISTICS** (Per Leg unless otherwise noted)

| Rating                                             | Symbol         | Тур  | Max  | Unit |
|----------------------------------------------------|----------------|------|------|------|
| Maximum Instantaneous Forward Voltage (Note 1)     | V <sub>F</sub> |      |      | V    |
| $(I_F = 5 \text{ A}, T_J = 25^{\circ}\text{C})$    |                | 0.56 | _    |      |
| $(I_F = 7.5 \text{ A}, T_J = 25^{\circ}\text{C})$  |                | 0.71 | _    |      |
| $(I_F = 15 \text{ A}, T_J = 25^{\circ}\text{C})$   |                | 0.90 | 1.08 |      |
| $(I_F = 5 \text{ A}, T_A = 125^{\circ}\text{C})$   |                | 0.50 | _    |      |
| $(I_F = 7.5 \text{ A}, T_J = 125^{\circ}\text{C})$ |                | 0.60 | _    |      |
| (I <sub>F</sub> = 15 A, T <sub>J</sub> = 125°C)    |                | 0.68 | 0.76 |      |
| Maximum Instantaneous Reverse Current (Note 1)     | I <sub>R</sub> |      |      |      |
| $(V_R = 90 \text{ V}, T_J = 25^{\circ}\text{C})$   |                | 16   | _    | μΑ   |
| $(V_R = 90 \text{ V}, T_J = 125^{\circ}\text{C})$  |                | 11   | _    | mA   |
| (Rated dc Voltage, T <sub>J</sub> = 25°C)          |                | _    | 800  | μΑ   |
| (Rated dc Voltage, T <sub>J</sub> = 125°C)         |                | 25   | 100  | mΑ   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Pulse Test: Pulse Width =  $300 \,\mu s$ , Duty Cycle  $\leq 2.0\%$ 

# **TYPICAL CHARACTERISITICS**

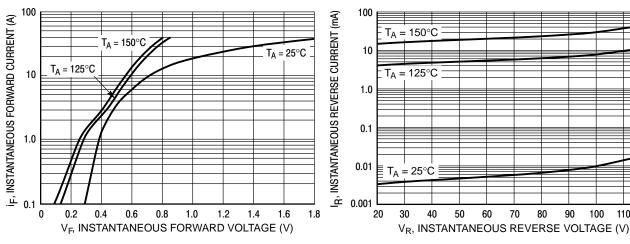
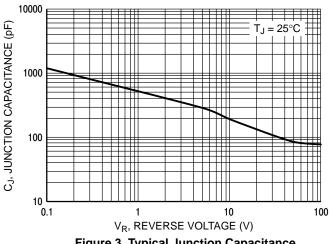




Figure 1. Typical Instantaneous Forward Characteristics

**Figure 2. Typical Reverse Current** Characteristics

110

120



**Figure 3. Typical Junction Capacitance** 

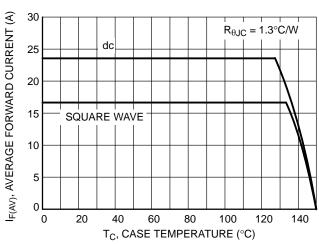
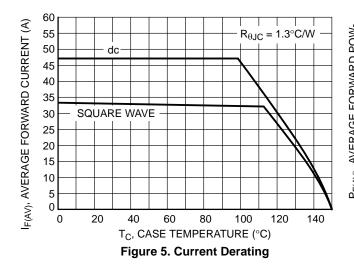




