Power MOSFET

30 V, 1.7 m Ω , 159 A, Single N–Channel Logic Level, SO–8FL

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low QG and Capacitance to Minimize Driver Losses
- NVMFS4C03NWF Wettable Flanks Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

	(J -		,		r
Parameter		Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	30	V	
Gate-to-Source Voltage		V _{GS}	±20	V	
$\begin{array}{l} \mbox{Continuous Drain Current $R_{\theta JC}$ (Notes 1, 2, 3)} \end{array}$	Steady State	T _C = 25°C	I _D	159	A
Power Dissipation $R_{\theta JC}$ (Notes 1, 2)	Slate	$T_C = 25^{\circ}C$	PD	77	W
Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2, 3)	Steady State	T _A = 25°C	ID	34.9	A
Power Dissipation $R_{\theta JA}$ (Notes 1, 2)	Slale	$T_A = 25^{\circ}C$	PD	3.71	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	900	А
Operating Junction and Storage Temperature		T _J , T _{stg}	-55 to 175	°C	
Source Current (Body Diode)		۱ _S	64	А	
Single Pulse Drain–to–Source Avalanche Energy (I _{L(pk)} = 11 A)		E _{AS}	549	mJ	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

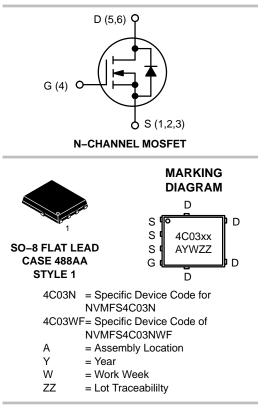
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	R_{\thetaJC}	1.95	°C/W
Junction-to-Ambient - Steady State (Note 2)	R_{\thetaJA}	40	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.


3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

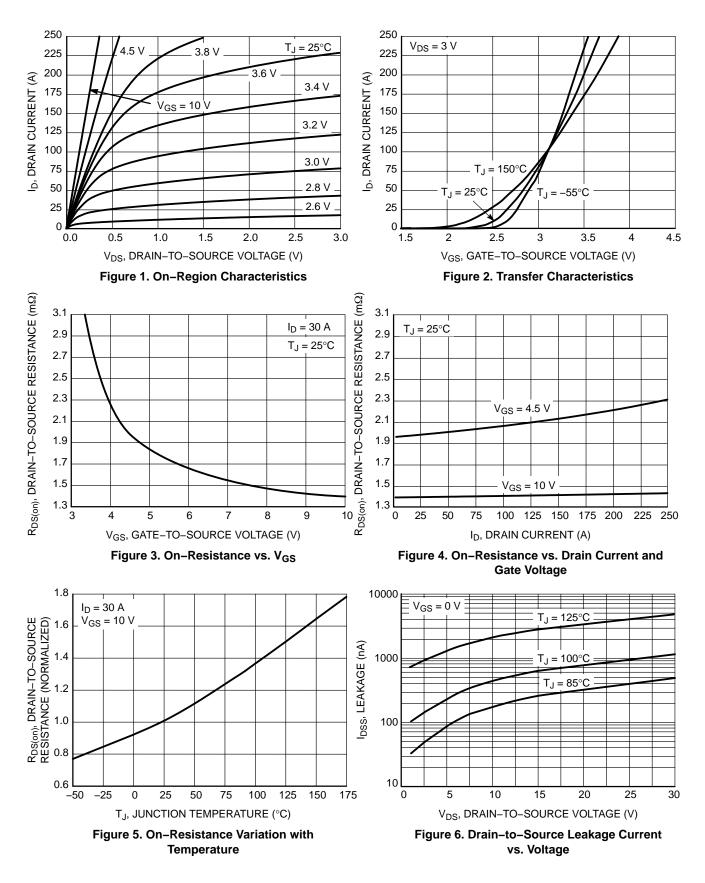
ON Semiconductor®

www.onsemi.com

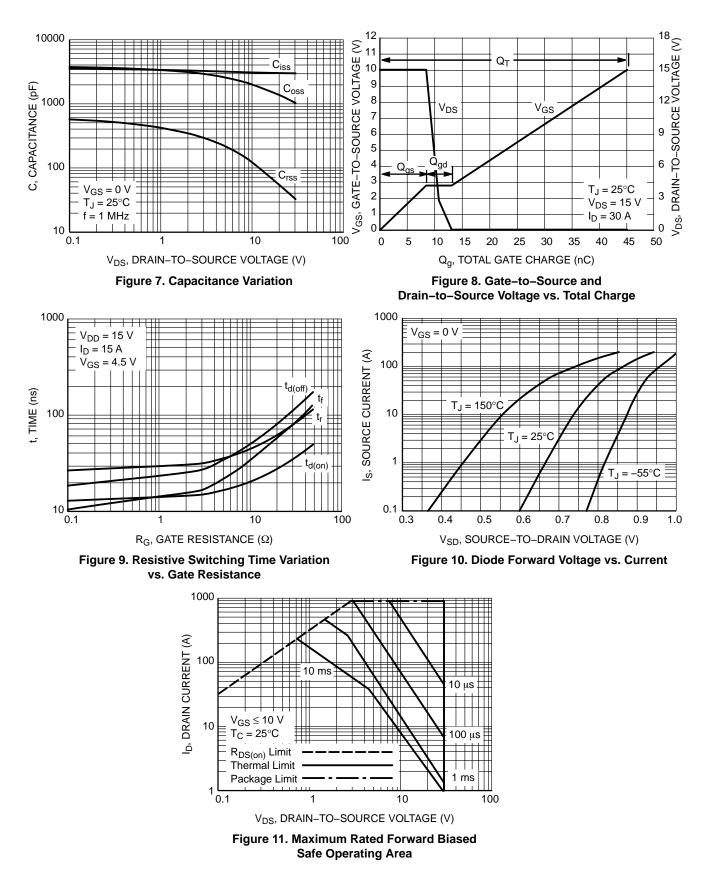
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	1.7 mΩ @ 10 V	450.4
30 V	2.4 mΩ @ 4.5 V	159 A

