深圳市晶导电子有限公司

ShenZhen Jingdao Electronic Co.,Ltd.

13007

低频放大环境额定双极型晶体管

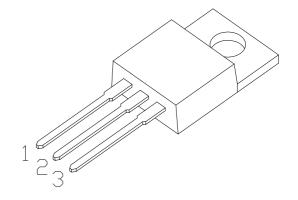
- ◆硅 NPN
- ◆符合 RoHS 环保指令要求

1. 主要用途

主要用于电子节能灯、电子镇流器、计算机 开关电源及各类功率开关电路

2. 主要特点

- 耐压高
- 高温特性好
- 开关速度快


3. 封装外形

TO-220

4. 电特性

4.1 极限值

除非另有规定, T_{amb}= 25℃

1 基极(B) 2 集电极(C) 3 发射极(E)

参数名称		符号	额定值	单位	
集电极-基 极电压		V_{CBO}	V _{CBO} 700		
集电极-发射极电压		V_{CEO}	400	V	
发射极-基 极电压		V_{EBO}	9	V	
集电极电流		$I_{\rm C}$	9	A	
耗散功率	Ta=25 ℃	D	2	W	
	Tc=25 ℃	$ P_{tot}$	85		
结温		T _j	150	$^{\circ}$	
贮存温度		$T_{\rm stg}$	-55~150	$^{\circ}$	

4.2 电参数

除非另有规定, T_{amb}= 25℃

参数名称	符号	测试条件	规 范 值			单		
多 数 名 称			最小	典型	最大	位		
集电极-基 极击穿电压	BV_{CBO}	$I_C=1$ mA, $I_E=0$	700			V		
集电极-发射极击穿电压	BV_{CEO}	$I_C=1$ mA, $I_B=0$	400			V		
发射极-基 极击穿电压	BV_{EBO}	$I_E=1$ mA, $I_C=0$	9			V		
集电极-基极截止电流	I_{CBO}	$V_{CB} = 700V, I_{E} = 0$			10	μА		
集电极-发射极截止电流	I_{CEO}	V_{CE} =400V, I_{B} =0			20	μА		
发射极-基极截止电流	I_{EBO}	$V_{EB} = 9V, I_{C} = 0$			10	μА		
共发射极电流放大系数	${ m h_{FE}}^*$	$V_{CE}=5V$, $I_{C}=1$ mA	8					
六 次剂		$V_{CE}=5V$, $I_{C}=2A$	20		35			
集电极-发射极饱和电压	V _{CE sat} *	$I_{C}=5A, I_{B}=2.5A$			0.8	V		
基 极-发射极饱和电压	$V_{\text{BE sat}}^*$	$I_{C}=5A, I_{B}=2.5A$			1.4	V		
上升时间	t _r				0.5	μs		
下降时间	\mathbf{t}_{f}	I _C =500mA (UI9600)		0.17	0.5	μs		
贮存时间	$t_{\rm s}$		3.0		5.5	μs		
特征频率	f_{T}	V _{CE} =10V, I _C =0.5A, f=1MHz	5			MHz		
*:脉冲测试 tp≤300 μ s, δ ≤2%								

5. 特性曲线

图 1 安全工作区(直流)

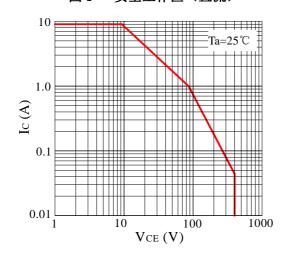


图 2 Ptot-T关系曲线

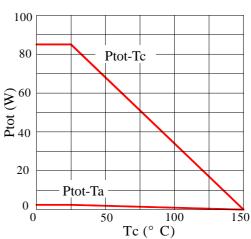


图 3 静态输出特性曲线

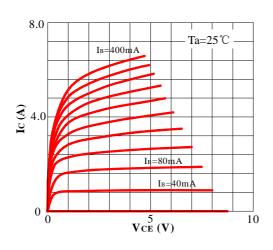


图 4 hre-Ic关系曲线

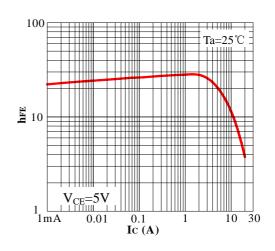


图 5 VBEsat-Ic关系曲线

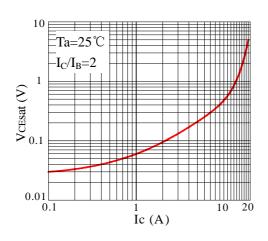
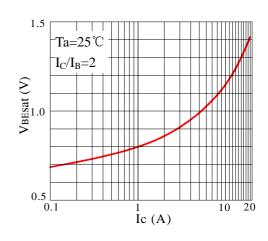
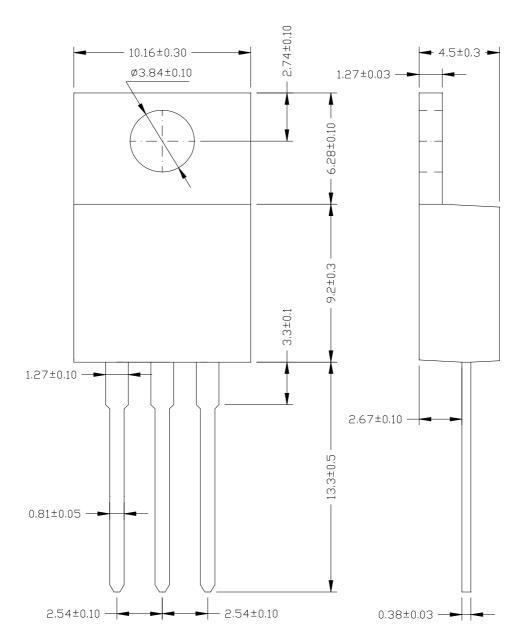




图 6 VCEsat-Ic 关系曲线

6. 产品外形尺寸图(单位: mm)

T0-220