Figure 4. Current Derating per Leg



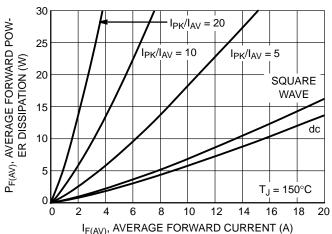



Figure 6. Forward Power Dissipation

# **TYPICAL CHARACTERISITICS**

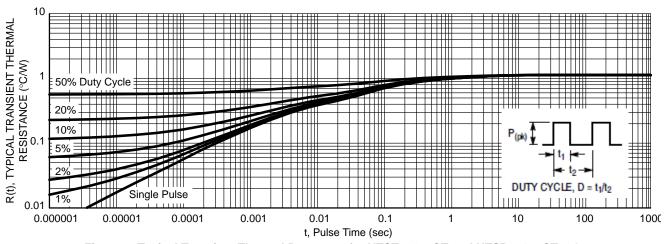



Figure 7. Typical Transient Thermal Response for NTST30120CT and NTSB30120CT-1G

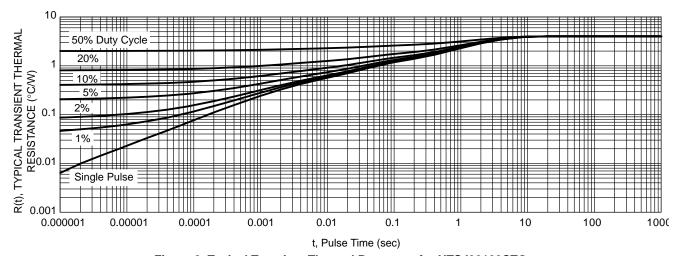
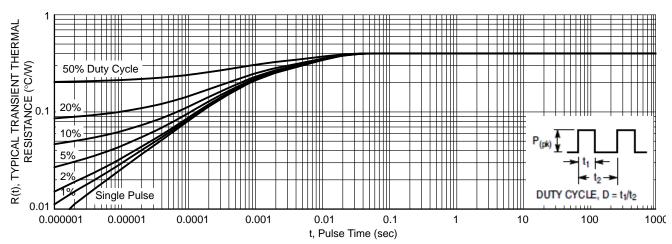
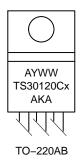
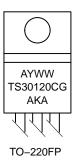


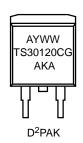

Figure 8. Typical Transient Thermal Response for NTSJ30120CTG





Figure 9. Typical Transient Thermal Response for NTSB30120CTG


# **ORDERING INFORMATION**

| Device         | Package                         | Shipping <sup>†</sup> |
|----------------|---------------------------------|-----------------------|
| NTST30120CTG   | TO-220AB<br>(Pb-Free)           | 50 Units / Rail       |
| NTSJ30120CTG   | TO-220FP<br>(Halide-Free)       | 50 Units / Rail       |
| NTSB30120CT-1G | I <sup>2</sup> PAK<br>(Pb-Free) | 50 Units / Rail       |
| NTSB30120CTG   | D <sup>2</sup> PAK<br>(Pb-Free) | 50 Units / Rail       |
| NTSB30120CTT4G | D <sup>2</sup> PAK<br>(Pb-Free) | 800 / Tape & Reel     |


<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

# **MARKING DIAGRAMS**





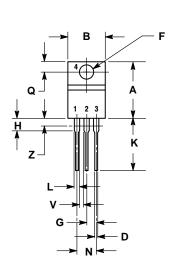


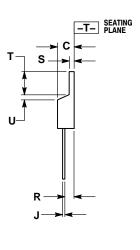


A = Assembly Location

Y = Year

WW = Work Week
AKA = Polarity Designator


x = G or H


G = Pb-Free Package

H = Halide-Free Package

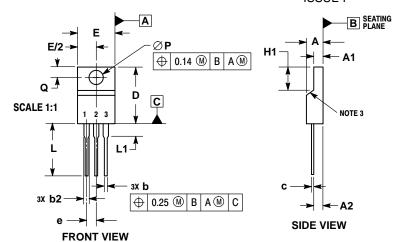
# **PACKAGE DIMENSIONS**

TO-220 CASE 221A-09 **ISSUE AH** 

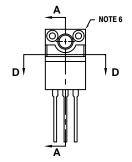


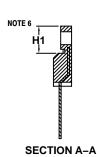


- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.
  3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.