ORDERING INFORMATION

Device	Package	Shipping [†]		
NVMFS4C03NT1G	SO–8 FL (Pb–Free)	1500 / Tape & Reel		
NVMFS4C03NT3G	SO–8 FL (Pb–Free)	5000 / Tape & Reel		
NVMFS4C03NWFT1G	SO–8 FL (Pb–Free)	1500 / Tape & Reel		
NVMFS4C03NWFT3G	SO–8 FL (Pb–Free)	5000 / Tape & Reel		


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D$	= 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				18.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25 °C			1	μΑ
			T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V				100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	e = 250 μA	1.3		2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		1.4	1.7	mΩ
		V _{GS} = 4.5 V	I _D = 30 A		2.0	2.4	
Forward Transconductance	9 _{FS}	V _{DS} = 3 V, I _D = 30 A			136		S
Gate Resistance	R _G	T _A = 25 °C			1.0		Ω
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				3071		
Output Capacitance	C _{OSS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 15 V			1673		pF
Reverse Transfer Capacitance	C _{RSS}				67		
Total Gate Charge	Q _{G(TOT)}				20.8		-
Threshold Gate Charge	Q _{G(TH)}		45.14		4.9		
Gate-to-Source Charge	Q _{GS}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 30 A			8.5		nC
Gate-to-Drain Charge	Q _{GD}				4.7		-
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V}, I_D = 30 \text{ A}$			45.2		nC
SWITCHING CHARACTERISTICS (Note 5)		• •				-	-
Turn–On Delay Time	t _{d(ON)}				14		
Rise Time	t _r	V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω			32		ns
Turn-Off Delay Time	t _{d(OFF)}				27		
Fall Time	t _f				17		
DRAIN-SOURCE DIODE CHARACTERISTIC	S	•					
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V_{CS}$	$T_J = 25^{\circ}C$		0.75	1.1	1V
		$V_{GS} = 0 V,$ $I_{S} = 10 A$	T _J = 125°C		0.6		
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dI _S /dt = 100 A/μs, I _S = 30 A			47		ns
Charge Time	ta				23		
Discharge Time	t _b				24		
Reverse Recovery Charge	Q _{RR}				39		nC

performance may not be indicated by the Electrical Characteristics for the listed test conditions, to 4. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

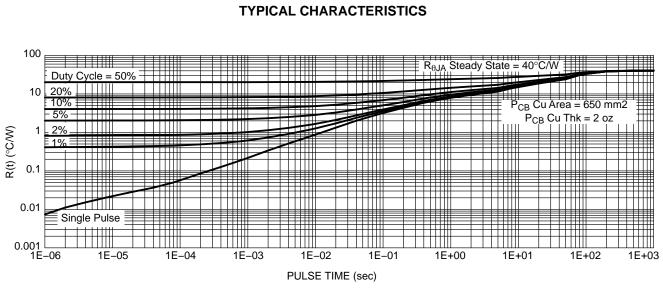


Figure 12. Thermal Impedance (Junction-to-Ambient)

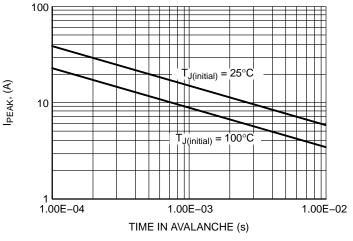
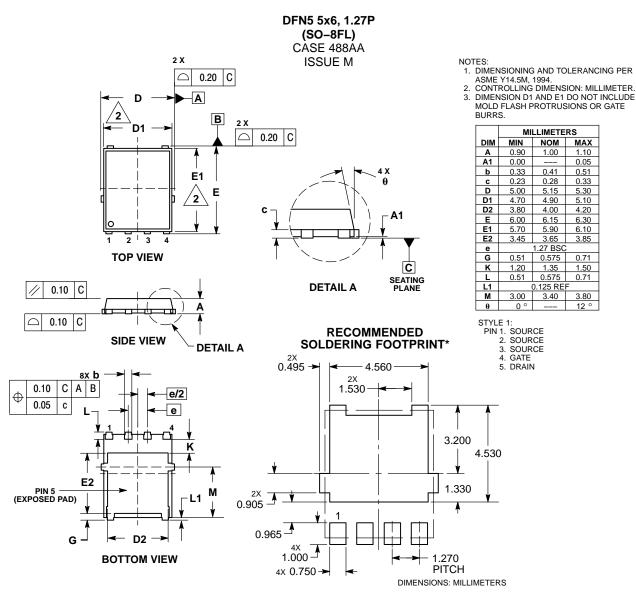



Figure 13. Avalanche Characteristics

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the intervent of the patient to patient the patient to the patient patient of the patie

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NVMFS4C03NT1G NVMFS4C03NWFT3G NVMFS4C03NT3G NVMFS4C03NWFT1G