Power MOSFET

60 V, 13 m Ω , 58 A, Dual N–Channel Logic Level, Dual SO–8FL

Features

- Small Footprint (5x6 mm) for Compact Designs
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- NVMFD5873NLWF Wettable Flanks Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- This is a Pb-Free Device

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

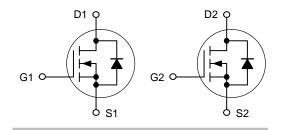
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	60	V
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain Current R _{ΨJ-mb} (Notes 1,	Steady State	$T_{mb} = 25^{\circ}C$	I _D	58	Α
2, 3, 4)		T _{mb} = 100°C		41	
Power Dissipation		$T_{mb} = 25^{\circ}C$	P_{D}	107	W
$R_{\Psi J-mb}$ (Notes 1, 2, 3)		T _{mb} = 100°C		54	
Continuous Drain Current R _{0,JA} (Notes 1, 3	Steady	$T_A = 25^{\circ}C$	I _D	10	Α
& 4)		T _A = 100°C		7.0	
Power Dissipation	State	T _A = 25°C	P_{D}	3.1	W
R _{θJA} (Notes 1 & 3)		T _A = 100°C		1.6	
Pulsed Drain Current	$T_A = 25$	°C, t _p = 10 μs	I _{DM}	190	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
			I _S	58	Α
			E _{AS}	40	mJ
			T_L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Mounting Board (top) - Steady State (Notes 2, 3)	$R_{\Psi J-mb}$	1.4	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	48	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 4. Maximum current for pulses as long as 1 second are higher but are dependent on pulse duration and duty cycle.



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX		
60 V	13 mΩ @ 10 V	58 A		
00 V	16.5 mΩ @ 4.5 V	30 A		

Dual N-Channel

5873NL = Specific Device Code for NVMFD5873NL

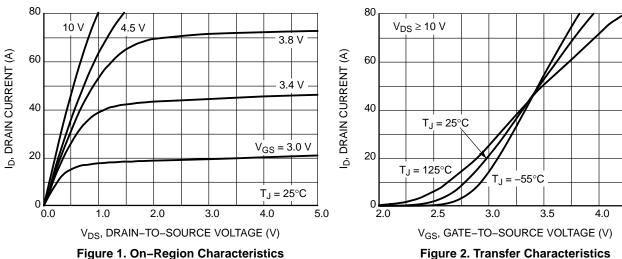
5873LW = Specific Device Code for NVMFD5873NLWF

A = Assembly Location

Y = Year W = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NVMFD5873NLT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NVMFD5873NLWFT1G	DFN8 (Pb-Free)	1500 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS			•		•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				54.9		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 60 V	$T_J = 25^{\circ}C$			1.0	μΑ
			T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} :	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	250 μΑ	1.5		2.5	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-5.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	= 15 A		10.7	13	mΩ
		$V_{GS} = 4.5 \text{ V}, I_D$	= 10 A		13.6	16.5	
Forward Transconductance	9 _{FS}	$V_{DS} = 5.0 \text{ V}, I_{D}$	= 15 A		15		S
CHARGES AND CAPACITANCES			•			•	
Input Capacitance	C _{iss}				1560		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1.0 MH:	z, V _{DS} = 25 V		145		1
Reverse Transfer Capacitance	C _{rss}				98		1
Total Gate Charge	Q _{G(TOT)}				16.5		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V, } V_{DS}$	= 48 V,		1.3		1
Gate-to-Source Charge	Q_{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 48 \text{ V},$ $I_{D} = 15 \text{ A}$			4.0		1
Gate-to-Drain Charge	Q_GD		-		8.8		1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 48V, I _D = 15 A			30.5		nC
SWITCHING CHARACTERISTICS (No	ote 6)						
Turn-On Delay Time	t _{d(on)}				10.8		ns
Rise Time	t _r	$V_{GS} = 4.5 \text{ V, } V_{DS}$	= 48 V,		51		1
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = 4.5 \text{ V}, V_{DS}$ $I_{D} = 15 \text{ A}, R_{G} =$: 2.5 Ω		21		7
Fall Time	t _f		-		42.6		
Turn-On Delay Time	t _{d(on)}				9.5		ns
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 48 \text{ V},$ $I_{D} = 15 \text{ A}, R_{G} = 2.5 \Omega$			13		
Turn-Off Delay Time	t _{d(off)}				25		1
Fall Time	t _f				6.6		1
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 V$	$T_J = 25^{\circ}C$		0.8	1.0	V
		$V_{GS} = 0 \text{ V},$ $I_{S} = 15 \text{ A}$	T _J = 125°C		0.7		7
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } d_{1S}/d_t = 100 \text{ A}/\mu\text{s,}$ $I_S = 15 \text{ A}$			22.4		ns
Charge Time	t _a				14.5		1
Discharge Time	t _b				9.0		1
Reverse Recovery Charge	Q _{RR}				18		nC