|     | INCHES |       | MILLIN | IETERS |
|-----|--------|-------|--------|--------|
| DIM | MIN    | MAX   | MIN    | MAX    |
| Α   | 0.570  | 0.620 | 14.48  | 15.75  |
| В   | 0.380  | 0.415 | 9.66   | 10.53  |
| C   | 0.160  | 0.190 | 4.07   | 4.83   |
| D   | 0.025  | 0.038 | 0.64   | 0.96   |
| F   | 0.142  | 0.161 | 3.61   | 4.09   |
| G   | 0.095  | 0.105 | 2.42   | 2.66   |
| Н   | 0.110  | 0.161 | 2.80   | 4.10   |
| J   | 0.014  | 0.024 | 0.36   | 0.61   |
| K   | 0.500  | 0.562 | 12.70  | 14.27  |
| L   | 0.045  | 0.060 | 1.15   | 1.52   |
| N   | 0.190  | 0.210 | 4.83   | 5.33   |
| Q   | 0.100  | 0.120 | 2.54   | 3.04   |
| R   | 0.080  | 0.110 | 2.04   | 2.79   |
| S   | 0.045  | 0.055 | 1.15   | 1.39   |
| T   | 0.235  | 0.255 | 5.97   | 6.47   |
| U   | 0.000  | 0.050 | 0.00   | 1.27   |
| ٧   | 0.045  |       | 1.15   |        |
| Z   |        | 0.080 |        | 2.04   |

STYLE 6:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. CATHODE


# **PACKAGE DIMENSIONS**


# TO-220 FULLPACK, 3-LEAD

CASE 221AH ISSUE F

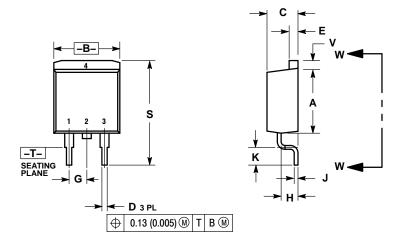






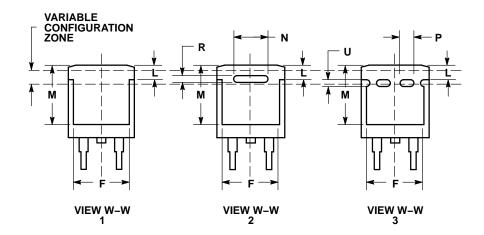


**ALTERNATE CONSTRUCTION** 


- DIMENSIONING AND TOLERANCING PER ASME

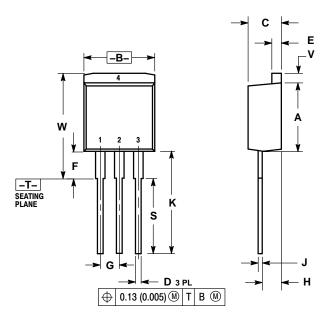
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
  2. CONTROLLING DIMENSION: MILLIMETERS.
  3. CONTOUR UNCONTROLLED IN THIS AREA.
  4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH AND GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE TO BE MEASURED AT OUTERMOST EXTREME OF THE PLASTIC BODY.
  5. DIMENSION b2 DOES NOT INCLUDE DAMBAR PROTRUSION.
- DIMENSION 02 DUES NOT INCLUDE DAMBAR PROTHOSION.
  LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.00.
   CONTOURS AND FEATURES OF THE MOLDED PACKAGE BODY MAY VARY WITHIN THE ENVELOP DEFINED BY DIMENSIONS AT AND H1 FOR MANUFACTURING PURPOSES.

