ТІРЗЗА, ТІРЗЗС

NPN High-Power Transistors

Designed for general-purpose power amplifier and switching applications.

Features

- ESD Ratings: Machine Model, C; > 400 V Human Body Model, 3B; > 8000 V
- Epoxy Meets UL 94 V-0 @ 0.125 in
- These are Pb-Free Devices*

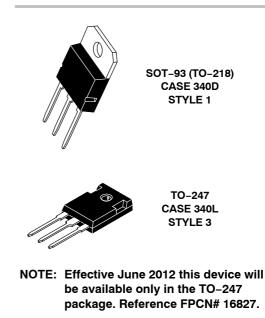
MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector – Emitter Voltage	TIP33A TIP33C	V _{CEO}	60 100	Vdc
Collector - Base Voltage	TIP33A TIP33C	V _{CBO}	60 100	Vdc
Emitter – Base Voltage		V _{EBO}	5.0	Vdc
Collector Current – Continuous – Peak (Note 1)		Ι _C	10 15	Adc Apk
Base Current – Continuous		Ι _Β	3.0	Adc
Total Device Dissipation @ T _C = Derate above 25°C	= 25°C	P _D	80 0.64	Watts W/°C
Operating and Storage Junction Temperature Range		T _J , T _{stg}	−65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.56	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	35.7	°C/W

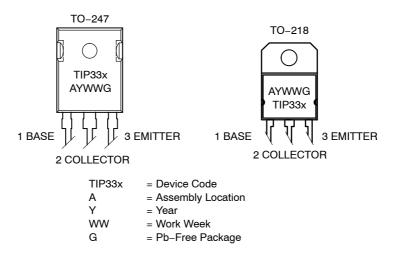
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

ON Semiconductor®

http://onsemi.com

10 AMPERE NPN SILICON POWER TRANSISTORS 60 & 100 VOLT, 80 WATTS

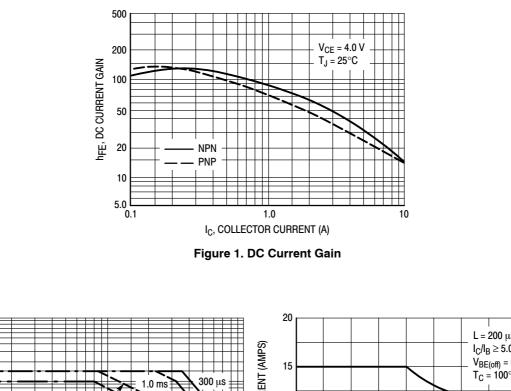

ORDERING INFORMATION

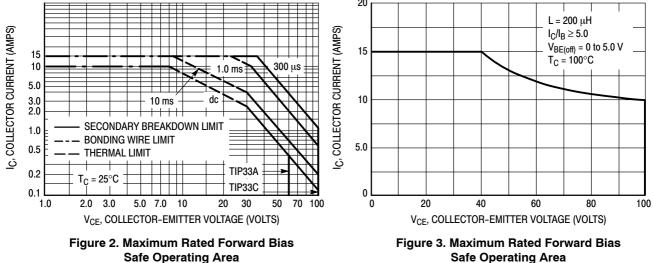
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Semiconductor Components Industries, LLC, 2012
May, 2012 – Rev. 4

MARKING DIAGRAMS


ORDERING INFORMATION


Device Order Number	Package Type	Shipping	
TIP33AG	TO-218 (Pb-Free)	30 Units / Rail	
TIP33CG	TO-218 (Pb-Free)	30 Units / Rail	
TIP33AG	TO-247 (Pb-Free)	30 Units / Rail	
TIP33CG	TO-247 (Pb-Free)	30 Units / Rail	

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	•	
Collector–Emitter Sustaining Voltage (Note 2) ($I_C = 30 \text{ mA}, I_B = 0$)	TIP33A TIP33C	V _{CEO(sus)}	60 100		Vdc
	TIP33A TIP33C	I _{CEO}	-	0.7	mA
Collector-Emitter Cutoff Current (V _{CE} = Rated V _{CEO} , V _{EB} = 0)		I _{CES}	-	0.4	mA
Emitter-Base Cutoff Current ($V_{EB} = 5.0 \text{ V}, I_C = 0$)		I _{EBO}	-	1.0	mA
ON CHARACTERISTICS (Note 2)	•				
DC Current Gain (I _C = 1.0 A, V _{CE} = 4.0 V) (I _C = 3.0 A, V _{CE} = 4.0 V)		h _{FE}	40 20	_ 100	-
Collector–Emitter Saturation Voltage $(I_C = 3.0 \text{ A}, I_B = 0.3 \text{ A})$ $(I_C = 10 \text{ A}, I_B = 2.5 \text{ A})$		V _{CE(sat)}		1.0 4.0	Vdc
Base-Emitter On Voltage ($I_C = 3.0 \text{ A}, V_{CE} = 4.0 \text{ V}$) ($I_C = 10 \text{ A}, V_{CE} = 4.0 \text{ V}$)		V _{BE(on)}		1.6 3.0	Vdc
DYNAMIC CHARACTERISTICS					•
Small–Signal Current Gain ($I_C = 0.5 \text{ A}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$)		h _{fe}	20	-	-
Current–Gain — Bandwidth Product ($I_C = 0.5 \text{ A}$, $V_{CE} = 10 \text{ V}$, f = 1.0 MHz)		f _T	3.0	_	MHz

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

FORWARD BIAS

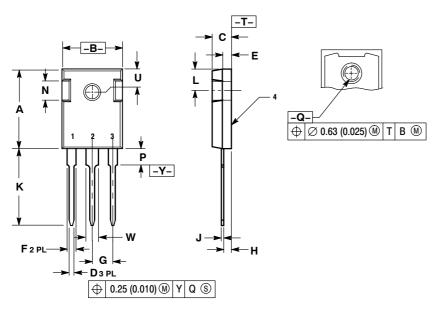
The Forward Bias Safe Operating Area represents the voltage and current conditions these devices can withstand during forward bias. The data is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10%, and must be derated thermally for $T_C > 25^{\circ}C$.

REVERSE BIAS

The Reverse Bias Safe Operating Area represents the voltage and current conditions these devices can withstand during reverse biased turn–off. This rating is verified under clamped conditions so the device is never subjected to an avalanche mode.

PACKAGE DIMENSIONS

SOT-93 (TO-218) CASE 340D-02 **ISSUE E**


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN MA		
Α		20.35		0.801	
В	14.70	15.20	0.579	0.598	
С	4.70	4.90	0.185	0.193	
D	1.10	1.30	0.043	0.051	
Е	1.17	1.37	0.046	0.054	
G	5.40	5.55	0.213	0.219	
Н	2.00	3.00	0.079	0.118	
J	0.50	0.78	0.020	0.031	
Κ	31.00 REF		1.220 REF		
L		16.20		0.638	
Q	4.00	4.10	0.158	0.161	
S	17.80	18.20	0.701	0.717	
U	4.00 REF		0.157 REF		
٧	1.75 REF		0.0	0.069	

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER

COLLECTOR 4.

TO-247 CASE 340L-02 **ISSUE F**

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	20.32	21.08	0.800	8.30
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
Е	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45 BSC		0.215 BSC	
Н	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
Κ	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
Ρ		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15 BSC		0.242	BSC
W	2.87	3.12	0.113	0.123

STYLE 3: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product cauld create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use pays and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use pays to all claims, costs, damages, and expenses, and reasonable attorney fees arising out of

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: TIP33CG