^{5.} Pulse Test: pulse width = 300 μs, duty cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

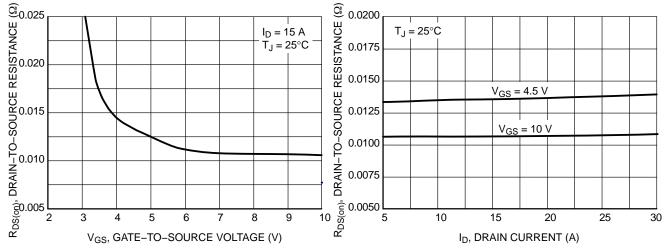


Figure 3. On-Resistance vs. V_{GS}

Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

4.5

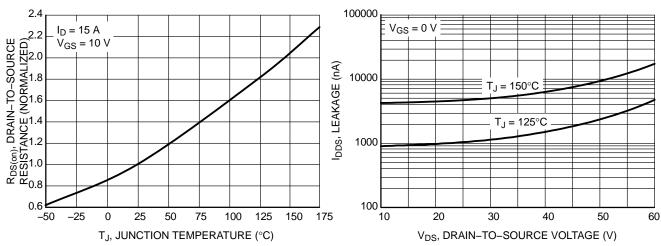


Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

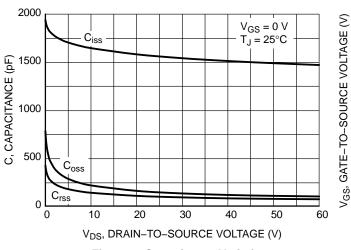


Figure 7. Capacitance Variation

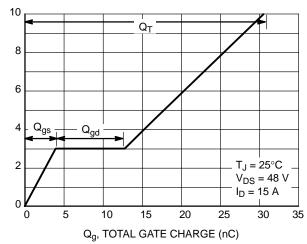


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

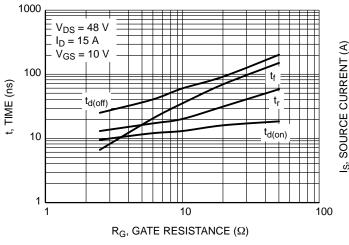


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

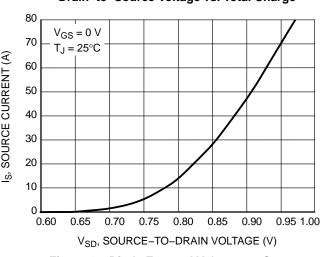


Figure 10. Diode Forward Voltage vs. Current

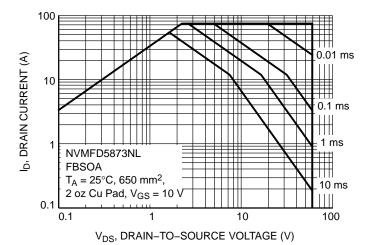


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

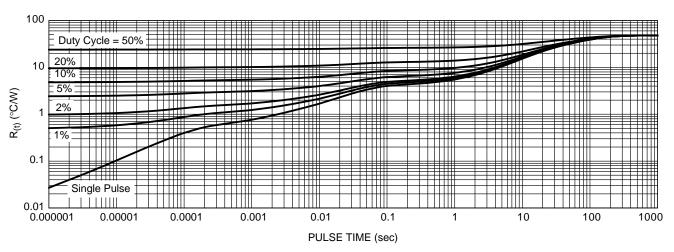
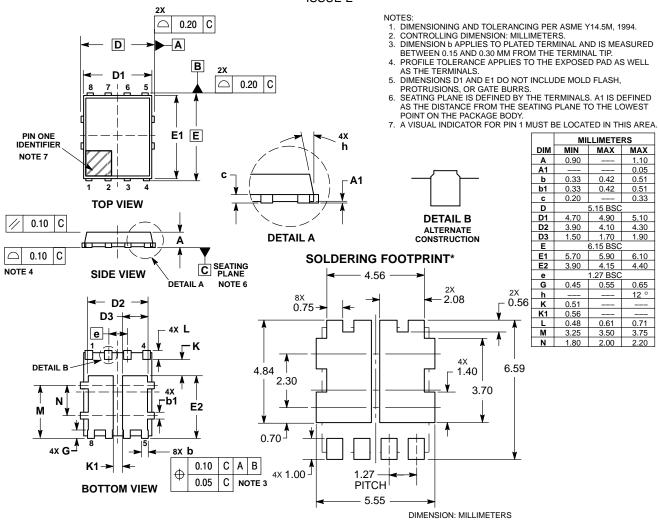



Figure 12. Thermal Response

PACKAGE DIMENSIONS

DFN8 5x6, 1.27P Dual Flag (SO8FL-Dual)

CASE 506BT

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC as negarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative A

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NVMFD5873NLT1G