NTZD3152P

Small Signal MOSFET

-20 V, -430 mA, Dual P-Channel with ESD Protection, SOT-563

Features

- Low R_{DS(on)} Improving System Efficiency
- Low Threshold Voltage
- ESD Protected Gate
- Small Footprint 1.6 x 1.6 mm
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Load/Power Switches
- Power Supply Converter Circuits
- Battery Management
- Cell Phones, Digital Cameras, PDAs, Pagers, etc.

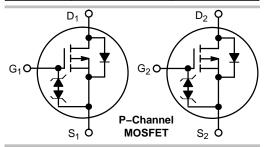
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted.)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-20	V
Gate-to-Source Voltage			V_{GS}	±6.0	V
Continuous Drain Current	Steady T _A = 25°C		1-	-430	mA
(Note 1)	State	$T_A = 85^{\circ}C$	I _D	-310	
Power Dissipation (Note 1)	Steady State		P _D	250	mW
Continuous Drain Current	t ≤ 5 s	$T_A = 25^{\circ}C$		-455	mA
(Note 1)	1 ≥ 3 5	$T_A = 85^{\circ}C$	I _D	-328	
Power Dissipation (Note 1)	t ≤ 5 s		P _D	280	mW
Pulsed Drain Current	t _p =	10 μs	I_{DM}	-750	mA
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode)			I _S	-350	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	500	°C/W
Junction–to–Ambient – $t \le 5$ s (Note 1)	IVBJA	447	

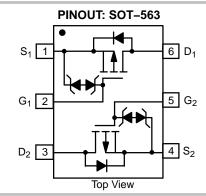
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface mounted on FR4 board using 1 in. sq. pad size (Cu. area = 1.127 in. sq. [1 oz.] including traces).

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS} R _{DS(on)} Typ		I _D Max	
-20 V	0.5 Ω @ -4.5 V		
	0.6 Ω @ -2.5 V	–430 mA	
	1.0 Ω @ -1.8 V		



SOT-563-6

CASE 463A

MARKING DIAGRAM

TU = Specific Device Code = Date Code Μ = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTZD3152PT1G	SOT-563	4000 / Tono & Book
NTZD3152PT1H	(Pb-Free)	4000 / Tape & Reel
NTZD3152PT5H	SOT-563 (Pb-Free)	8000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTZD3152P

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted.)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				18		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V},$ $V_{DS} = -16 \text{ V}$	T _J = 25°C			-1.0	μΑ
		$V_{DS} = -16 \text{ V}$	T _J = 125°C			-2.0]
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	_S = ±4.5 V			±2.0	μΑ
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= -250 μA	-0.45		-1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-1.9		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -430 \text{ mA}$			0.5	0.9	Ω
		$V_{GS} = -2.5 \text{ V}, I_{E}$	o = −300 mA		0.6	1.2	1
		$V_{GS} = -1.8 \text{ V}, I_{E}$	o = −150 mA		1.0	2.0	1
Forward Transconductance	9FS	$V_{DS} = -10 \text{ V}, I_{D} = -430 \text{ mA}$			1.0		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				105	175	pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = V_{DS} = -$	1.0 MHz, 16 V		15	30	-
Reverse Transfer Capacitance	C _{RSS}	V DS −	10 1		10	20	
Total Gate Charge	Q _{G(TOT)}				1.7	2.5	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V, V}$	ns = -10 V.		0.1		1
Gate-to-Source Charge	Q _{GS}	I _D = -21	5 mA		0.3		1
Gate-to-Drain Charge	Q_{GD}				0.4		1
SWITCHING CHARACTERISTICS (Not	e 3)						
Turn-On Delay Time	t _{d(on)}				10		ns
Rise Time	t _r	V_{GS} = -4.5 V, V_{DD} = -10 V, I_{D} = -215 mA, R_{G} = 10 Ω			12		1
Turn-Off Delay Time	t _{d(off)}				35		1
Fall Time	t _f				19		1
DRAIN-SOURCE DIODE CHARACTER	RISTICS					-	
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V},$ $I_{S} = -350 \text{ mA}$	T _J = 25°C		-0.8	-1.2	V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{SD}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = -350 \text{ mA}$			13		ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted)

