NUP3112UPMU, SZNUP3112UPMU

Quad Transient Voltage Suppressor Array

ESD Protection Diodes with Ultra-Low (0.7 pF) Capacitance

The three-line voltage transient suppressor array is designed to protect voltage-sensitive components that require ultra-low capacitance from ESD and transient voltage events. This device features a common anode design which protects three independent high speed data lines and a V_{CC} power line in a single six-lead UDFN low profile package.

Excellent clamping capability, low capacitance, low leakage, and fast response time make these parts ideal for ESD protection on designs where board space is at a premium. Because of its low capacitance, it is suited for use in high frequency designs such as a USB 2.0 high speed.

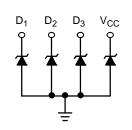
Features

- Low Capacitance Data Lines (0.7 pF Typical)
- Protects up to Three Data Lines Plus a V_{CC} Pin
- UDFN Package, 1.6 x 1.6 mm
- Low Profile of 0.50 mm for Ultra Slim Design
- ESD Rating: IEC61000-4-2: Level 4 – Contact (14 kV)
- V_{CC} Pin = 15 V Protection
- D_1 , D_2 , and D_3 Pins = 5.2 V Minimum Protection
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and **PPAP** Capable
- This is a Pb–Free Device

Typical Applications

- USB 2.0 High–Speed Interface
- Cell Phones
- MP3 Players
- SIM Card Protection

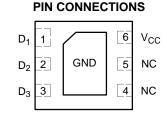
MAXIMUM RATINGS (T_J = 25°C, unless otherwise specified)


Symbol	Rating	Value	Unit	
TJ	Operating Junction Temperature Range	-40 to 125	°C	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
ΤL	Lead Solder Temperature – Maximum (10 seconds)	260	°C	
ESD	IEC 61000-4-2 Contact	14000	V	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com


MARKING DIAGRAM

⁼ Date Code

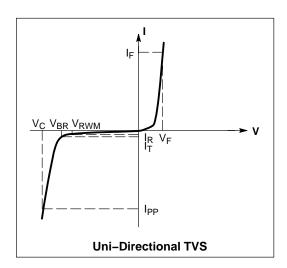
Μ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

De	evice	Package	Shipping [†]
NUP3112	2UPMUTAG	UDFN6 (Pb–Free)	3000 / Tape & Reel
SZNUP3	112UPMUTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

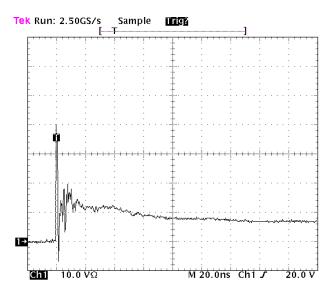

© Semiconductor Components Industries, LLC, 2014 April, 2014- Rev. 1

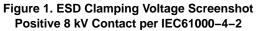
NUP3112UPMU, SZNUP3112UPMU

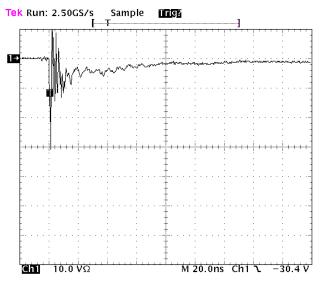
ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter		
I _{PP}	Maximum Reverse Peak Pulse Current		
V _C	Clamping Voltage @ IPP		
V _{RWM}	Working Peak Reverse Voltage		
I _R	Maximum Reverse Leakage Current @ V _{RWM}		
V _{BR}	Breakdown Voltage @ I _T		
Ι _Τ	Test Current		
١ _F	Forward Current		
V _F	Forward Voltage @ I _F		
P _{pk}	Peak Power Dissipation		
С	Max. Capacitance @ $V_R = 0$ and f = 1.0 MHz		




ELECTRICAL CHARACTERISTICS (T_J = 25° C, unless otherwise specified)


Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Reverse Working Voltage $(D_1, D_2, and D_3)$	(Note 1)	V _{RWM1}	-	-	4.0	V
Reverse Working Voltage (V1)	(Note 1)	V _{RWM2}	-	-	12	V
Breakdown Voltage (D ₁ , D ₂ , and D ₃)	I _T = 1 mA, (Note 2)	V _{BR}	5.2	5.5	-	V
Breakdown Voltage (V _{CC})	I _T = 5 mA, (Note 2)	V _{BR2}	13.5	15	15.8	V
Reverse Leakage Current $(D_1, D_2, and D_3)$	@ V _{RWM}	I _R	-	-	1.0	μA
Reverse Leakage Current (V _{CC})	@ V _{RWM2}	I _R	-	-	1.0	μΑ
Capacitance (D ₁ , D ₂ , and D ₃)	$V_R = 0 V$, f = 1 MHz (Line to GND)	CJ	-	0.7	0.9	pF

1. TVS devices are normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal or greater than the DC or continuous peak operating voltage level.

2. V_{BR} is measured at pulse test current I_T.

NUP3112UPMU, SZNUP3112UPMU

IEC 61000-4-2 Spec.

Level	Test Volt- age (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

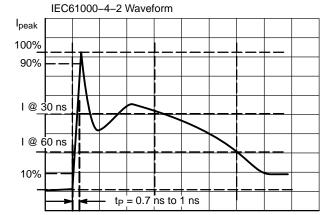
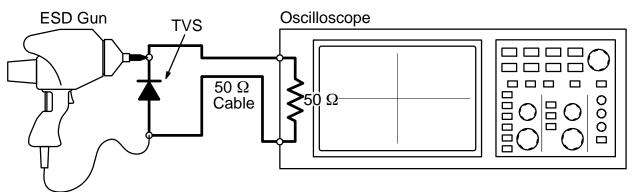
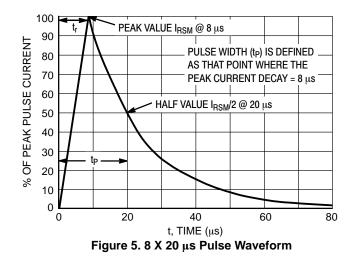
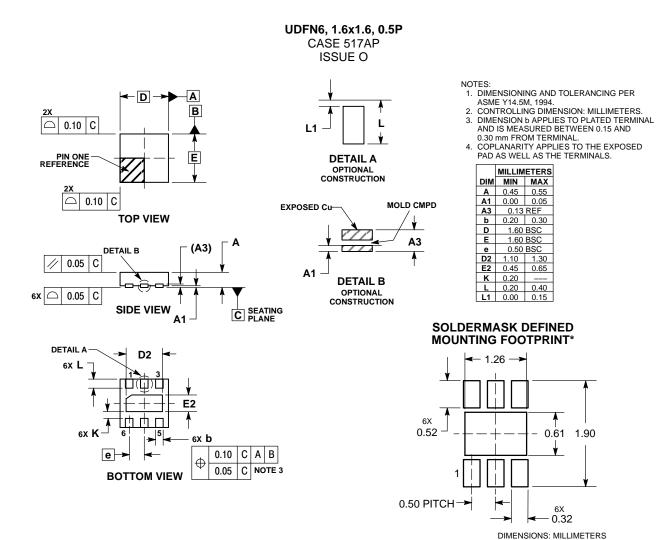


Figure 3. IEC61000-4-2 Spec




Figure 4. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D – Interpretation of Datasheet Parameters for ESD Devices.


ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000–4–2 waveform. Since the IEC61000–4–2 was written as a pass/fail spec for larger

systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death massociated with such unintended or unauthorized applicatio copyright as negligent regarding the design or manufacture of the pert. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright awards and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NUP3112UPMUTAG