|     | MILLIMETERS |       |  |  |
|-----|-------------|-------|--|--|
| DIM | MIN         | MAX   |  |  |
| Α   | 4.30        | 4.70  |  |  |
| A1  | 2.50        | 2.90  |  |  |
| A2  | 2.50        | 2.90  |  |  |
| b   | 0.54        | 0.84  |  |  |
| b2  | 1.10        | 1.40  |  |  |
| С   | 0.49        | 0.79  |  |  |
| D   | 14.70       | 15.30 |  |  |
| Е   | 9.70        | 10.30 |  |  |
| е   | 2.54        | BSC   |  |  |
| H1  | 6.60        | 7.10  |  |  |
| L   | 12.50       | 14.73 |  |  |
| L1  |             | 2.80  |  |  |
| Р   | 3.00        | 3.40  |  |  |
| œ   | 2.80        | 3.20  |  |  |


# **PACKAGE DIMENSIONS**

D<sup>2</sup>PAK 3 CASE 418B-04 ISSUE K




- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.
  3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

|     | INCHES    |       | MILLIMETER |       |
|-----|-----------|-------|------------|-------|
| DIM | MIN       | MAX   | MIN        | MAX   |
| Α   | 0.340     | 0.380 | 8.64       | 9.65  |
| В   | 0.380     | 0.405 | 9.65       | 10.29 |
| C   | 0.160     | 0.190 | 4.06       | 4.83  |
| D   | 0.020     | 0.035 | 0.51       | 0.89  |
| Е   | 0.045     | 0.055 | 1.14       | 1.40  |
| F   | 0.310     | 0.350 | 7.87       | 8.89  |
| G   | 0.100     | BSC   | 2.54 BSC   |       |
| Н   | 0.080     | 0.110 | 2.03       | 2.79  |
| 7   | 0.018     | 0.025 | 0.46       | 0.64  |
| K   | 0.090     | 0.110 | 2.29       | 2.79  |
| L   | 0.052     | 0.072 | 1.32       | 1.83  |
| М   | 0.280     | 0.320 | 7.11       | 8.13  |
| N   | 0.197 REF |       | 5.00 REF   |       |
| Ρ   | 0.079 REF |       | 2.00 REF   |       |
| R   | 0.039 REF |       | 0.99 REF   |       |
| S   | 0.575     | 0.625 | 14.60      | 15.88 |
| V   | 0.045     | 0.055 | 1.14       | 1.40  |



## PACKAGE DIMENSIONS

# I<sup>2</sup>PAK (TO-262) CASE 418D ISSUE D



- 1. DIMENSIONING AND TOLERANCING PER ANSI
- 2. CONTROLLING DIMENSION: INCH.

|     | INCHES    |       | MILLIN   | IETERS |
|-----|-----------|-------|----------|--------|
| DIM | MIN       | MAX   | MIN      | MAX    |
| Α   | 0.335     | 0.380 | 8.51     | 9.65   |
| В   | 0.380     | 0.406 | 9.65     | 10.31  |
| C   | 0.160     | 0.185 | 4.06     | 4.70   |
| D   | 0.026     | 0.035 | 0.66     | 0.89   |
| E   | 0.045     | 0.055 | 1.14     | 1.40   |
| F   | 0.122 REF |       | 3.10 REF |        |
| G   | 0.100 BSC |       | 2.54 BSC |        |
| Н   | 0.094     | 0.110 | 2.39     | 2.79   |
| J   | 0.013     | 0.025 | 0.33     | 0.64   |
| K   | 0.500     | 0.562 | 12.70    | 14.27  |
| S   | 0.390 REF |       | 9.90     | REF    |
| ٧   | 0.045     | 0.070 | 1.14     | 1.78   |
| W   | 0.522     | 0.551 | 13.25    | 14.00  |

## STYLE 3:

- PIN 1. ANODE 2. CATHODE
  - ANODE
  - 4. CATHODE

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

# **PUBLICATION ORDERING INFORMATION**

### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# **ON Semiconductor:**

NTSB30120CT-1G NTSB30120CTG NTSB30120CTT4G NTSJ30120CTG NTST30120CTG