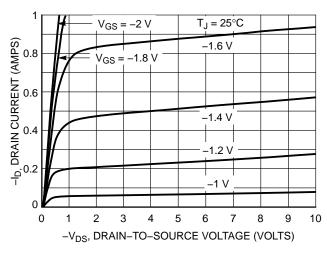


Figure 1. On-Region Characteristics

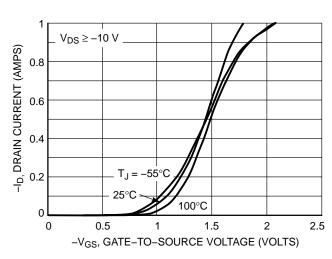


Figure 2. Transfer Characteristics

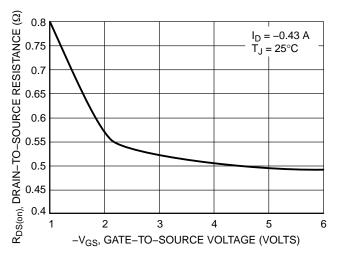


Figure 3. On-Resistance vs. Gate-to-Source Voltage

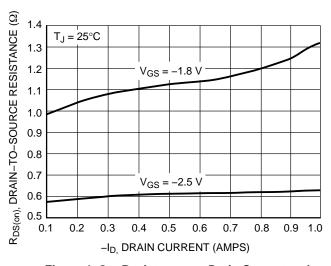


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

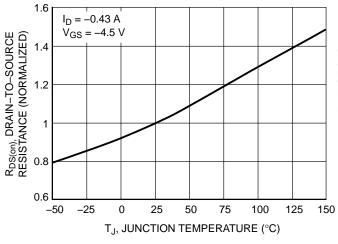


Figure 5. On–Resistance Variation with Temperature

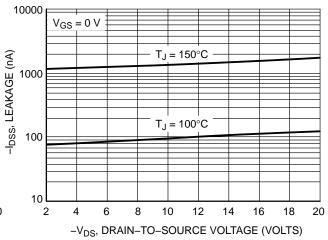


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

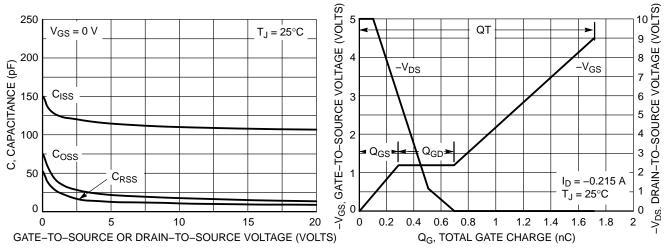


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

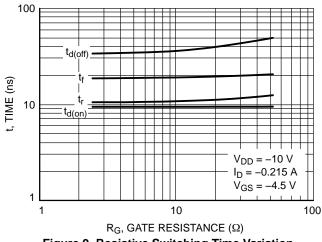


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

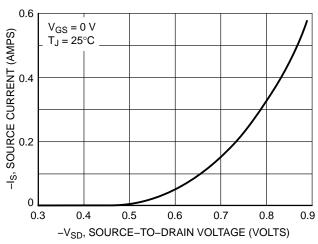


Figure 10. Diode Forward Voltage vs. Current

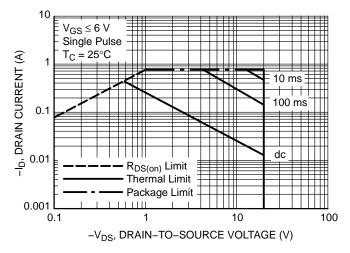
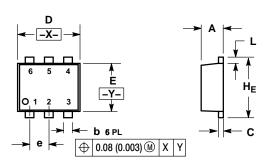
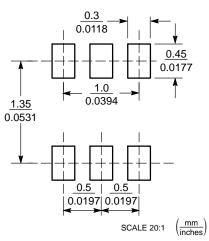



Figure 11. Safe Operating Area

NTZD3152P

PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A ISSUE G


NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14 5M 1982
- Y14.5M, 1982.

 CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.021	0.023
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.12	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.062	0.066
Е	1.10	1.20	1.30	0.043	0.047	0.051
е	0.5 BSC			(0.02 BS0	
L	0.10	0.20	0.30	0.004	0.008	0.012
He	1.50	1.60	1.70	0.059	0.062	0.066

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnif

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NTZD3152PT1G